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Computer simulation study of a mesogenic lattice model based on long-range dispersion interactions
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In contrast to thermotropic biaxial nematic phases, for which some long sought for experimental realizations
have been obtained, no experimental realizations are yet known for their tetrahedratic and cubatic counterparts,
involving orientational orders of ranks 3 and 4, respectively, also studied theoretically over the last few decades.
In previous studies, cubatic order has been found for hard-core or continuous models consisting of particles
possessing cubic or nearly cubic tetragonal or orthorhombic symmetries; in a few cases, hard-core models
involving uniaxial (D∞h-symmetric) particles have been claimed to produce cubatic order as well. Here we
address by Monte Carlo simulation a lattice model consisting of uniaxial particles coupled by long-range
dispersion interactions of the London-De Boer-Heller type; the model was found to produce no second-rank
nematic but only fourth-rank cubatic order, in contrast to the nematic behavior long known for its counterpart
with interactions truncated at nearest-neighbor separation.
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I. INTRODUCTION

Thermotropic biaxial nematic liquid crystals have been
called “the holy grail” of liquid crystal research, both for
fundamental reasons and in connection with their possible
technological applications in displays [1]; a coherent peda-
gogical account of background and present state of the art on
the subject has been published in 2015 [2], and we refer to it for
a more detailed discussion and more extensive bibliography
of the different aspects of this fascinating and challenging
subject.

Here we briefly recall that nematic phases are usually
apolar and uniaxial (D∞h-symmetric), although the con-
stituent molecules possess lower symmetries; biaxiality was
discovered in a smectic C phase in 1970 [3], and, in the same
year, Freiser [4] addressed the possibility of biaxial mesogenic
molecules producing a biaxial nematic phase; the following
years saw extensive theoretical and simulation investigations
to elucidate the properties of the hypothetical biaxial phase
(especially in theoretical work, molecular D2h symmetry
has mostly been studied, but lower symmetries have been
addressed as well in recent years [5]). There also followed
several attempts to produce experimental realizations, which
remained unsuccessful until the end of the past century; better
evidence was obtained over the last 12 years [5,6]; in these
cases, second-rank orientational order is involved.

On the other hand, the theoretical possibility of positional
disorder accompanied by orientational order of other point-
group symmetries, involving tensors of rank L different
from 2, has been investigated theoretically for some 30
years to date [7–10], especially for tetrahedratic (L = 3) and
cubatic orders (L = 4); a detailed symmetry classification
of “unconventional” nematic phases, i.e., associated with the
onset of either one tensor of rank different from 2 or of several
combined tensors, has been carried out by Mettout [10]; a
general classification of point-group symmetric orientational
ordering tensors has recently been published [11]. This line
of investigations has partly overlapped with the study of
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packings of hard nonspherical particles, including a number
of polyhedra (see, e.g., Refs. [12–18]): in addition to the
extensive search for the densest packing obtainable for a
specific particle geometry, resulting phase diagrams (including
possible mesophases) have been studied.

The possibility of tetrahedratic orientational order, in-
volving a third–rank order parameter, was proposed and
studied by L. G. Fel [8,9]; its transitional behavior was
later studied by Lubensky and Radzihovsky [19,20], and
the macroscopic consequences of tetrahedratic order were
discussed in detail by Brand et al. [21–23]. Continuous
interaction lattice models involving third-rank interactions
alone [24] or combined with second-rank terms [25,26]
and producing tetrahedratic order have also been studied
by simulation. Starting in the mid-1990s, bent-core (banana-
shaped) mesogens were synthesized [27] and found to produce
mostly smectic and sometimes nematic [28] phases; to the
best of our knowledge, no experimental realizations of a
purely tetrahedratic phase are known at present, and no
third–rank order parameter has been measured to date, yet the
theoretical analyses in Refs. [19–23] show that interactions of
tetrahedral symmetry (or, in more general terms, a description
allowing for first-, second-, and third-rank ordering tensors)
are needed for the proper comprehension of macroscopic
properties of mesophases resulting from bent-core molecules.
Some experimental evidence suggesting tetrahedratic behavior
in an achiral bent-core liquid crystal has been reported in
Ref. [29].

Over the last decades, the possible existence of a cubatic
mesophase, possessing cubic orientational order (i.e., along
three equivalent mutually orthogonal axes) but no transla-
tional one, has been extensively investigated by approximate
analytical theories and by simulation [30–43] and explicitly
predicted in some cases; hard-core models possessing cubic
or nearly cubic tetragonal or orthorhombic symmetries have
been studied rather extensively: for example, Onsager crosses
were studied in Ref. [34], and tetrapods were investigated
in Ref. [35]; arrays of hard spheres with tetragonal or
cubic symmetries have been studied in Refs. [36–38]; and
continuous interaction models possessing cubic symmetry
have been studied as well [39]. Hard-core models involving
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uniaxial particles have also been investigated [30–33],
[40–42]: no cubatic order was found for hard cylinders [33],
whereas symmetrically cut hard spheres [30,40–42] of appro-
priate length-to-width appear to produce a metastable cubatic
phase.

As hinted above, no experimental realizations of a ther-
motropic cubatic phase are known at present; on the other
hand, liquid crystal phase transitions in suspension of mineral
colloids [44] have been investigated for some 90 years, and
evidence of cubatic order has been proposed in Ref. [45],
where uniform sterically stabilized hexagonal platelets of
nickel (II) hydroxide had been dispersed in D2O. A few
years later, molecular dynamics simulations [43] addressed
colloidal platelets with a square cross section, and consisting
of fused spherical interaction centers; a stable cubatic phase
was reported.

It also seems appropriate to recall that, starting with
the seminal Lebwohl-Lasher simulation papers in the early
1970s [46,47], mesophases possessing no positional order,
such as the nematic one(s), have often been studied by
means of lattice models involving continuous interaction
potentials [48,49]; this approach also yields a convenient
contact with molecular field (MF) treatments of the Maier-
Saupe (MS) type [50–52]. It has been pointed out [49] that
usage of a lattice model reduces the number of parameters to
be controlled, thus producing important savings in computer
time, and, moreover, it excludes a number a competing phases
(e.g., smectic ones) from the start; similar simplifications as
for the possible phases are used in other theoretical treatments
as well.

The present communication reports a Monte Carlo (MC)
simulation study, addressing and revisiting a lattice model
involving uniaxial particles, coupled via a long-range dis-
persion potential, and producing cubatic but no nematic
order.

The rest of this paper is organized as follows: the interaction
potential and its ground state are recalled in Sec. II; simulation
aspects are briefly discussed in Sec. III; simulation results are
presented in Sec. IV; and the paper is concluded in Sec. V,
where results are summarized.

II. INTERACTION MODEL AND GROUND STATE

As for symbols and definitions, we are considering here
three-component unit vector (classical spins), associated with
the nodes of a three-dimensional simple-cubic lattice Z3;
let xj denote the coordinate vectors of lattice sites, let wj

denote the unit vectors, and let wj,ι denote their Cartesian
components with respect to an orthonormal basis E = {eι,ι =
1,2,3} defined by lattice axes; the unit vectors wj can also be
parameterized by usual polar angles (θj ,φj ).

The quantum theory of intermolecular forces [53,54]
predicts for the dipolar contribution to the dispersion energy
between two identical, neutral, and centrosymmetric linear
molecules the general form

�0
jk = 1

r6

[
g0 + g1

(
a2

j + a2
k

) + g2ajakbjk + g3b
2
jk

+ g4(ajak)2
]
, (1)

where

r = rjk = xj − xk, r = |r|,r̂ = r/r, (2)

aj = wj · r̂, ak = wk · r̂, bjk = wj · wk, (3)

and the g coefficients can be calculated based on the
unperturbed wave functions. Under additional simplifying
approximations, Eq. (1) leads to the expression proposed by
London, de Boer, and Heller (LBH) in the 1930s [55–58]:

�jk = ε

r6

[
(γ 2 − γ )Sjk − 3

2
γ 2hjk + γ 2 − 1

]
,

(4)
ε = 3

4
Eα2,

where

hjk = (3ajak − bjk)2, Sjk = P2(aj ) + P2(ak),

α = 1

3
(α‖ + 2α⊥), γ = α‖ − α⊥

3α
. (5)

Here P2(. . .) denote second Legendre polynomials of the
relative arguments, α‖,α⊥ are the eigenvalues of the molecular
polarizability tensor, γ denotes its relative anisotropy, and E

is a mean excitation energy; formulae are also known for
higher-order terms in the multipolar expansion [53,54,58];
the extreme case γ = −(1/2) corresponds to no polarizability
along the molecular symmetry axis, whereas in the other
extreme γ = +1 there is polarizability along the molecular
axis only. In the following, let �̃jk denote the restriction of
�jk to nearest neighbors (n-n):

�̃jk = ε

[
(γ 2 − γ )Sjk + γ 2

(
−3

2
hjk + 1

)]
, (6)

where a purely positional and γ -independent term appearing
in Eq. (4) has been dropped.

Equation (1) or (4) has been used in the literature, usually
as one component of the pair potential between comparatively
simple linear molecules (see, e.g., Refs. [59–61]); limitations
and possible improvements of the LBH interaction model have
been discussed in the literature as well (see, e.g., Refs. [54,62]).

Models based on Eq. (6) have been investigated as pos-
sible mesogens by simulation, both on a three-dimensional
(3D) [63–66] and on a two-dimensional (2D) lattice [67];
on a 3D lattice, the n-n model �̃jk was found to produce a
nematic-like ordering transition [63,66]; on the other hand,
inclusion of next-nearest neighbors had been found to produce
a staggered ground state structure with sublattice order but
no net second-rank orientational order [64,65] (the D3-type
configurations mentioned below).

Another related mesogenic potential model, proposed by
Nehring and Saupe (NS) [68], has the form

	jk = − ε

r6
hjk; (7)

it has been used for approximate calculations of elastic
properties [69,70]; its restriction to n-n, defined by

	̃jk = ε

(
−3

2
hjk + 1

)
, (8)
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has later been studied by simulation in three dimen-
sions [71,72] as well as in two dimensions [73]. Comparison
between the relevant equations [Eq. (4) and (7)], shows that
NS corresponds to the limiting case γ = +1 in the LBH
model; actually, on a saturated cubic lattice and under periodic
boundary conditions, the two models �jk and 	jk become
equivalent within purely positional terms. More explicitly,
consider n-n interactions, in a periodically repeated sample,
where each particle interacts with six nearest neighbors only,
and the possible orientations of the intermolecular vector r̂ are
±eι,ι = 1,2,3; let us also recall that, for any unit vector wj

and for any lattice site xj ,

wj · wj =
3∑

ι=1

(eι · wj )2,

3∑
ι=1

P2(eι · wj ) = 0; (9)

this identity entails that, upon summing over all interacting
pairs, the terms in the pair potential containing Sjk cancel out
identically [66,71].

Moreover, let m = h2 + k2 + l2 > 0, denote the sum of
squares of three integers, and consider the sums

c(m) =
∑

r∈Z3\{0},r·r=m

P2(w · r̂),r̂ = r
|r| ; (10)

then

c(m) = 0, (11)

for all m and for any unit vector w; this result does not only hold
for a simple-cubic lattice, but also for its body-centered (BCC)
and face-centered (FCC) counterparts; thus, for a periodically
repeated cubic sample, and for any truncation radius, the Sjk

terms in Eq. (4) cancel out identically when summed over all
interacting pairs, so that terms linear with respect to γ drop out,
and only some terms proportional to γ 2 survive; in other words,
in the above setting, the dispersion model �jk [Eq. (4)] and
the Nehring-Saupe model 	jk [Eq. (7)] become equivalent,
within purely distance-dependent terms; the product εγ 2 in
Eq. (4) or the quantity ε in Eq. (7) can be used to set energy
and temperature scales (i.e., T ∗ = kBT /ε, where kB denotes
the Boltzmann constant).

To summarize, the present simulations, carried out on
periodically repeated cubic samples, used the functional form

	jk = + ε

r6

(
−3

2
hjk + 1

)
, (12)

mostly with truncation condition r · r � 25.
Notice that Eq. (11), hence the equivalence between the two

potential models, do not hold for a sample being finite in some
direction, e.g., a 2D lattice, nor for a grand-canonical (lattice
gas) simulation, where each lattice site hosts one spin at most,
and its occupation number fluctuates [66,72].

A few spin configurations possessing periodicity 2 in each
lattice direction and constructed as in Ref. [65] were examined
as possible ground state candidates, and the results further
checked by simulations carried out at low temperatures.

Procedure and definition of D1,D2,D3 configurations are
recalled in Appendix A for readers’ convenience; let us notice
that recognizing cubatic order in D3-type configurations led to
the present study.

III. COMPUTATIONAL ASPECTS

Simulations were carried out on a periodically re-
peated cubic sample, consisting of N = l3 particles, l =
10,12,16,20,24; calculations were run in cascade, in order
of increasing temperature; each cycle (or sweep) consisted
of N MC steps, and the finest temperature step used was
�T ∗ = 0.001, in the transition region. Equilibration runs
took between 25 000 and 100 000 cycles, and production
runs took between 500 000 and 3 500 000 (at least 2 500 000
cycles in the transition region, including the additional simu-
lations mentioned below); macrostep averages for evaluating
statistical errors were taken over 1000 cycles. Calculated
thermodynamic quantities include mean potential energy per
site U ∗ and configurational specific heat per particle C∗, where
the asterisks mean scaling by ε and kB , respectively.

As for structural characterization, we analyzed one con-
figuration every cycle, by calculating both second- and
fourth-rank ordering tensors T (L),L = 2,4 [74–78] as well
as corresponding rotation-invariant order parameters OL. In
other words, for L = 2,

T (2)
ικ = Qικ = 1

2
(3Fικ − δικ ), (13)

Fικ = 1

N

N∑
j=1

(wj,ιwj,κ ); (14)

the calculated Q tensor can be diagonalized; let {qk,k = 1,2,3}
denote its real eigenvalues, let q ′ denote the eigenvalue with
maximum magnitude, and let qmax denote the maximum.
eigenvalue; moreover

Q : Q = tr(Q · Q) =
3∑

k=1

q2
k , (15)

where : denotes the contracted product. The fourth-rank
counterpart is defined by

T (4)
ικλμ = Bικλμ

= 1
8 [35Gικλμ − 5(δικFλμ + διλFκμ + διμFκλ

+ δκλFιμ + δκλFιμ + δλμFικ ) + (δικδλμ + διλδκμ

+ διμδκλ)], (16)

where

Gικλμ = 1

N

N∑
j=1

(wj,ιwj,κwj,λwj,μ). (17)

The corresponding frame-independent (rotationally invariant)
order parameters are defined by

OL =
N∑

j=1

N∑
k=1

PL(wj · wk) � 0, (18)

where the inequality follows from the addition theorem
for spherical harmonics [79]; the order parameters of a
configuration are thus defined by

τL = 1

N

√
OL, (19)
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FIG. 1. Simulation results for the potential energy, obtained with different sample sizes. Meaning of symbols: circles: l = 10; squares:
l = 12; triangles: l = 16; diamonds: l = 20, crosses: l = 24. Here and in the following figures, with the exception of simulation results for C∗,
the statistical errors mostly fall within symbol sizes. Here as well as for Figs. 2, 5, and 6, panel a covers the whole investigated temperature
range, and panel b presents the transition region in greater detail.

overall averages over the simulation chain are

τL = 1

N
〈
√

OL〉, (20)

and the associated susceptibilities read

χL = 1

N
β(〈OL〉 − 〈

√
OL〉2), (21)

where β = 1/T ∗.

Notice that, by the addition theorem for spherical harmon-
ics [79], Eq. (18) can actually be calculated [24,33,39] via the
computationally more convenient single-particle sums

ξL,m =
N∑

j=1


[YL,m(wj )], ηL,m =
N∑

j=1

�[YL,m(wj )]; (22)

here m = 0,1,2, . . . L, YL,m(. . .) are spherical harmonics, and

 and � denote real and imaginary parts, respectively; in turn,

FIG. 2. Simulation results for the configurational specific heat C∗, obtained with different sample sizes; same meaning of symbols as in
Fig. 1. The associated statistical errors, not shown, range between 1% and 5%.
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FIG. 3. Simulation results for the orientational order parameter
τ 2, obtained with different sample sizes; same meaning of symbols
as in Fig. 1.

each spherical harmonic is a suitable polynomial constructed
in terms of Cartesian components of the corresponding unit
vector (see, e.g., Ref. [80]).

Moreover,

O2 = 2

3
(Q : Q) = 2

3

3∑
k=1

q2
k , (23)

FIG. 4. Simulation results for the orientational order parameter
q ′, obtained with different sample sizes; same meaning of symbols
as in Fig. 1.

O4 = 8

35
(B : B). (24)

There exist a few different but related possible measures of
second-rank order; i.e., in addition to τ2, one can consider
the eigenvalues qmax or q ′, with O2 = |q ′|2 in the uniaxial
case; τ2 and qmax have a definite sign, whereas the sign

FIG. 5. Simulation results for the orientational order parameter τ 4 obtained with different sample sizes; same meaning of symbols as in
Fig. 1.
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FIG. 6. Simulation results for the susceptibility χ4, obtained with different sample sizes; same meaning of symbols as in Fig. 1.

of q ′ may fluctuate in the course of simulation, and better
take into account configurations with antinematic order; for
example, D2-type configurations (Appendix A) yield q ′ =
−1/2, qmax = +1/4, τ2 = +1/2.

For L = 4, the above T (4) tensor can be copied (“folded”)
into a real, symmetric, and traceless matrix of order 9, say,

FIG. 7. Comparison between different definitions of the fourth-
rank order parameter, based on simulation results obtained for the
largest investigated sample size l = 24. Meaning of symbols: circles
ζ

′
; squares: ζ max; triangles: τ 4.

H [40,81,82], where, for example,

Hνρ = Bικλμ, ν = 3(ι − 1) + λ, ρ = 3(κ − 1) + μ

(25)

and

T (4) : T (4) = H : H. (26)

The matrix H can be diagonalized to give the real eigenvalues
{ζk,k = 1,2, . . . ,9}; thus

O4 = 8

35

9∑
k=1

ζ 2
k . (27)

Here also there exist a few different and related possible
measures of fourth-rank order, i.e., in addition to τ4, one can
consider the eigenvalue ζ ′ with maximum absolute value, or
the maximum eigenvalue ζmax. Besides the above procedure
[Eq. (25)], other computational definitions of fourth-rank
orientational order are also possible [30].

In principle, the same spin configuration might exhibit
(or the same underlying interaction model might produce)
different types of ordering, and the above definitions make
it possible to calculate them independently of one another, in
contrast to usual procedures for order parameters in nematic
liquid crystals, where the definition of P 4 and higher-order
terms is physically bound to the director frame [75–77]. A few
spin configurations possessing fourth-rank but no second-rank
orientational order are presented in Appendix B, and their
ordering quantities are summarized in Table I; for D3-type
configurations, τ4 = √

21/9 ≈ 0.5092.

IV. RESULTS

Simulation results for the potential energy U ∗ (Fig. 1)
appeared to exhibit a gradual monotonic change with temper-
ature; they were found to be independent of sample size up to
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TABLE I. Eigenvalues of H [Eq. (25)] for the four discussed spin configurations.

Case Number of spins ζ− ζ+ τ4

1 6 −7/12 ≈ −0.5833 +7/8 = +0.875
√

21/6 ≈ 0.7638
2 8 −7/12 ≈ −0.5833 +7/18 ≈ +0.3889

√
21/9 ≈ 0.5092

3 12 −7/32 = −0.21875 +7/48 ≈ +0.14583
√

21/24 ≈ 0.1909
4 26 −49/624 ≈ −0.0785 +49/936 ≈ +0.0523 7

√
21/468 ≈ 0.0685

T ∗
1 ≈ 2.2 and then above T ∗

2 ≈ 2.3; their overall temperature
behavior suggested a change of slope at some intermediate
temperature ≈ 2.21.

The configurational specific heat C∗ (Fig. 2) was also found
to be unaffected by sample size outside the named temperature
range [T ∗

1 ,T ∗
2 ]; in that range sample-size effects became quite

FIG. 8. Histograms of the single-particle potential energy u, obtained for l = 24 and different temperatures in the transition region. Meaning
of symbols for panel (a): black continuous line: T ∗ = 2.2075; red dashed line: T ∗ = 2.210; blue dashed-dotted line: T ∗ = 2.211. Meaning
of symbols for panel (b): black continuous line: T ∗ = 2.212; red dashed line: T ∗ = 2.213; blue dashed-dotted line: T ∗ = 2.214. Meaning of
symbols for panel (c): black continuous line: T ∗ = 2.215; red dashed line: T ∗ = 2.216; blue dashed-dotted line: T ∗ = 2.217.
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FIG. 9. Histograms of the fourth-rank order parameter τ4, obtained for l = 24 and different temperatures in the transition region. Meaning
of symbols for panel (a): black continuous line: T ∗ = 2.2075; red dashed line: T ∗ = 2.210; blue dashed-dotted line: T ∗ = 2.211. Meaning
of symbols for panel (b): black continuous line: T ∗ = 2.212; red dashed line: T ∗ = 2.213; blue dashed-dotted line: T ∗ = 2.214. Meaning of
symbols for panel (c): black continuous line: T ∗ = 2.215; red dashed line: T ∗ = 2.216; blue dashed-dotted line: T ∗ = 2.217.

apparent, and a peak was found to develop at ≈2.21, growing
narrower and higher with increasing sample size. The second-
rank order parameter τ 2 was calculated as well; at all examined
temperatures, the results were found to keep decreasing with
increasing sample size on the other hand, for all examined
sample sizes, they were found to increase with temperature,
reach a maximum in the transition region, and then decrease
with increasing temperature (Fig. 3).

Notice that configurations possessing some amount of
second-rank orientational order may have potential energies
not too high above the ground state of the model under
investigation here (Sec. II and Appendix A); in the low-
temperature ordered and in the transition regions they can be
favored by thermal fluctuations; in turn, at a given temperature,
thermal fluctuations tend to be reduced with increasing sample
size. On the other hand, as pointed out in the previous

section, there are different possible computational measures
of second-rank order for a configuration; usage of q ′ yielded
absolute values smaller by roughly an order of magnitude, and
sometimes negative signs in the ordered region, as shown in
Fig. 4. The corresponding susceptibility χ2 (not shown) was
found to be less affected by sample size.

Simulation results for the fourth-rank order parameter τ 4

were found to be independent of sample size up to T ∗ ≈ 2.1,
and then developed a recognizable decrease with increasing
sample size; their overall temperature behavior seemed to
suggest a continuous evolution with temperature (Fig. 5).

Simulation results for the corresponding susceptibility χ4

were found to increase with temperature (and to be unaffected
by sample sizes for l > 10) up to the above transition region,
where a peak developed, growing higher and narrower with
increasing sample size (Fig. 6).
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As pointed out in Sec. III, different measures of fourth-
rank orientational order can be defined, involving τ4, ζ ′, or
ζmax, respectively; simulation results obtained for the three
definitions and with the largest investigated sample size l = 24
are compared in Fig. 7, where the three definitions appear to be
mutually compatible; ratios between pairs of them (at the same
temperature) were also calculated, and found to evolve slowly
with temperature in the ordered region, where they remained
close to their ground-state values (see also Appendix B).

The above results point to a transition between cubatic and
isotropic phase, taking place at T ∗ ≈ 2.213; in order to obtain
some more evidence of its thermodynamic character, his-
tograms for the frequency distribution P (u) (where u denotes
the scaled potential energy per particle, and U ∗ = 〈u〉) as well
as for P (τ4) (see, e.g., Refs. [47,83,84]) were calculated in the
transition region (T ∗ = 2.2075,2.210 to 2.220 with step 0.001,
T ∗ = 2.225), for all examined sample sizes, over additional
run lengths ranging between 1 000 000 and 1 500 000 cycles,
and by analyzing one configuration every cycle. Results for
P (u) and l = 24 at selected temperatures are plotted in Fig. 8,
and their counterparts for P (τ4) are reported in Fig. 9. The
width of the distribution P (u) as measured by the variance
(not shown) was found to shrink with increasing sample size;
the double-peaked structure in Fig. 8(b) only developed for
l � 16, and the peaks appeared to grow higher and narrower
with increasing sample size. As for P (τ4), the width of the
distribution was found to shrink with increasing sample size
as well, and the double-peaked structure in Fig. 9(b) developed
only for l � 20. In both cases, histograms obtained at higher
temperatures, not shown, exhibited rather narrow single peaks;
thus histograms obtained for large samples exhibit a two-peak
structure over a rather narrow temperature range, pointing to
a weak first-order transition taking place at T ≈ 2.213.

V. CONCLUSIONS

We have carried out a MC simulation study of a lattice
model consisting of uniaxial (D∞h-symmetric) particles cou-
pled by long-range dispersion interactions of the LHB type;
in the named setting the model becomes equivalent to its NS
counterpart; the model was found to support no second-rank
order but to possess fourth-rank order in its low-temperature
phase; simulation results point to a weak first-order transition
whose transition temperature is estimated to be T ∗

c = 2.213 ±
0.002, where the uncertainty is conservatively taken to be twice
the temperature step used in the transition region. Let us recall
that the n-n counterpart supports [63,71] a first-order transition
to a nematically ordered phase, taking place at 2.238 ± 0.001;
the n-n model is reasonably well described by a MF treatment
of the MS type, predicting a transition temperature 2.6424; as
already pointed out in Ref. [65], a MF treatment of the MS
type could be applied in this case as well: it would produce
the same pseudopotential as in the n-n case (within a scaling
factor), but here it would be physically wrong.

The investigated potential model involves second-rank
interaction terms and produces no second-rank but only fourth-
rank orientational order; it may be appropriate to mention
that a few other potential models are known in the literature,
where interactions of a certain rank produce only higher-rank
correlations or even long-range orientational order: more

explicitly, they are classical lattice-spin models involving
two- or three-component unit vectors coupled by competing
and frustrating first-rank (magnetic) interactions, which may
result in second-rank correlations or even long-range order
at finite temperature [85–87]; this appears to happen via
a mechanism of entropic selection (order by disorder) of
ground-state configurations, in contrast to the energetic effects
acting here (Sec. II).

There are also a few related interaction models involving
uniaxial particles and which seem to be worth examining
or revisiting in terms of cubatic orientational order. On the
one hand, one can study the effect of lattice geometry,
by addressing BCC and FCC counterparts of the present
simple-cubic lattice model; one could even give up the lattice,
allow particle centers to move in R3, and supplement the
present interaction model with a purely radial term enforcing
some minimum distance between particle centers (the “liquid”
setting. for short); there is a continuum counterpart of Eq. (9):∫

P2(w · v)d2v = 0, (28)

where the unit vector w is assigned and integration over the
unit vector v is carried out on the whole unit sphere with
the usual uniform measure: this formula suggests that, in the
“liquid” setting, the Sjk terms (see Sec. II) should largely
cancel out upon summing over all interacting pairs, provided
that the distribution of intermolecular vectors is essentially
isotropic.

Interaction models involving just linear point quadrupoles
associated with a 3D lattice were studied some 40 years ago,
analytically [88–91] and by classical simulations [92,93], as
simplified models of solid nitrogen [94], and might now be
revisited, also in terms of overall fourth-rank orientational
order. For example, the low-temperature, room-pressure α

phase of solid nitrogen is usually assumed to belong to space
group Pa3 (but space group P 213 is also possible [94,95]).
The Pa3 structure involves particle centers associated with a
FCC lattice, where the four particles in the cubic unit cell
are oriented along the body diagonals, thus producing no
overall second-rank orientational order, and a finite amount
of its fourth-rank counterpart, actually the same ground-state
value τ4 = √

21/9 as in our case (see also Appendix B);
in some original simulation papers a local (sublattice-wise)
second-rank order parameter was defined with respect to the
corresponding ground-state orientations [92,93].

We hope to address some of these points in the near future.
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APPENDIX A: GROUND STATE CONFIGURATION

Let (X,Y,Z) denote the Cartesian components of a unit
vector, parameterized by two polar angles (�,�); for the
generic lattice site xj let h,k,l denote the integer coordinate
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(we write h instead of hj for simplicity of notation), then, for
each site j [65]:

wj = (−1)k+lXe1 + (−1)h+lY e2 + (−1)h+kZe3. (A1)

A few configurations defined by special cases of Eq. (A1) are
the following:

(1) D1 (X = Y = 0,Z = 1), with full orientational order
along a lattice axis

(2) D2 (X = Y = √
2/2,Z = 0), with a negative second-

rank order parameter (−1/2) (antinematic order)
(3) D3 (X = Y = Z = √

3/3), possessing no second-rank
but a finite amount of fourth-rank order.

Let W ∗
1 ,W ∗

2 ,W ∗
3 denote the corresponding potential en-

ergies per particle, where the asterisk means scaling by ε;
known results when the interaction was truncated at n-n
separation [63,65,71] are

W ∗
1 = −6 < W ∗

2 = −21/4 < W ∗
3 = −5; (A2)

on the other hand, when the interaction was extended to next-
nearest or more distant neighbors, the sequence became [65]

W ∗
3 < W ∗

2 < W ∗
1 , (A3)

and the three values were found to be much closer to
one another; notice also that D2-type configurations become
favoured over D1-type. Different truncation radii were tried,
and found to slightly change the three individual values, but
not the inequalities among them; for example, truncation by
the condition r · r � 25 yielded

W ∗
1 = −5.813, W ∗

2 = −5.879, W ∗
3 = −5.900; (A4)

the configuration potential energy was also calculated over a
finer angular grid in (�,�), and results appeared to confirm
D3 as ground-state candidate; moreover, and more importantly,
simulations carried out at low temperatures, starting from any
of the three above configurations, or even for a randomly
generated one, quickly gave results corresponding to a mild
thermal evolution of D3, as originally found by simulation in
Ref. [64].

APPENDIX B: SIMPLE SPIN CONFIGURATIONS
POSSESSING FOURTH-RANK BUT

NO SECOND-RANK ORDER

On can construct a few simple spin configurations, possess-
ing, fourth-rank (cubatic) order but no second-rank (nematic)
one, and for which all odd-rank ordering tensors vanish;

(1) A first example involves 6 unit vectors oriented along
±eι,ι = 1,2,3;

(2) A second example consists of eight unit vectors with
Cartesian components ±√

3/3 (all combinations of signs) and
corresponds to the ground state for the interaction model under
investigation here; actually, this configuration consists of two
disjoint subsets, composed of four spins whose components
have an even number of negative signs, and four spins with an
odd number of negative signs, respectively; for both subsets
and for the whole configuration, τ1 = τ2 = 0,τ4 = √

21/9;
moreover, for each subset, τ3 = √

5/3 ≈ 0.7454;
(3) A third example involves 12 unit vectors with Cartesian

components obtained from (0, ± √
2/2, ± √

2/2) by applying
all possible combinations of signs and all possible permuta-
tions;

(4) One can build a 26 spin configuration as union of the
three above cases.

In all four cases the above matrix H [Eq. (25)] was found
to possess the eigenvalue 0 with degeneracy 4, as well as
two other nonzero ones, with opposite signs (ζ− and ζ+ in
the following), degeneracies 2 or 3, respectively, and absolute
values in the corresponding ratio (the eigenvalue with smaller
magnitude possessing higher degeneracy); moreover we found
ζ ′ > 0 for the first case, and ζ ′ < 0 in all others (see also
Table I); thus, in all the four cases,

τ4 =
√√√√(8/35)

9∑
k=1

ζ 2
k ,

9∑
k=1

ζ 2
k = (10/3)|ζ ′|2,

τ4/|ζ ′| = (4/21)
√

21 ≈ 0.8728
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