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Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density
and Debye length due to ionic correlations
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Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m: − n

electrolyte. A perturbation series is developed in terms of g = 4πκb, where b and 1/κ are Bjerrum length and
bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For
asymmetric electrolytes (m �= n), the first order (one-loop) correction to mean potential contains a secular term,
which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation,
we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized
Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are
multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of
sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even
when the density of electrolytes is relatively high.

DOI: 10.1103/PhysRevE.94.042615

I. INTRODUCTION

There is a general consensus [1–4] that the Poisson-
Boltzmann theory (PB) is inadequate in describing the sta-
tistical physics of strongly coupled electrolytes, where the
electrostatic interaction between neighboring ions is large
comparing with the thermal energy. This happens typically in-
side dense bulk electrolytes, or near strongly charged surfaces,
or, more specifically, in tightly confined environments [5].
Failure of PB may also be caused by strong volume exclusion
interactions between ions, if the ion sizes are sufficiently large
and ion densities are sufficiently high. Last but not least, PB
may also fail due to ion-specific interactions [6,7], which are
manifestly beyond the primitive model. In the dilute limit, both
correlations and ion-specific interactions become unimportant,
and PB becomes asymptotically exact. Finally, it is often
observed that PB fails for asymmetric electrolytes at much
lower densities. The responsible mechanism, however, seems
less clear. Because of the complexity of electrolyte systems,
there does not exist a single theoretical framework capable of
describing all non-PB aspects.

The present work is the third of a series that analyze
the statistical physics of electric double layers (EDLs) with
planar geometry inside asymmetric electrolytes. In Ref. [8]
(which shall be referred to as Paper 1), M. Han and X. Xing
solved the nonlinear Poisson-Boltzmann equation for a single
strongly (and positively) charged plate inside a generic m: − n

electrolyte. Using the leading order far field asymptotics of the
mean potential, one can define a renormalized (or effective)
charge density for the strongly charged plate, which saturates
to a finite value that depends on valences m,n, as well as
the ion density. Note that this renormalization of surface
charge density arises due to the nonlinearity inherent in the
Poisson-Boltzmann equation, which is a mean field theory.
There are also additional renormalization of charge density due
to statistical fluctuations or correlations, which is completely

*xxing@sjtu.edu.cn

ignored in PB. Subsequently, in Ref. [9] (which shall be
referred to as Paper 2), two of us (B.S.L. and X.X.) calculated
the electrostatic correlation energy of a test (point) ion near a
strongly charged plate inside a m: − n electrolyte, to the first
order in g (a small parameter inverse proportional to the Debye
length, as we will define later). It was found that for m �= n,
the correlation energy decays in the same fashion as the mean
field potential in the far field. This correlation energy was used
to calculate the first order correction to the mean potential,
which was found to contain a secular term that dominates the
zeroth order result in the far field, indicating the breakdown of
regular perturbation method. In the present work, we shall use
perturbation analyses and a renormalization group method to
demonstrate that the physical origin of the secular term is the
renormalization of Debye length due to electrostatic correla-
tions. Additionally, we shall also obtain the renormalization of
surface charge density due to the same correlations.

It is important to emphasize that the one-plate problem has
been studied by many authors in the past, via both analytic
and numerical methods. In particular, there is a large body
of analytic results based on the strong-coupling theory and
various generalizations; see references in Paper 1 and Paper 2.
There are also a number of more recent relevant works
[10–12]. For some analytic results using Ornstein-Zernike
integral equation theory, see Ref. [13]. The same as our
works, all these works are based on the primitive model,
where ions are described as charged hard spheres. Our present
work differs from all previous works in the sense that we
provide analytic expressions for renormalized surface charge
density and renormalized Debye length for generic (two-
component) asymmetric electrolytes. These results, of course,
are applicable only for relatively dilute systems.

The remaining of this paper is organized as follows. In
Sec. II we discuss the framework of self-consistent field theory
(SCFT) and formally derive the first order correction to the
mean potential due to a (infinitely thick) charged plate inside
electrolyte. In Sec. III we apply the method to the case of
symmetric electrolytes and obtain the first order renormalized
surface charge density. In Sec. IV we apply the theory to the
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(much harder) case of asymmetric electrolytes and find that the
first order perturbation to the mean potential contains a secular
term. As a result, the correction becomes larger than the mean
field result in the far field, and the perturbation series becomes
useless. We then apply a renormalization group transformation
on the perturbation series and show that physical origin of
the secular term is renormalization of Debye length due to
electrostatic correlations. We obtain both renormalized Debye
length and renormalized surface charge density up the first
order. In Sec. V we present some Monte Carlo simulation
results of a strongly charged surface inside a 2:−1 primitive
model electrolyte. Comparison with analytical results shows
that our renormalized theory works much better than the
nonlinear PB. Finally in Sec. VI we summarize our work
and discuss the implications of our results. In Appendix A
we present some analytic details about 2: −1 and 1: −2
asymmetric electrolytes. The main results of this work are
summarized by two equations (4.44) and (4.45).

II. FORMALISM

A. Self-consistent field theory (SCFT)

As in Paper 1 and Paper 2, we shall consider asymmetric
electrolyte with point-like positive and negative ions carrying
charges +mq and −nq, respectively. The mean potential �(r)
satisfies the exact Poisson equation:

− ε ∇2�(r) = mq ρ0
+ e−βw1(r,mq) − nq ρ0

− e−βw1(r,−nq),

(2.1)

where ρ0
± are the average ion number densities in the bulk,

β = 1/kBT ,ε is the dielectric constant of the electrolyte, and
q = 1.6 × 10−19C is the fundamental unit of electric charge.
w1(r,mq),w1(r, − nq) are the potentials of mean force (PMF)
of positive and negative ions. As discussed in the first section
of Paper 2, w1(r,kq) of a k-valence test ion can be formally
expanded in terms of k:

w1(r,kq) = kq �(r) + 1
2k2q δϒ(r,r) + O(k3). (2.2)

In this expansion, the first order term corresponds to the mean
field theory, and higher order terms arise due to the correlation
effects. δϒ(r,r) is defined as the correlation potential and is
related to the electrostatic Green’s function G(r,r ′) via

δϒ(r,r) = lim
r ′→r

[
G(r,r ′) − lim

r ′′→∞
G(r + r ′′,r ′ + r ′′)

]
.

(2.3a)

The Green’s function is defined as incremental potential at r
due to a monovalence test ion q inserted at r ′, in the presence of
the background potential �(r). Substituting the preceding two
equations back into (2.1) and neglecting terms of higher order
in k, we arrive at a modified Poisson-Boltzmann equation:

− ε∇2�(r) = mqρ0
+ e−βmq�(r)− 1

2 m2βq δϒ(r,r)

− nqρ0
− eβnq�(r)− 1

2 n2βq δϒ(r,r). (2.3b)

For details, see Sec. I of Paper 2.
To obtain a close system of equations, we need another

equation for the Green’s function G(r,r ′). A self-consistent

treatment is to consider G(r,r ′) as a linear perturbation to
the background �(r) in Eq. (2.3b) and linearize in terms of
G(r,r ′). This leads to

− ε∇2G(r,r ′) = −βq2
[
m2ρ0

+ e−βmq�(r)− 1
2 m2βq δϒ(r,r)

+ n2ρ0
− eβnq�(r)− 1

2 n2βq δϒ(r,r)]G(r,r ′)

+ q δ(r − r ′). (2.3c)

Three equations (2.3) form the self-consistent field theory
(SCFT) approximation and has been studied by various authors
for symmetric case m = n [14–16]. In these previous works,
Eqs. (2.3) were derived using field-theoretic formalism and
variational Gaussian approximation. The derivation presented
in this work is more heuristic and provides an alternative
viewpoint.

Strictly speaking, two-component electrolytes with point-
like ions are thermodynamically unstable because opposite
ions can approach indefinitely close to each other, so that the
energy does not have a lower bound. This pathology, however,
does not show up in our theory, because the corresponding
ultraviolet divergence is precisely canceled in the subtraction
in Eq. (2.3). The same cancellation is also at work in the
classical Debye-Huckle theory of bulk electrolytes.

Let us define the (bare) Debye length 1/κ and the Bjerrum
length b via

1/κ ≡
√

ε/βq2(m2ρ0+ + n2ρ0−), (2.4a)

b ≡ βq2/4πε. (2.4b)

We shall also define a dimensionless parameterg, small for a
dilute electrolyte:

g = 4πκb. (2.4c)

The same as in Paper 2, we shall measure all lengths in
units of 1/κ , and define the dimensionless versions of mean
potential 
 and Green’s function G(r,r ′) via

r → r/κ, (2.5a)


 ≡ qβ�, (2.5b)

G ≡ qβG. (2.5c)

For details, see Eqs. (2.3) of Paper 2. Equations (2.3b) and
(2.3c) then reduce to the following dimensionless form:

−d2
(z)

dz2
+ 1

m + n

[
en
(z)−n2�ε(z) − e−m
(z)−m2�ε(z)] = 0,

(2.6a)[
−∇2 + 1

m + n

(
me−m
(z)−m2�ε(z) + nenφ(z)−n2�ε(z)

)]
×G(r,r ′) = g δ(r − r ′), (2.6b)

where z is the distance to the charged plate, �ε(z) the
correlation energy and is related to the electrostatic Green’s
function G(r,r ′) via

�ε(z) = 1
2 lim

r ′→r
[G(r,r ′) − lim

r ′′→∞
G(r + r ′′,r ′ + r ′′)]. (2.6c)
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We shall solve Eqs. (2.6) perturbatively to the first order in
g in this work. The leading order far field asymptotics of the
mean potential has the following simple form:


(z) = ηR e−αz, (2.7)

where ηR is the renormalized surface charge density, given by
Eq. (4.45), while α = κR/κ is given by Eq. (4.44), with κR the
renormalized inverse Debye length.

B. Perturbative expansion in g

We shall solve Eqs. (2.6) using perturbation method, in
terms of the dimensionless parameter g. That means we expand

(z) and G(r,r ′) into asymptotic series of g and solve the
coefficients order by order. Since the source on the RHS
of Eq. (2.6b) is linear in g, whereas Eq. (2.6a) is formally
independent of g, we expect that 
(z) starts with 0th order,
while G(r,r ′),�ε(z) start with first order:


(z) = 
0(z) + g 
1(z) + · · · , (2.8a)

G(r,r ′) = 0 + g G1(r,r ′) + · · · , (2.8b)

�ε(z) = 0 + g �ε1(z) + · · · . (2.8c)

This is equivalent to the well-known loop expansion in
the field-theoretic formalism. Substituting these back into
Eqs. (2.6), we find that, to the 0th order, 
0(z) satisfies the
nonlinear Poisson-Boltzmann equation (PBE):

−
 ′′
0 (z) + 1

m + n
(en
0(z) − e−m
0(z)) = 0, (2.9)

which, for the one-plate geometry, was solved for arbitrary
integers m,n using the method of asymptotic matching
discussed in Paper 1. To the order in g, the Green’s function
G1(r,r ′) can be found in terms of 
0(z) by solving the
following linear PDE:[

−∇2 + 1

m + n
(n e−n
0(z) + m em
0(z))

]
G1(r,r ′)

= δ(r − r ′). (2.10)

From G1(r,r ′) we can obtain the first order correlation energy
�ε1(z) using Eq. (2.6c). This problem has been solved in Paper
2, again for arbitrary m,n [17]. The first order correction to
potential, 
1(z), satisfies the following inhomogeneous linear
ODE:

− 
 ′′
1 (z) + 1

m + n
[n en
0(z) + m e−m
0(z)]
1(z) = S(z),

(2.11)

where the source S(z) is defined as

S(z) ≡ 1

m + n
(n2en
0(z) − m2e−m
0(z))�ε1(z) (2.12)

and can be obtained in terms of 
0(z) and �ε1(z). Here we
shall try to find 
1(z), for arbitrary valences m,n.

As we have shown in Paper 1, the solution to Eq. (2.9) can
be expressed in terms of a function ϒm,n that depends on two
integers m,n:


(z) = ϒm,n(z + z0). (2.13)

The parameter z0 shall be determined by enforcing the
boundary condition (2.14a).The function ϒ(z) diverges log-
arithmically at z = 0. As a consequence, the parameter z0

goes to zero in the limit of infinite surface charge density. It
therefore can be treated as a small parameter for a strongly
charged surface.

C. The boundary conditions

Same as in Paper 1 and Paper 2, we shall take the convention
that the plate is infinitely thick and positively charged, so that
the negative ions (with charge −ne) are the counterions and
the positive ions (with charge me) are the coions. In Paper
1 and Paper 2, the coordinate system was chosen such that
the interface with dimensionless surface charge density η

is located at −z0, with z0 chosen as a function of η, such
that the potential 
0(z) is independent of the (dimensionless)
surface charge density η and diverges at z = 0. This choice
substantially simplifies the analyses in Paper 1 and Paper 2.
In the present work, we shall choose a different coordinate
system, namely, we shall fix the interface at the origin z = 0.
It is then understood that all results in Paper 1 and Paper 2
need to be transformed via z → z + z0 before they can be
used here.

Since the plate is infinitely thick, the mean potential is
constant in the whole left space (z < 0), which shall be
conveniently chosen to be zero. The boundary conditions
satisfied by the mean potential 
(z) are given by (also in their
dimensionless forms): The other derivative does not appear:


 ′(0) = −η, on the plate, (2.14a)


(∞) = 0, in the bulk, (2.14b)

where

η = qβσ

εκ
≡ 2

κμ
(2.15a)

is the dimensionless surface charge density, and μ the Guoy-
Chapman length:

μ = 2ε

qβσ
. (2.15b)

In writing Eqs. (2.14a), we have assumed that the potential
is constant to the left of the interface.

What we need are, however, the boundary conditions for

0(z) and 
1(z), respectively. It seems completely natural to
require that both 
0(z) and 
1(z) vanishes as z = ∞. But their
boundary conditions at z = 0 are more subtle. Equation (2.14a)
only fixes the boundary condition for the whole series. It is
conventional (and indeed seems very appealing) to require
that 
0,
1, . . . are all independent of g, and to expand both
sides of Eq. (2.14a):


 ′
0(0) + g 
 ′

1(0) + · · · = −η + g × 0 + · · · . (2.16)

We can then enforce equality to hold order by order, and
obtain a inhomogeneous boundary conditions for 
0(z) and
a homogeneous one for 
1(z):


 ′
0(0) = −η, 
0(∞) = 0; (2.17a)


 ′
1(0) = 0, 
1(∞) = 0. (2.17b)
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We must remember, however, that Eq. (2.17a) is only one of
infinite number of possible choices. In particular, the functions

0(z),
1(z), . . . need not be independent of g. In fact, we can
freely add a part to g 
1(z) and subtract it from 
0(z), such
that Eq. (2.16) is unaltered. This subtle point provides the key
to understanding our renormalization group analysis below.

D. Formal solution to �1(z)

In order to solve Eq. (2.11), we need only to find the
corresponding Green’s function H (z,z′), defined as

− d2

dz2
H (z,z′) + 1

m + n
[n en
0(z) + m e−m
0(z)]H (z,z′)

= δ(z − z′), (2.18)

together with homogeneous boundary conditions at z = 0 and
at z = ∞. Note that H (z,z′) is a one-dimensional Green’s
function, while G1(r,r ′) in Eq. (2.10) is a three-dimensional
Green’s function. As is well known, H (z,z′) can be constructed
using the standard Liouville method [18]. For this purpose, we
need two independent homogeneous solutions φL(z) and φR(z)
to Eq. (2.18) [19]:

−φ′′
L,R(z) + 1

m + n
(nen
0(z) + me−m
0(z))φL,R(z) = 0,

(2.19)
subjected to the homogeneous boundary conditions

φ′
L(0) = 0, (2.20a)

φR(∞) = 0. (2.20b)

Taking the derivative of the original PB equation (2.9)
with respect to z, we find that 
 ′

0(z) satisfies Eq. (2.19).
Furthermore, since 
0(z) decays as e−z for z � 1, so does
its derivative. Therefore −
 ′

0(z) is precisely the homogeneous
solution φR(z) that we are looking for:

φR(z) ≡ −
 ′
0(z). (2.21)

The other solution φL(z) can be obtained by the method of
variation of parameters. Let

φL(z) = f (z)φR(z), (2.22)

and substituting it back into Eq. (2.19), we find f (z) satisfies
the following equation:

φR(z)
d2f (z)

dz2
+ 2

df (z)

dz

dφR(z)

dz
= 0. (2.23)

This equation can be readily solved:

f (z) =
∫

dz

φR(z)2
+ f1. (2.24)

Hence

φL(z) = φR(z)

[∫
dz

φR(z)2
+ f1

]
. (2.25)

The constant f1 shall be determined by the boundary condition
satisfied by φL at z = 0, Eq. (2.20a).

The Wronskian formed by two functions g(z) and h(z) is
defined as

W (g,h; z) = g(z)h′(z) − h(z)g′(z). (2.26)

Using Eq. (2.25), it can be easily shown that

W (φL,φR; z) = −1. (2.27)

The Green’s function H (z,z′) can now be obtained:

H (z,z′) =
{

φL(z)φR(z′), (z < z′),

φL(z′)φR(z), (z > z′).
(2.28)

The first order correction 
1(z) can be now expressed in terms
of the Green’s function as


1(z) =
∫ ∞

0
H (z,z′)S(z′) dz.

= φR(z)
∫ z

0
φL(z′)S(z′) dz′

+φL(z)
∫ ∞

z

φR(z′)S(z′) dz′. (2.29a)

Constructed as such, 
1(z) naturally satisfies the homogeneous
boundary conditions (2.17b) at both ends. In later sections, we
shall use this general expression and previous results of 
0(z)
and �ε1(z) to calculate 
1(z) for the generic values of m,n.

E. Subtleties of the correlation energy

In Paper 2, it was shown that the first order correlation
energy �ε(z) can be decomposed into two parts:

�ε1(z) = �ε∞(z) + δε(z). (2.30)

Here �ε∞(z) scales as −3g/16π (z + z0) in the near field
and decays exponentially in the far field. Furthermore, it is
manifestly independent of the dielectric constant of the plate
ε1 in the region z < 0. By contrast, the second part δε(z)
depends on the dielectric constant of the plate ε1, and vanishes
if ε1 = ε, but is subdominant to �ε∞(z) except in a very thin
region close to the plate z 	 z0 ∼ μ, where μ is the Gouy-
Chapman length. This regime is called the extremely near field
in Paper 2. Evidently, δε(z) becomes important in this regime
because of the image charge effects due to the discontinuity of
dielectric constant on the interface. This effects is screened by
the counterions once the test ion is a couple of μ away from
the plate.

If the dielectric constant ε1 of the plate is smaller than ε

that of the solvent (as is the usual case of insulator plate inside
aqueous solvent), δε(z) diverges to +∞ as z → 0+, that is, as
the test ion approaches the plate. The effect of this repulsive
image charge is to push the test ion a few μ away from the
plate. This effects can be largely ignored in our calculation
of 
1(z), as long as κμ 	 1. Actually we have performed a
simulation to verify our inference, which is shown in Fig. 2.

In this work, we assume that ε1 	 ε, and hence the
correction δε(z) can be safely ignored. This substantially
simplifies our analyses below.

III. SYMMETRIC ELECTROLYTE

Let us apply the general formalism developed above to the
simplest case of 1: −1 symmetric electrolyte. The solution to
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the PBE (2.9) for the one-plate geometry is well known:


0(z) = 2 log coth

(
z + z0

2

)
. (3.1)

Note that 
0(z) diverges logarithmically at z = −z0, where the
parameter z0 is small for a strongly charged plate and remains
undetermined at this stage. In the far field, 
0(z) scales as


0(z) = 4 e−(z+z0) + O(e−2z), z → ∞. (3.2)

Recall that we neglect the part of the correlation energy
that explicitly depends on the dielectric constant of the plate
ε1. The remaining part �ε∞(z) is independent of ε1 and is

given by [9]

�ε∞(z) = e−2(z+z0)

16π (z + z0)
− 1

16π
csch2(z + z0){log 4(z + z0)

+E1(4[z + z0)] + γ },
where

E1(z) =
∫ ∞

1
t−1e−tz dt (3.3)

is one of the generalized exponential integral functions and γ

is the Euler constant. The near field and far field asymptotic
behaviors of the correlation energy are

�ε∞(z) ∼
{− 3

16π(z+z0) , z → 0;

− 1
4π

[
γ + log 4(z + z0) − 1

4(z+z0)

]
e−2(z+z0), z → ∞.

(3.4)

All near field asymptotics are valid only in the strongly charged regime where z0 	 1. The asymptotic behaviors of the source
term S(z) [cf. Eq. (2.12), and with �ε(z) approximated by �ε∞(z)] are given by

S(z) ∼
{− 3

8π(z+z0)3 , z → 0;

− 1
4π

[γ + log 4(z + z0)]e−2(z+z0), z → ∞.
(3.5)

Two homogeneous solutions φL(z),φR(z) to Eq. (2.19) can
also be easily found using Eqs. (2.21) and (2.25):

φR(z) = −d
0(z)

dz
= 2 csch(z + z0), (3.6)

φL(z) = 2 csch(z + z0)

[
−1

8
(z + z0)

+ 1

16
sinh 2(z + z0) + f1(z0)

]
, (3.7)

where the function f1(z0) is fixed by the boundary condition
(2.20a):

f1(z0) = z0

8
+ 1

16
sinh(2z0) − 1

4
tanh(z0)

= z3
0

6
+ O

(
z5

0

)
. (3.8)

The leading order near field asymptotics of φL,φR are

φR(z) ∼ 2

(z + z0)
, (3.9a)

φL(z) ∼ z3
0

3(z + z0)
+ (z + z0)2

6
, (3.9b)

while their far field asymptotics are

φR(z) ∼ 4 e−(z+z0), (3.10a)

φL(z) ∼ 1
8 ez+z0 . (3.10b)

The first order correction to the mean potential 
1(z) is
then given by Eq. (2.29a) with φL,R(z) and S(z) given by
the above results. Finally, the parameter z0 can be expressed
in terms of the dimensionless surface charge density using

Eqs. (2.17) and (3.1):

z0 = ArcSinh(2 η−1)

= 2 η−1 + O(η−2). (3.11)

For a strongly charged plate, z0 is a small number.

Near field and far field behaviors of the mean potential

Using the following identity in Eq. (2.29a):∫ z

0
dz′ =

∫ ∞

0
dz′ −

∫ ∞

z

dz′, (3.12)

we can rewrite the first order perturbation solution to 
(z) in
the following form:


(z) = 
0(z) + g 
1(z)

= 
0(z) + g φR(z)
∫ ∞

0
φL(z′)S(z′) dz′

+ g

[
φL(z)

∫ ∞

z

φR(z′)S(z′) dz′

−φR(z)
∫ ∞

z

φL(z′)S(z′) dz′
]
. (3.13)

Using the far field asymptotics (3.5) and (3.10), we easy see
that each of three integrals in Eq. (3.13) converges separately.
Furthermore, it is easy to see that the last two terms (inside the
bracket) scale as log(z) e−2z for large z and therefore do not
contribute to the leading order far field asymptotics of 
(z).
Using Eqs. (3.2) and (3.10) in (3.13), we obtain the following
leading order far field asymptotics of 
(z):


(z) =
{

4 e−z0

[
1 + g

∫ ∞

0
φL(z′)S(z′) dz′

]}
e−z

+O[g log(z) e−2z]. (3.14)
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The quantity inside the square bracket then can be identified
as the dimensionless renormalized surface charge density.

We still need to calculate the integral in Eq. (3.14). To
simplify the problem, let us analyze the near field asymptotics
of the integrand. Using Eqs. (3.5) and (3.9), we find that for
z,z0 	 1:

φL(z)S(z) = − 1

16π (z + z0)
− z3

0

8π (z + z0)4
+ O(1). (3.15)

As z0 → 0, integration (from 0 to ∞) of the first term gives
(16π )−1 log z0, whereas that of the second term gives a finite
number. Therefore the following limit exists:

Cs ≡ lim
z0→0

[∫ ∞

0
φL(z′)S(z′) dz′ − 1

16π
log z0

]
. (3.16)

Numerical integration using Wolfram Mathematica gives

Cs ≈ 0.005 673. (3.17)

Now we can use this result to reexpress the integral in
Eq. (3.14) in the following form:∫ ∞

0
φL(z′)S(z′) dz′ = 1

16π
log z0 + Cs.

Further using Eq. (3.11) to trade z0 in for η, we finally obtain
the leading order far field asymptotics of 
(z) (in the strongly
charged limit):


(z) = 4

[
1 − g

16π
log

(
η

2

)
+ g Cs + O(η−1)

]
e−z

+O[g log(z) e−2z]. (3.18)

The coefficient of e−z defines the renormalized surface charge
density ηR(η,g) of a highly charged surface, calculated to the
leading orders in g and in η:

ηR(η,g) = 4 − 4 g

[
1

16π
log

(
η

2

)
− Cs

]
+ O(η−1) + O(g2).

(3.19)

In the dilute and strongly charged limit, g → 0,η → ∞, and
ηR → 4, which is what we obtained in Paper 1.

Lau [20] studied the one-loop correction to surface charge
density of an infinitely thin charged plate inside an 1: −1
electrolyte. We note that boundary conditions used by Lau are
different from ours.

IV. m:−n ASYMMETRIC ELECTROLYTE

For the generic case of an m: − n electrolyte, there is no
closed form for the 0th order solution 
0(z) (except for the
cases of 2: −1 and 1: −2). Nevertheless, we can find both
near field and far field expansions up to arbitrary orders. As is
shown in Eqs. (22) and (30) of Paper 1 [21], the leading order
near field and far field asymptotics of 
0(z) are given by


0(z) = ϒm,n(z + z0)

∼
⎧⎨
⎩

1
n

log 2(m+n)
n(z+z0)2 , z → 0;

c
m,n
1 e−(z+z0), z → ∞,

(4.1)

where ϒm,n(w) is a universal function that only depends on
two integers m,n. Note that the near field asymptotics is
valid only for strongly charged plates, for which z0 	 1.
The numerical values of c

m,n
1 were calculated and tabulated

for many cases in Paper 1. Unlike the case of symmetric
electrolytes, however, here we shall not impose the boundary
conditions (2.17). Instead, we shall first obtain a globally
well-behaved approximation for the mean potential 
(z), and
then determine the value of z0 by imposing Eq. (2.14).

The near and far field asymptotics of the correlation energy
are given by Eqs. (5.14a) and (5.26) in Paper 1:

�ε1(z) ∼
⎧⎨
⎩

− 3
16π(z+z0) , z → 0;

(log 3)(m−n)cm,n
1

16π
e−(z+z0), z → ∞.

(4.2)

The function S(z) is related to 
0(z) and �ε1(z) via Eq. (2.12).
Its far field and near field asymptotics are

S(z) ≡ S(z + z0) ∼
⎧⎨
⎩

− 3n
8π(z+z0)3 , z → 0;

−sm,n c
m,n
1 e−(z+z0), z → ∞,

(4.3)

where

sm,n ≡ log 3

16 π
(m − n)2. (4.4)

For symmetric electrolyte, sm,n = 0, and S(z) scales as e−2z in
the far field.

Two homogeneous solutions φR,φL to Eq. (2.19) were
already formally constructed in Eqs. (2.21) and (2.25). The
factor f1 in Eq. (2.25) depends on the parameter z0, and can be
found by imposing the boundary condition Eq. (2.17b). Using
Eqs. (4.1), (2.21), and (2.25), we determine the leading order
near field asymptotics of φL,R(z):

φR(z) ∼ 2

n(z + z0)
+ O(z + z0), (4.5a)

φL(z) ∼ 2f1(z0)

n(z + z0)
+ n

6
(z + z0)2. (4.5b)

Now imposing the boundary condition Eq. (2.20a) on
Eq. (4.5b), we find [cf. Eq. (3.8) for the 1: −1 case]

f1(z0) ∼ n2

6
z3

0 + O
(
z5

0

)
. (4.6)

We can also obtain the far field asymptotics of φR(z):

φR(z) = −
 ′
0(z) ∼ c

m,n
1 e−(z+z0). (4.7a)

Combining this with Eq. (2.27), we obtain the leading order
far field asymptotics of φL(z):

φL(z) ∼ 1

2c
m,n
1

e(z+z0). (4.7b)

Note that the part f1(z0) in Eq. (2.25) does not contribute
to the leading order far field asymptotics of φL(z).
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A. First order correction and secular term

The first order correction Eq. (2.29a) is repeated here:


1(z) = φR(z)
∫ z

0
φL(z′)S(z′) dz′

+φL(z)
∫ ∞

z

φR(z′)S(z′) dz′. (4.8)

In the far field, z � 1, all functions in the second term
can be replaced by their leading order far field asymptotics,
Eqs. (4.7) and Eq. (4.3). The integral then becomes trivial:

φL(z)
∫ ∞

z

φR(z′)S(z′) dz′ ∼ −1

4
c
m,n
1 sm,n e−(z+z0). (4.9)

By the same token, we can also replace φR(z) in front of the
first integral in Eq. (4.8) by its far field asymptotics. This leads
to the following asymptotics for 
(z) (up to the order of g) in
the far field regime:


(z) = 
0(z) + g 
1(z)

∼
[

1 − 1

4
g sm,n + g

∫ z

0
φL(z′)S(z′) dz′

]
c
m,n
1 e−(z+z0).

(4.10)

Inside the bracket, the first term (independent of g) comes
from the nonlinear PB theory, whereas the other two terms
(both linear in g) come from the electrostatic correlations.

We still need to calculate the remaining integral in
Eq. (4.10). Let us first introduce a sufficiently large number z∗
so that for z′ > z∗, we can use far field asymptotics for φL(z′)
and S(z′), Eqs. (4.7) and (4.3). The portion of integral from z∗
to z can then be approximately calculated:

g

∫ z

z∗
φL(z′)S(z′) dz′ ∼ −1

2
g sm,n (z − z∗). (4.11)

The integral therefore grows linearly with z without bound
as z → ∞. Substituting this back into Eq. (4.10), we see
that the correction due to electrostatic correlations becomes
much larger than 
0(z), the mean field potential predicted
by PB, for sufficiently large z. Such a perturbative correction
is usually called a secular term and indicates the breakdown
of regular perturbation method, in the regime g sm,n z � 1. A
perturbation problem with secular term is called a singular
perturbation problem.

B. Renormalization group (RG) method

There are many kinds of singular perturbation problems,
and there seems to be no existing universal method capable
of dealing with all problems. Heuristically speaking, the
reason underlying this unsatisfactory status quo is that regular
perturbation method may break down in many different ways,
and discovery of the most relevant method is necessarily led
by an intuitive understanding of the particular problem being
studied. For the case of perturbation series containing a secular
term, the most efficient method is the renormalization group
transformation [22].

In Eqs. (2.29a) and (2.28), we constructed the Green’s
function H (z,z′) and 
1(z) such that they satisfy the homoge-
neous boundary condition at z = 0, Eq. (2.17b). We shall now

relax these boundary conditions and add to 
1(z) an arbitrary
homogeneous solution C φR(z) [23]. The resulting function
still satisfies the ODE Eq. (2.11). The total mean potential

(z) can then be written as


(z,z0,C)

≡ 
0(z,z0) + g[
1(z,z0) + C φR(z,z0)]

= 
0(z,z0) + g φL(z,z0)
∫ ∞

z

φR(z′,z0)S(z′,z0) dz′

+ g φR(z,z0)

[
C +

∫ z

0
φL(z′,z0)S(z′,z0) dz′

]
. (4.12)

Note that we have explicitly shown the dependence of various
functions on the parameter z0 as well. Among these, φR and
S depend on z and z0 only through the sum z + z0, whereas
φL depends on two variables in a nonadditive way; see Eqs.
(2.25) and (4.6).

The perturbative solution Eq. (4.12) automatically satisfies
the boundary condition at z = ∞ [Eq. (2.14b)], and we still
need to impose the other BC, Eq. (2.14a), at z = 0. On the
other hand, Eq. (4.12) contains two arbitrary parameters z0,C.
Therefore these two parameters cannot be truly independent
of each other. In another word, if we tune C, there must
be a corresponding way to tune z0, such that the solution
Eq. (4.12) remains invariant [24]. This consideration estab-
lishes the existence of the renormalization group transforma-
tion.

Let us vary C and z0 simultaneously such that the mean
potential Eq. (4.12) is invariant up to the order of g:

O(g2) = d
(z,z0,C) = ∂


∂z0
dz0 + ∂


∂C
dC

= φR(z,z0)(−dz0 + g dC) + g

(
∂
1

∂z0
+ C

∂φR

∂z0

)
dz0,

(4.13)

where we have used the following identities:

∂
0

∂z0
= ∂
0

∂z
= ∂


∂C
= −φR(z,z0). (4.14)

Applying the argument of dominant balance to Eq. (4.13),
we easily see that dz0 ∼ g dC, and hence the bracket in
Eq. (4.13), being linear in g dz0, is of higher order in g and
therefore can be neglected, since we only keep terms of order g.
Consequently we find the following first order renormalization
group equation:

dz0 = g dC. (4.15)

Integrating once, we find the relation between z0 and C:

z0(C) = g C + z̄0, (4.16)
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where z̄0 is a constant to be determined later by boundary condition. Therefore, replacing z0 by z0(C) in Eq. (4.12), we are
guaranteed to obtain a one-parameter family of solutions (parameterized by C) that are equivalent to each other up to the order
of g:


(z,z0(C),C) = 
0(z,z0(C)) + g 
1(z,z0(C)) + g CφR(z,z0(C))

= ϒ[z + z0(C)] + g φL(z,z0(C))
∫ ∞

z

ϒ ′[z′ + z0(C)]S[z′ + z0(C)] dz′,

− g ϒ ′[z + z0(C)]

{
C +

∫ z

0
φL(z′,z0(C))S[z′ + z0(C)] dz′

}
. (4.17)

Now comes the most crucial step of the RG transformation.
We shall bootstrap the parameter C to be a function of z, C(z),
such that the approximate solution Eq. (4.17) is free of the
secular term. Comparing with Eq. (4.11) we easily see that the
choice

C(z) = 1
2 sm,n z (4.18)

fulfills this purpose. Let us check this explicitly. Upon the
aforementioned replacement, the integral inside the bracket in
Eq. (4.17) becomes∫ z

0
φL(z′,g sm,n z′/2 + z̄0)S(z′,g sm,n z′/2 + z̄0) dz′. (4.19)

We can use the far field asymptotics for two functions,
Eq. (4.7b) and (4.3), in the integrand:

φL(z′,g sm,n z′/2 + z̄0) ∼ 1

2 c1
eαz′+z̄0 , (4.20)

S(z′,g sm,n z′/2 + z̄0) ∼ −sm,nc
m,n
1 e−(αz′+z̄0), (4.21)

where

α = 1 + g sm,n/2. (4.22)

Using these in the integral Eq. (4.19), we find that it contains
the following secular term:

Integral = − 1
2 sm,n z + finite, (4.23)

which is exactly canceled by our choice of C(z), Eq. (4.18). In
other words, we have proved that the following limit exists:

hm,n(z̄0) ≡ lim
z→∞

[
1

2
sm,n z (4.24)

+
∫ z

0
φL(z′,g sm,nz/2 + z̄0)S(αz′ + z̄0) dz′

]
.

(4.25)

Note that Eq. (4.18) is not the only way to remove the secular
term. In fact, there are an infinite number of choices that
are equally good, characterized by one arbitrary constant C0:
C(z) = 1

2 sm,n z + C0. We shall see below why the particular
choice C0 = 0 is the most convenient one.

Substituting Eq. (4.18) back into Eq. (4.17) we find the
renormalized average potential:


R(z,z̄0) = 
(z,z0[C(z)],C(z))

= 
0(z,z0[C(z)]) + g 
1(z,z0[C(z)]) + g C(z)φR(z,z0[C(z)])

= ϒ(αz + z̄0) + g φL(z,(α − 1)z + z̄0)
∫ ∞

z

φR(αz′ + z̄0)S(αz′ + z̄0) dz′

+ g φR(αz′ + z̄0)

[
1

2
sm,n z +

∫ z

0
φL(z′,g sm,nz/2 + z̄0)S(αz′ + z̄0) dz′

]
. (4.26)

C. Renormalized potential solves modified PBE

It remains to be shown that the renormalized potential
Eq. (4.26) is still an approximate solution to Eq. (2.6a) up
to order of g. [Of course, with the correlation energy given by
its first order approximation �ε1(z).] This can be easily done
as follows. Firstly, let us note that the perturbation solution

(z,z0[C],C), whose first order expression was shown in
Eq. (4.17), satisfies Eq. (2.6a), for arbitrary given constants
C,z̄0. Note that the same equation would also hold if we replace
the parameters C,z0(C) by functions of C(z), and z0(C(z))
after the derivatives have been taken. Let us further define

“partial derivatives”:

∂
R

∂z
≡ ∂


∂z
(z,C,z0)

∣∣∣∣
C=C(z),z0=z0(C(z))

, (4.27a)

∂2
R

∂z2
≡ ∂2


∂z2
(z,C,z0)

∣∣∣∣
C=C(z),z0=z0(C(z))

. (4.27b)

Our discussion above then shows that

−∂2
R

∂z2
+ 1

m + n

[
en
R (z)−n2�ε(z) − e−m
R (z)−m2�ε(z)

]
= O(g2). (4.28)
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Therefore the renormalized potential 
R would solve the
modified PB if the following identity holds:

d2
R

dz2
= ∂2
R

∂z2
+ O(g2). (4.29)

Now, let us calculate the first order full derivative of the
renormalized potential 
R(z,z̄0) w.r.t. z, using Eq. (4.26) and
the chain rule:

d
R

dz
= ∂


∂z
+ dC

dz

(
∂


∂C
+ dz0

dC

∂


∂z0

)
. (4.30)

[Here and below C and z0 are treated as functions of z via
Eqs. (4.16) and (4.18).] But the sum inside the bracket in Eq.
(4.30) vanishing is precisely the content of the renormalization
group equation Eq. (4.13). Hence we have

d
R

dz
= ∂


∂z
+ O(g2). (4.31)

Obviously, if we work out the perturbation series up to infinite
order, Eq. (4.31) would become an exact result, valid up to
arbitrary order of g.

Let us take one more derivative with respect to z:

d2
R

dz2
= d

dz

[
∂


∂z
+ O(g2)

]

= ∂2


∂z2
+ dC

dz

(
∂

∂C
+ dz0

dC

∂

∂z0

)
∂


∂z
+ O(g2)

= ∂2


∂z2
+ dC

dz

∂

∂z

(
∂


∂C
+ dz0

dC

∂


∂z0

)
+ O(g2)

= ∂2


∂z2
+ O(g2), (4.32)

where in the third line we have exchanged the order of partial
derivatives and have used the identity

∂

∂z

dz0

dC
= 0. (4.33)

This is because dz0/dC is considered as a function of C and
does not explicitly contain z. In the fourth line, we have used
again the renormalization group equation (4.13). Thus the
renormalized potential indeed satisfies the modified PBE up
to the order of g.

D. Renormalized surface charge density
and renormalized Debye length

The renormalized potential Eq. (4.26) contains one unde-
termined parameter z̄0, which must be fixed by enforcing the
boundary condition at z = 0:

d
R

dz

∣∣∣∣
z=0

= −η. (4.34)

Using Eq. (4.31) and (4.17), we have (with z always set to zero
after taking the derivative)

d
R

dz
= ∂
R

∂z
= ∂

∂z
(
0 + g 
1 + g C φR)

= ∂
0

∂z

∣∣∣∣
0

+ g
∂
1

∂z

∣∣∣∣
0

+ g C(z = 0)
∂φR

∂z

∣∣∣∣
0

. (4.35)

Now the second term vanishes because it is constructed in
this way [see Eqs. (2.17b) and (4.8)], whereas the third term
vanishes because C(z) does so [see Eq. (4.18)]. Therefore the
physical boundary condition is transformed into the following
simple form:

∂
0

∂z

∣∣∣∣
z=0

= −η. (4.36)

Interestingly enough, this is identical to the boundary condition
Eq. (2.17a) we used previously for 
0(z). Now using the near
field asymptotics of 
0(z), Eq. (4.1), we find that to the order
of O(g0):

z̄0 = 2

nη
+ O(η−2). (4.37)

Let us now analyze the leading order far field asymptotics of
the renormalized potential (4.26). The far field asymptotics of
the first term can be directly written using Eq. (4.1):

1st term ∼ c
m,n
1 e−αz−z̄0 . (4.38a)

To obtain the asymptotics of the second term, we use Eqs. (4.7)
and Eq. (4.3):

2nd term ∼ − 1

4 α
c
m,n
1 g sm,ne

−αz−z̄0 . (4.38b)

Since we are calculating quantities only up to the order of g,
we can replace α in the denominator in Eq. (4.38b) by unity

and rewrite the equation as

2nd term ∼ − 1
4c1g sm,ne

−αz−z̄0 + O(g2). (4.38c)

Finally the third term goes asymptotically as

3rd term ∼ g c
m,n
1 hm,n(z0) e−αz−z̄0 , (4.38d)

where the function hm,n(z0) is defined in Eq. (4.25). Note that
all three terms Eqs. (4.38a), (4.38b), and (4.38d) are free of
secular term and decay with the same length scale 1/α, which
shall be identified with the renormalized Debye length (up to
the first order of g).

We still need to calculate the function hm,n(z0) in order to
fully determine the far field asymptotics of the renormalized
potential. Since this function appears together with g, and
since we are only calculating quantities up to the order of g,
we are allowed to set g = 0 inside the definition of hm,n(z0),
Eq. (4.25). This leads to

hm,n(z̄0) = lim
z→∞

[
1

2
sm,n z +

∫ z

0
φL(z′,z̄0)S(z′ + z̄0) dz′

]

≡ h0
m,n(z̄0). (4.39)

Note that the large z (IR) divergence in the above integral
has already been canceled by our renormalization procedure.
On the other hand, the integral also exhibits logarithmic
divergence as z0 → 0 (UV divergence). Using the near field
asymptotics of φL(z) and S(z) in the integral, we see that for
small z0, it scales as∫ z∗

0

(
− 3n

8π

)
1

(z′ + z̄0)3

n

6
(z′ + z̄0)2 dz′

∼ n2

16π
log

(
z̄0

z∗

)
, (4.40)
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where z∗ is an undetermined small number such that near field
asymptotics can be used in the regime (z0,z∗). Consequently
we expect that the following double limit exists:

Cm,n
s = lim

z̄0→0
lim

z→∞

{
− n2

16π
log z̄0,

+
∫ z

0

[
φL(z′)S(z′) + sm,n/2

]
dz′

}
, (4.41)

and Eq. (4.38d) can be rewritten as

3rd term ∼ g c
m,n
1

[
n2

16π
log z̄0 + Cm,n

s

]
e−αz−z̄0 + O(g2).

(4.42)

Summing up Eqs. (4.38a), (4.38c), and (4.42), we finally obtain
the leading order far field asymptotics of the renormalized
average potential:


R(z) ∼ c
m,n
1

[
1 + g

(
n2

16π
log z̄0 + Cm,n

s − 1

4
sm,n

)]
e−αz−z̄0 .

(4.43a)

≡ ηR e−αz. (4.43b)

The coefficient α therefore is the inverse length scale over
which the average electrostatic potential decays in the far field
(recall we are using dimensionless units in this work). It is
therefore the ratio between the non-renormalized Debye length
and the renormalized one:

α = κR

κ
= 1 + 1

2
g sm,n + O(g2), (4.44)

where sm,n is defined in Eq. (4.4).
In the strongly charged regime, z̄0 is a small number and

can be neglected in the exponent of Eq. (4.43). We can further
use Eq. (4.37) to express z̄0 inside the logarithm in terms of
the bare surface charge density η, and use Eq. (4.4) to replace
sm,n. We finally obtain the following result for the one-loop
renormalized surface charge density for a strongly charged
plate:

η
m,n
R (η,g) = c

m,n
1

[
1 − g

(
n2

16π
log

(n η

2

)

−Cm,n
s + log 3

64π
(m − n)2

)]
+ O(g2,η−1).

(4.45)

We can check explicitly that Eq. (4.45) reduces to Eq. (3.19)
for the case m = n = 1 (noticing that c

1,1
1 = 4).

Except for the some special cases, we are not able to
calculate the constant Cm,n

s analytically. For the cases of 1: −1,
2: −1, and 1: −2, all parts in Eq. (4.41) are known explicitly,
and we can calculate Cm,n

s numerically:

C1,1
s ≈ 0.005 673, (4.46)

C2,1
s ≈ 0.053 428, (4.47)

C1,2
s ≈ 0.018 332. (4.48)

In general, this coefficient seems to be rather small and
increases with valences of counterions as well as coions.
Finally let us also quote the corresponding exact results for
c
m,n
1 from Paper 1:

c
1,1
1 = 4, (4.49)

c
2,1
1 = 6, (4.50)

c
1,2
1 = 6(2 −

√
3). (4.51)

The results for case 1: −1 have of course already been shown
in Eqs. (3.19) and (3.17).

V. COMPARISON WITH SIMULATIONS

In this section, we shall compare our analytic results with
Monte Carlo simulation of a strongly charged surface inside a
1: −2 electrolyte. For this purpose, we first need to represent
various theoretical results in physical units.

A. Charge density in the far field regime

The dimensionless mean potential as predicted by PB is
given by Eq. (A6). In the far field limit, it reduces to


(z) ∼ 6(2 −
√

3) e−κ(z+z0), (5.1)

with z0 related to the Gouy-Chapman length via Eqs. (2.15a)
and (4.37). Now the corresponding physical charge density is
given by [using Eq. (2.5b)]

ρPB
q (z) = −ε�′′

0(z) = − ε

βq

 ′′

0 (z)

∼ q ζPBe−κz, (5.2)

where

ζPB ≡ −6(2 −
√

3)
κ2

4πb
e−κμ/2. (5.3)

Similarly, the far field charge density predicted by SCFT
[Eq. (4.43)] is

ρSC
q (z) = −ε(
R)′′(z)

βq
∼ q ζ SCe−ακz, (5.4)

where

ζ SC ≡ η
1,2
R

(ακ)2

4πb
. (5.5)

and ηR is given in Eq. (4.45) and α in Eq. (4.44), with m =
1,n = 2. Equations (5.2) and (5.4) shall be used to compare
with Monte Carlo simulations. Note that both ζPB and ζ SC

have unit of [length]−3.

B. Simulation methodology

We use the recently developed Brush Metropolis GPU
code [25] to carry out MC simulations of 1: −2 asymmetric
primitive model electrolytes. In each simulation the system
contains in total 65 536 ions with radii r = 3.75 Å. The
geometry of the simulation domain is a spherical shell formed
by two concentric spheres, with the inner surface uniformly
charged. The radius of the inner surface is no less than 700 Å,
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TABLE I. Renormalized surface charge densities ηR in logarith-
mic scales. Column 1: system label; column 2, bare Debye length (in
Å); column 3, Gouy-Chapman length (in Å); column 4, simulation
results of log ζ , obtained using Eq. (5.8), together with error bars;
columns 5 and 6: the corresponding values predicted by our theory
and PB as shown in Eqs. (5.3) and (5.5). Data fitting is performed
using OringinLab Origin9.

Label 1/κ μ log(ζN Å3) log(ζ SCÅ3) log(ζ PBÅ3)

1 59.09 19.00 −12.32 ± 0.09 −12.36 −12.18
2 42.59 6.90 −11.90 ± 0.24 −11.97 −11.52
3 34.53 19.00 −11.36 ± 0.09 −11.30 −11.11
4 25.11 19.00 −10.73 ± 0.15 −10.62 −10.48
5 20.18 12.00 −10.32 ± 0.04 −10.35 −10.04
6 18.01 9.18 −10.16 ± 0.24 −10.29 −9.81

which is at least 10 times larger than the Debye length.
Consequently, the curvature effects can be neglected, and the
inner surface behaves approximately as a charged plate. The
distance between inner and outer surfaces is taken to be 8 to
15 Debye lengths, to ensure that there is a sufficiently large
region where the influence of the outer surface is negligible.
Finally, in all simulations, the temperature is set to 300 K and
the relative dielectric constant of the solvent is chosen to be
that of water ε = 78.3, thus the Bjerrum length b = 7.117 Å.
For the chosen parameters, the Debye length κ is substantially
larger than b (see Table I) so that the expansion in the parameter
g is expected to be valid. The simulation lengths are 5 × 105

MC steps for system 5 and 5 × 104 steps for the other systems;
see Table I.

Using the simulation data, we measure the three-
dimensional local charge density ρN

q (z) as a function of
distance z to the charged surface. Here the superscript N means
numerical. One particular example is shown as the red curve
in Fig. 1. The plot range is chosen to be in the far field regime
of the inner surface, while the influences of the outer surface
is negligible, so that our analytic results are applicable. It can
be seen there that SCFT gives a much more precise result than
the classical PB.

60 80 100 120
z

3.5

3.0

2.5

2.0

1.5

1.0

0.5

ρq q 10 6 3

FIG. 1. Comparison of total charge density profile between
simulation (red line), SCFT far field [Eq. (5.4), blue line] and PBE
far field [Eq. (5.2), green line] in the far field. The Debye length
is 20.18 Å and the Gouy-Chapman length is 12.00 Å (System 5 in
Table I).
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FIG. 2. Total charge density profiles for simulations with no
image charge effect (red) and with image charge effect (blue).
The Debye length and Gouy-Chapman are, respectively, 11.30 Å
and 6.75 Å. This plot verifies that image charge effects are indeed
negligible as long as the far field asymptotic is concerned. These data
are not shown in Table I.

Similar to Eq. (5.4), the simulation result of charge density
decays exponentially in the far field:

ρN
q (z) ∼ q ζN e−αN κz, (5.6)

where

ζN ≡ ηN
R

(αNκ)2

4πb
. (5.7)

Taking the logarithm, we find

log
(
ρN

q (z)
/
q
) = log ζN − αNκz. (5.8)

By linear fitting the logarithm of charge density, therefore, we
can extract the values of ζN and αN for each MC simulation.
The results for ζN are shown in the fourth column of Table I.
For all simulations, we find αN [the ratio between bare Debye
length and the renormalized Debye length; see Eq. (4.44)] is
very close to unity, so we do not shown them. Comparison
of ζN with the corresponding theoretical values (columns five
and six of Table I, respectively) demonstrates that our one-loop
SCFT results agree with numerical simulations within error,
whereas results of classical PB almost always fall outside the
range.

Finally, in Fig. 2 we plot the total charge density as a
function of z for two simulations that only differ in the
dielectric constant ε1 of the plate. The black and red curves
correspond to the cases where ε1 = 0,78.3, respectively. The
corresponding difference in correlation energy is just δε(z)
in Eq. (2.30). As we can see, there is almost no difference
as soon as z is a few μ away from the plate, suggesting that
the dielectric constant of plate is indeed unimportant as long
as one is interested in the far field regime. Consequently, it
is legitimate to neglect the part of correlation energy due to
image charge effects, δε(z) in Eq. (2.30), at the very beginning,
as we have done in Sec. II E.

It is important to note that in our theory, all ions are
pointlike, while in simulations ions must have finite size.
The agreement between theory and simulations therefore must
depend on the choice of ion sizes. If ion diameters are much
smaller than Bjerrum length, ions form bound pairs and
clusters. If ion diameters are too large, steric interactions can
no longer be ignored near the charged surface. In either case,
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approximation of pointlike ions is no longer valid, and our
theory breaks down. A self-consistent field theory treatment
of electrolytes with ion size taken into account is much more
difficult and is beyond the scope of the present work.

VI. CONCLUSION AND ACKNOWLEDGEMENT

Equations (4.45) and (4.44) are the main results of this
work. First order renormalization of Debye length by elec-
trostatic correlation in asymmetric electrolytes was studied
originally by Mitchell and Ninham [26] long ago, and our
result Eq. (4.44) agrees with theirs. In a more recent work
[27], we have also obtained an (approximate) analytic result
for the renormalized Debye length of the primitive model of
asymmetric electrolytes [28], where ions are charged hard
spheres, and the density is not necessarily low. In the limit of
low density and zero ion size, this result reduces to Eq. (4.44).

Equation (4.45) is more interesting because it demonstrates
certain general features about the renormalization of surface
charge density due to electrostatic correlations. The leading
order renormalization is linear in g = 4πκb. Comparison
with simulation, however, demonstrates that Eq. (4.45) is
quantitatively good as long as 1/κ is moderately larger than
the Bjerrum length b and the Gouy-Chapman length μ. In the
dilute and strongly charged g → 0,η → ∞, and Eq. (4.45)
reduces to c

m,n
1 , which is the prediction of nonlinear PB

theory studied in Paper 1. For nonvanishing g, the one-loop
renormalization contains a negative term logarithmic in η.
Such a singular term can not be obtained by simple calcula-
tions. Furthermore, the magnitude of this term is proportional
to n2 and therefore increases strongly with the valence of
counter ions. Therefore high-valence counterions can strongly
renormalize the surface charge density downwards, as also
seen in simulation, and can drive charge inversion if the
bare surface charge density is sufficiently large. By contrast,
the valence of coions only appear in the last two terms of
Eq. (4.45), which are independent of the bare surface charge
density. The valence of coions therefore plays a less important
role in the renormalization of surface charge density, which
is, of course, rather natural. Finally, let us emphasize again
that all our results break down if counterions and coions form
bound pairs, which happens if, for example, both species of
ions are multivalent, and their densities are sufficiently high.
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APPENDIX: DETAILS OF THE TWO SPECIAL CASES:
2:−1 AND 1:−2 ASYMMETRIC ELECTROLYTES

In this appendix we give some results for 2: −1 and 1: −2
electrolytes. For these two special case we have closed form
of 
0(z), φL(z) and φR(z).

For the case of 2: −1 electrolyte, the solution to PBE is


0(z) = log

[
1 + 4 e−(z+z0) + e−2(z+z0)

(1 − e−(z+z0))2

]
. (A1)

Expanding to obtain the far field asympytotics according to Eq.
(4.1), we get the coefficient c

2,1
1 = 6. The full expression for

the correlation energy δε(z) = g δε̂(z) is very complicated. We
refer the readers to Ref. [9] for details. Here we only display
its leading order near field and far field asymptotic behaviors:

δε̂(z) ∼
⎧⎨
⎩

− 3
16π(z+z0) , z → 0;

3 log 3
8π

e−z, z → ∞.

(A2)

The function S(z) is related to φ0(z) and δε̂(z) via Eq. (2.12).
Its far field and near field asymptotics are

S(z) ∼
⎧⎨
⎩

− 3
8π(z+z0)3 , z → 0;

− 3 log 3
8π

e−z, z → ∞.

(A3)

Two homogeneous solutions to Eq. (2.19) can also be found:

φR(z) = −φ′
0(z) = 3 coth[(z + z0)/2]

2 + cosh(z + z0)
, (A4a)

φL(z) = 1

12[2 + cosh(z + z0)]

×{1 + 10 coth(z + z0) + cosh[2(z + z0)]

− 6(z + z0) coth [(z + z0)/2]} + f1(z0) φR(z).

(A4b)

The constant f1(z0) is again determined by the boundary
condition Eq. (2.17b):

f1(z0) = 1

6
z0 + 1

9

[
1 − 18

3 + 2 cosh(z0) + cosh(2z0)

]

× sinh(z0) + 1

36
sinh(2z0)

= 1

6
z3

0 + O
(
z4

0

)
. (A5)

For the 1: −2 electrolyte, the mean potential is


0(z) = log

[
(1 + ue−(z+z0))2

1 − 4ue−(z+z0) + u2e−2(z+z0)

]
, (A6)

where u = 2 − √
3. Hence c

1,2
1 = 6u = 6(2 − √

3).
The leading order near field and far field asymptotic

behaviors of the correlations energy are

δε̂(z) ∼
⎧⎨
⎩

− 3
16π(z+z0) , z → 0;

− 3u log 3
8π

e−z, z → ∞.

(A7)

The function S(z) is related to φ0(z) and δε̂(z) via Eq. (2.12).
Its far field and near field asymptotics are

S(z) ∼
⎧⎨
⎩

− 3
4π(z+z0)3 , z → 0;

− 3u log 3
8π

e−z, z → ∞.

(A8)
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The two homogeneous solutions are

φR(z) = φLd (z)

12u(u + ez+z0 )(u2 − 4uez+z0 + e2(z+z0))
+ f1(z0)φR(z), (A9a)

with

φLd (z) = e−(z+z0)(u5 − 9u4ez+z0 − 4u3e2(z+z0)(−3z − 3z0 + 6
√

3 + 2) + 4u2e3(z+z0)(−3z − 3z0

+ 6
√

3 − 2) − 9ue4(z+z0) + e5(z+z0)) (A10)

and

f1(z0) = 1

72

[
e2z0

u2
− 4ez0

u
+ 4ue−z0 − u2e−2z0 + 12(−2

√
3 + z0)

]
+ 2uez0 (e2z0 − u2)

(e4z0 − 2ue3z0 + 6u2e2z0 − 2u3ez0 + u4)
. (A11)
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