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Rotating colloids in rotating magnetic fields: Dipolar relaxation and hydrodynamic coupling
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Video microscopy (VM) experiments and Brownian dynamics (BD) simulations were used to measure and
model superparamagnetic colloidal particles in rotating magnetic fields for interaction energies on the order of
the thermal energy, kT. Results from experiments and simulations were compared for isolated particle rotation,
particle rotation within doublets, doublet rotation, and separation within doublets vs field rotation frequency.
Agreement between VM and BD results was obtained at all frequencies and amplitudes only by including exact
two-body hydrodynamic interactions and relevant relaxation times of magnetic dipoles. Frequency-dependent
particle forces and torques cause doublets to rotate at low frequencies via dipolar interactions and at high
frequencies via hydrodynamic translation-rotation coupling. By matching measurements and simulations for a
range of conditions, our findings unambiguously demonstrate the quantitative forms of dipolar and hydrodynamic
interactions necessary to capture nonequilibrium, steady-state dynamics of Brownian colloids in magnetic fields.
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I. INTRODUCTION

The dynamics of magnetic colloidal particles in time-
dependent magnetic fields is relevant to many applications
such as measuring biomolecular interactions [1,2], developing
microfluidic devices [3,4], tuning magnetorheological suspen-
sions [5], and increasingly, colloidal assembly [6–10]. For
example, magnetic dipolar colloidal chains can be used to
tune suspension rheological properties by forming, bending,
breaking, translating, and rotating in dynamic fields [11–14].
Microstructures of dipolar colloidal particles can be manipu-
lated in external fields to form chains, clusters, crystals, and
many other configurations [15–17]. Controlling colloidal in-
teractions in rotating fields is becoming a promising approach
to manipulate two-dimensional colloidal assembly [6–9]
as well as three-dimensional microstructures [17]. Rotating
fields, when combined with field gradients, can also transport,
disperse, and order colloidal particles [18].

In applications involving magnetic colloids, it is important
to understand how single dipoles interact with dynamic
magnetic fields in balance with hydrodynamic drag. Super-
paramagnetic micron-sized particles have induced dipoles that
display a range of relaxation times based on the ensemble re-
sponse of individual magnetic domains (due to many magnetic
nanoparticles dispersed within each micron-sized colloidal
particle). Practically, for a given field frequency, a separation
of relaxation times allows net dipoles to be considered as
the sum of two contributions: (1) Néel dipoles that appear to
be instantaneous as a result of their relatively fast relaxation
via stochastic reorientation within magnetic domains, and (2)
Brownian dipoles that appear to be permanent as a result
of their slow relaxation relative to the stochastic rotation of
the colloidal particle [19,20]. Both of these dipoles contribute
to frequency-dependent dipole-field torques in rotating fields
while viscous forces oppose rotation. Previous work has shown
the fast Néel relaxation dominates the ensemble dipole [21].

In addition to single particle interactions, two (or more) par-
ticles have been shown to rotate in response to external fields
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due to particle-particle interactions, including dipole-dipole
and hydrodynamic interactions. Dipole-dipole interactions
lead to torques on particle doublets (or chains) due to the
favorable head-to-tail alignment of dipoles [8,22–24]. Particle-
particle interactions also determine whether doublets rotate as
rigid bodies or as free rotating particles. For doublets to rotate
rigidly, a tangential force between two particles is required
(which has been used to study macromolecular and electro-
static interactions [25,26]). Rigidly rotating doublets rotate
slower than doublets in which the particles can freely rotate.
These results suggest that the dynamics of individual particles
within doublets, as well as particle-particle interactions, are
crucial to understanding doublet rotation (and vice versa).

Previous research suggests that hydrodynamic interactions
and dipole relaxation both affect the frequency dependence
of magnetic doublet rotation in rotating fields. It has been
observed that doublets rotate at the same frequency as
rotating fields up to a critical frequency, after which the
rotation rate declines due to viscous drag [8,23,28,29]. These
studies showed at frequencies slightly higher than the critical
frequency that (1) individual dipoles no longer remain aligned
along the line of centers; (2) for freely rotating doublets,
the interparticle distance oscillates; and (3) for both rigid
and freely rotating doublets, the angular trajectories oscillate
about an average steady rotational velocity. At even higher
frequencies, where Brownian relaxation cannot occur, larger
clusters [9,30] and rigid doublets [31] continue to rotate,
which has been suggested to occur via the balance of an
out-of-phase dipole and hydrodynamic interactions. Although
prior modeling studies of small chains and clusters have
considered various aspects relevant to rotating doublets in
rotating fields (including hydrodynamic interactions [11–
14], translation-rotation coupling [32], and nontrivial Néel
relaxation [30,31]), none have included thermal motion, exact
hydrodynamics, and dipolar relaxation necessary to quantify
both single particles and doublet rotation and relative particle
translation vs frequency.

In this work, we investigate superparamagnetic particles in
rotating magnetic fields including single particle rotation, dou-
blet rotation, single particle rotation within rotating doublets,
and relative particle translation within doublets (see Fig. 1).
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FIG. 1. Single particle and doublet rotation in experimental
images and BD simulation renderings (6 G, 0.8 Hz; image time step of
0.167 s) (see Videos S1–S3 in the Supplemental Material (SM) [27]).
Experimental images are processed via analysis algorithms described
in the Materials and Methods section and depicted in Fig. 4 to
provide raw trajectory data that are averaged and filtered via fast
Fourier transforms to identify dominant rotational modes in frequency
spectra.

Video microscopy (VM) is used to measure the translation
and rotation of particles vs field rotation frequency for small
field amplitudes that allow for thermal motion to probe
kT-scale interactions. Each experiment is simulated using BD
simulations that include conservative forces and torques (i.e.,
the gradients of scalar potential functions), nonconservative
forces and torques (i.e., exact pair hydrodynamic interactions
between particles including translation-rotation coupling and
near field and far field [33]), Brownian motion, and the
effects of a distribution of relaxation times. To increase model
complexity in a systematic fashion, we first match simulations
and experiments for single particles by determining their
dipole moments and their relaxation vs field rotation frequency.
We then measure and model all rotational and translational
modes in doublets vs field frequency. This process provides
a unique rigorous model that qualitatively and in most cases
quantitatively captures all frequency-dependent interactions
and dynamics of superparamagnetic Brownian colloids in
rotating magnetic fields.

II. THEORY

A. Equation of motion

The translational and rotational motion of a particle with
mass m can be expressed by the Langevin equation as (for
coordinates labeled in Fig. 2) [34]

m
du
dt

= FP + FH + FB, (1)

m
dω

dt
= TP + TH + TB, (2)

where u and ω are translational and angular velocity vectors,
and F and T are force and torque vectors. Superscripts in
Eqs. (1) and (2) denote contributions from P, conservative
forces on particles due to the gradient of a scalar potential field;

FIG. 2. Schematics showing (a) a dipole m, defined in Eq. (20),
and its phase lag in the x-y plane with respect to a field H, which
produces a torque on the particle as expressed in Eq. (37); and (b)
the relevant angles and vectors of a doublet system, including dipole
polar and azimuthal angles with respect to the particle-particle vector
r in the x-y plane, used in the dipole-dipole potential, Eq. (16) (note
k has been dropped to generalize the schematic).

H, nonconservative forces due to hydrodynamic interactions
that couple translation and rotation between particles; and B,
random thermal forces and torques due to Brownian motion.

Particle position vs time is modeled by solving the Langevin
equation for position. A new position rl where l coordinates
correspond to translation only (i.e., l � 3N ) is calculated as

rl = r0
l +
∑

j

∂D0
lj

∂rj

�t +
∑

j,j�3N

D0
lj

(
FP,0

j + FB
j

)
kT

�t

+
∑

j,j>3N

D0
lj

(
TP,0

j + TB
j

)
kT

�t, (3)

where FP,0
j and TP,0

j , TP,0
j are the force and torque vectors

at the start of each step; and FB
j and TB

j are the random
force and torque vectors. Brownian dynamics of the angular
displacement of a particle has been derived in a similar
manner [34]. The orientation of the particle main axis is
calculated from unit vector n whose displacement is related to
the conservative forces and torques as [35]

nl(t + �t) = nl(t) +
⎡
⎣ ∑

j,j>3N

D0
lj

kT

(
TP,0

j + TB
j

)

+
∑

j,j�3N

D0
lj

kT

(
FP,0

j + FB
j

)⎤⎦× nl(t)�t, (4)

where l coordinates correspond to rotation only; i.e., l > 3N .
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B. Conservative forces and torques

A colloidal particle experiences a net potential energy that
includes particle-wall, particle-field, and particle-particle in-
teractions with a nearby particle. The dipoles are distinguished
using an index, k, where k = N,B for Néel and Brownian,
respectively, as shown,

unet(θ1,k,θ2,k,φ1,k,φ2,k,r,z)

= upw(z) + upf (θ1,k,φ1,k,z) + upp(θ1,k,θ2,k,φ1,k,φ2,k,r),

(5)

where θl,k and φl,k are the azimuthal and polar angles of the l

particle-centered dipole moment, r is the 1–2 center-to-center
distance, and z is the particle center-to-wall-surface position.
Three-dimensional force and torque vectors can be derived
from Eq. (5) by taking partial derivatives with respect to a
position or angle, keeping all other variables constant. For
example, the force along the r direction and the torque in θl,k

are given by

Fr
P = − ∂

∂r
unet(θ1,k,θ2,k,φ1,k,φ2,k,r,z), (6)

TP
θ1,k

= − ∂

∂θ1,k

unet(θ1,k,θ2,k,φ1,k,φ2,k,r,z). (7)

C. Particle-wall potential

The only interaction with the particle and the wall is
electrostatics [36], given by

u
pw

el (z) = Bpw exp[−κ(z − a)], (8)

Bpw = 64πεma

(
kBT

zve

)2

tanh

(
zveςp

4kBT

)
tanh

(
zveςw

4kBT

)
, (9)

where a is particle radius, κ−1 is Debye length, kB

is Boltzmann’s constant, T is the temperature, εm is
the medium permittivity, e is the charge of an elec-
tron, zv is the electrolyte valence, and ςp and ςw are
the particle and wall surface potentials.

D. Particle-field potentials

Particle-field interactions include gravitational and dipole-
magnetic field mediated potentials given as

upf (θ1,k,φ1,k,z) = upf
g (z) + u

pf

df (θ1,k,φ1,k), (10)

such that the gravitational field only depends on z,

upf
g (z) = 4

3πa3(ρp − ρm)gz = Gz, (11)

where ρp and ρm are particle and medium densities, and g

is acceleration due to gravity. A particle dipole of moment,
m, interacts with a magnetic field, H [37], as given by [see
Fig. 2(a)]

u
pf

df (θ1,k,φ1,k) = −m · μ0H, (12)

where m can correspond to either a Néel or Brownian dipole
(discussed in the following) and μ0 is the permeability of free
space.

E. Particle-particle potentials

Two interacting particles experience a magnetic dipole-
dipole potential and an electrostatic double layer repulsion
as

upp(θ1r,k,θ2r,k,φ1,k,φ2,k,φr ,r)

= u
pp

el (r) + u
pp

dd (θ1r,k,θ2r,k,φ1,k,φ2,k,φr ,r), (13)

where angles in the x-y plane relative to the particles’ center-
to-center vector, r, are denoted as θ1r,k and θ2r,k; the subscript
r indicates the angles are relative to r [see Fig. 2(b); note k is
dropped]. At low ionic strengths, particles do not experience
van der Waals attraction and only the electrostatic term from
Derjaguin, Landau, Verwey, Overbeek (DLVO) theory needs
to be taken into account, which is given by [36]

u
pp

el (r) = Bpp exp[−κ(r − 2a)], (14)

Bpp = 32πεma

(
kBT

zve

)2

tanh

(
zveςp

4kBT

)2

. (15)

The magnetic dipole-dipole interaction is given by (expand-
ing the typical vector expression) [37]

u
pp

dd (θ1r,k,θ2r,k,φ1,k,φ2,k,φr ,r) = μo

4πr3

∑
k=N,B

m1,km2,k

⎧⎪⎨
⎪⎩

cos(θ1r,k − θ2r,k) sin(φ1,k) sin(φ2,k) + cos(φ1,k) cos(φ2,k)

−3[cos(θ1r,k) sin(φ1,k) sin(φr ) + cos(φ1,k) cos(φr )]

× [cos(θ2r,k) sin(φ2,k) sin(φr ) + cos(φ2,k) cos(φr )]

⎫⎪⎬
⎪⎭, (16)

where m1,k and m2,k are the magnitudes of the dipole moments
on particles 1 and 2, which can correspond to either a Néel
or Brownian dipole, which we review in more detail in the
following section.

F. Magnetic field and dipoles

The force and torque expressions in the preceding sections
require the field vector and dipole moments, which are inputs
in the particle-field potential [Eq. (12)] and field mediated

particle-particle potential [Eq. (16)]. In the following, we
provide more detailed information on the time varying external
magnetic field, the magnetic fields of nearby particles, and pre-
dicted dipole moments based on material properties. In an ap-
plied rotating field, the field vector can be expressed as a func-
tion of the intensity Ho and the magnetic permeability μo such
that Ho = Bo/μo, where Bo is the applied field. The field ori-
entation depends on rotation speed, ωf , as (where θf = ωf t)

Ho = Ho cos(θf )x̂ + Ho sin(θf ) ŷ. (17)
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When two particles are in proximity to each other, the field
from a neighboring particle’s dipole is added to the total field.
The magnetic intensity of a nearby particle is given by [38]

Hp(r) = 3r̂(m · r̂) − m
4πr3

, (18)

and the total external field in Eq. (12) is the sum of the applied
and local dipolar fields given as

H = Ho + Hp(r). (19)

When a magnetic dipole moment m is induced by an
external magnetic field (for superparamagnetism [37]), its
value is given by

m = 4πa3χ (ωf )H
3

, (20)

where χ (ωf ) is the dynamic susceptibility, which is a function
of the static susceptibility and dipole relaxation times. The
dipole in Eq. (20) can be used to compute the dipole-field
interaction potential in Eq. (12). Practically, the Brownian
dipole is modeled with a fixed magnitude. By combining
Eqs. (18)–(20), the Néel dipole on one particle, m1,N , induced
by both an applied external field and the Néel, m2,N , and
Brownian, m2,B , dipoles of a second adjacent particle is given
by

m1,N = 4

3
πa3χN (ωf )

[
Ho + 3r̂(m2,N · r̂) − m2,N

4πr3

+ 3r̂(m2,B · r̂) − m2,B

4πr3

]
, (21)

where χN (ωf ) is the dynamic susceptibility corresponding
to the Néel dipole only. The magnitudes of the Néel dipoles
on particles 1 and 2 for use in the dipole-dipole potential in
Eq. (16) are obtained by (1) assuming the dipoles are equal
in magnitude and direction (i.e., m1,N = m2,N ,m1,B = m2,B )
on the right- and left-hand sides of Eq. (21), (2) algebraically
solving for either m1,N or m2,N , and (3) taking the magnitude
of the dipole vector to obtain m1 and m2. The inaccuracy
due to assuming m1,B = m2,B (in this equation only) is
negligible when the permanent dipoles are much smaller than
the instantaneous dipoles.

G. Particle susceptibility

The effective static susceptibility, χo(H ), for a spherical
particle is defined as a function of the static susceptibility,
χ (H ), as [37]

χo(H ) = χ (H )[1 + (χ (H )/3)]−1. (22)

The dynamic susceptibility as a function of the fractional
contributions of the Néel and Brownian dipoles, fN and fB ,
and their associated relaxation times, τN and τB , is given by

χ (ωf ) = χN (ωf ) + χB(ωf ), (23)

χ (ωf ) = χo

[
fN

1 + (iωf τN )1−α
+ fB

1 + iωf τB

]
, (24)

where α determines the Néel relaxation time distribution
width [39,40]. If some of the individual Néel dipoles have
relaxation times on the order of the field rotation rate, they
cannot overcome the energy barrier to reorient with the
field [41,42]. As a result, the Néel dipole in a rotating field
has in-phase, χ ′

N (ωf ), and out-of-phase, χ ′′
N (ωf ) components

of the susceptibility as [20]

χN (ωf ) = fNχo

1 + (iωf τN )1−α
= χ ′

N (ωf ) − iχ ′′
N (ωf ). (25)

The Néel phase lag is defined as

θlag,N (ωf ) = arctan

[
χ ′′

N (ωf )

χ ′
N (ωf )

]
, (26)

and components can be modeled as [39]

χ ′′
N (ωf ) = fNχo(ωf τN )1−α cos

(
1
2πα
)

1 + 2(ωf τN )1−α sin
(

1
2πα
)+ (ωf τN )2(1−α) , (27)

χ ′
N (ωf ) = fNχo

[
1 + (ωf τN )1−α sin

(
1
2πα
)]

1 + 2(ωf τN )1−α sin
(

1
2πα
)+ (ωf τN )2(1−α) . (28)

H. Hydrodynamic forces and torques

Hydrodynamic forces and torques oppose translational and
rotational motion of the particle. For low-Reynolds number
dynamics, translational and angular velocities of particles can
be directly related to the forces and torques by a mobility
matrix, M, given as ⎛

⎜⎝
u1
u2
ω1
ω2

⎞
⎟⎠ = M

⎛
⎜⎝

F1

F2

T1

T2

⎞
⎟⎠, (29)

M =

⎛
⎜⎜⎝

a11 a12 b̃11 b̃12

a21 a22 b̃21 b̃22
b11 b12 c11 c12
b21 b22 c21 c22

⎞
⎟⎟⎠, (30)

where M is the mobility matrix containing near-field and
far-field terms, obtained for two particles using twin multipole
expansions [33]. When expanded, the mobility matrix has
6N×6N terms. Here, N = 2 so that the mobility matrix M is
12 × 12. If the particles are infinitely far from each other, only
diagonal terms are nonzero and for spheres, aii = 1/6πηa and
cii = 1/8πηa3. The mobility matrix is related to the resistance
matrix, R, by

MR = I⎛
⎜⎜⎝

a11 a12 b̃11 b̃12

a21 a22 b̃21 b̃22
b11 b12 c11 c12
b21 b22 c21 c22

⎞
⎟⎟⎠
⎛
⎜⎜⎝

A11 A12 B̃11 B̃12

A21 A22 B̃21 B̃22
B11 B12 C11 C12
B21 B22 C21 C22

⎞
⎟⎟⎠ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠.

(31)
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The elements in R are dependent upon the relative distances
and orientations of particles as given by expressions using the
notation of the original reference [33],

A
αβ

ij = XA
αβeiej + YA

αβ(δij − eiej ),

B
αβ

ij = B̃
βα

ji = YB
αβεijkek, (32)

C
αβ

ij = XC
αβeiej + YC

αβ(δij − eiej ),

where the terms on the right-hand side correspond to Jeffrey
and Onishi’s resistance functions defined at “arbitrary sep-
arations” (including recently reported corrections [43]), α,β

correspond to particle number, and e = r/r such that eiej and
δij − eiej indicate parallel and perpendicular to the line of
particle centers, respectively.

I. Brownian forces and torques

The Brownian force and torque can be combined into one
vector SB as

SB =
(

FB

TB

)
, (33)

which follows a Gaussian distribution with a mean of zero and
variance given by〈

SB
i (0)SB

j (t)
〉 = 2(kT )2D−1

ij δ(t), (34)

where in practice SB is computed from a vector of normal
deviates weighted by a Cholesky decomposition of the
resistance matrix, R [34].

J. Particle and doublet rotation

The angular velocity of a particle in a rotating magnetic
field can be calculated by balancing the viscous torque, TH,R ,
against the dipole-magnetic field torque, TP

df , as

TP
df = −TH,R. (35)

The gradient of the dipole-field potential [Eq. (12)] with
respect to orientation gives the torque on the dipole moment
of a particle, which is the sum of the torques due to the Néel
and Brownian dipolar contributions given as

TP
df =

∑
k=N,B

mk × μoH. (36)

In a field in the x-y plane, Eq. (36) depends on the angle of
the dipole in the x-y plane, θl,k , and with respect to the z axis
φl,k [see Fig. 2(a)] as given by

T P
df,z =

∑
k=N,B

mkμoHo sin
(
θf − θ1,k

)
sin
(
φ1,k

)
, (37)

and θlag,k = θf − θ1,k is defined as the phase lag of either the
Néel dipole [from Eq. (26)] or Brownian dipole (determined
directly from the particle main axis).

For isolated particles, the particle is also rotating around
the axis perpendicular to the wall, leading to a negligible
wall hydrodynamic correction [44], and negligible motion with
respect to the polar axis is assumed. As such, the hydrodynamic
drag is approximated as

T H,R
z = ωp8πηa3. (38)

For the Néel dipole, only the out-of-phase component
contributes to the torque; therefore the velocity can be written
as [using Eq. (20) for the Néel out-of-phase dipole]

ωp = mBμoHo sin
(
θf − θ1,B

)+ 4
3πa3χ ′′

N

(
ωf

)
μoH

2
o

8πηa3
.

(39)
The critical frequency is the frequency at which the particle

experiences a maximum dipole-field torque. If the critical
frequency is less than the field frequency, the angle between
the particle and the field gradually increases. When that angle
reaches 180◦, the particle experiences backwards rotation until
it is once again aligned with the field. The frequency of one
such forwards-backwards oscillation for single particles can be
inferred from a previous model for rigid doublet rotation [22].
When this model is applied to a single particle, the oscillation
frequency, ωosc, relates to single particle critical frequency,
ωcrit, and field frequency as

ωosc = ωcrit

√(
ωf

ωcrit

)2

− 1. (40)

During each oscillation for single particles, the particle axis
angular displacement is −360◦ with respect to the field. In
this regime, the average frequency of particle rotation is the
difference in the field frequency and the frequency of one
oscillation cycle given by

ω̄ = ωf − ωosc. (41)

Similar to the single particle analysis, a critical frequency
exists for a rotating rigid doublet. The oscillation frequency
has the same form as Eq. (40) but considers the weighted
contribution from both Néel and Brownian dipoles as given by

ωd,osc

2
= ωd,crit

√√√√√√
⎛
⎜⎝
∑

k=N,B

mkωk∑
k=N,B

mk

/
ωd,crit

⎞
⎟⎠

2

− 1, (42)

where ωd,crit and ωd,osc are the critical and oscillation
frequencies of the doublet vector r. In one cycle of forwards-
backwards rotation, the doublet angular displacement is −180◦
with respect to the average dipole trajectory. The average
frequency of rotation in this regime is the difference in the
overall dipole rotation and half of one doublet-oscillation cycle
given by

ω̄d =

⎡
⎢⎣
∑

k=N,B

mkωk∑
k=N,B

mk

⎤
⎥⎦− ωd,osc

2
. (43)

III. MATERIALS AND METHODS

A. Particles and surfaces

M-270 carboxylic acid-coated microparticles composed of
iron oxide nanoparticles embedded in a polystyrene matrix
with nominal diameter 2.8 μm were used as received (Dyn-
abeads, Life Technologies). To visualize particle orientation,
a nonmagnetic film was coated on one hemisphere to make
“optical Janus” particles (Fig. 1). The particles as received
were dried as a monolayer on a glass slide. The slides with
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the half-exposed dried particles were coated using an E-beam
evaporator by first depositing a 15-nm thin film of Cr to aid
the adhesion of Au, followed by a 35-nm Au film, and finally
a 30-nm SiO2 film. The microscope slides were sonicated in
de-ionized (DI) water to remove the coated particles from the
surface and the solution was centrifuged to collect the particles.

Experiments were conducted on glass cover slips (Gold
Seal, Corning) for 100× objectives or regular glass slides
(Fisher Scientific) for 40× objectives. Cover slips or slides
were sonicated in acetone (Sigma-Aldrich Company) and
then isopropanol (Sigma-Aldrich Company), and soaked in
Nochromix (Godax Laboratories) for 1–24 h, rinsed in de-
ionized water, sonicated in 0.1M KOH for 35 min to charge the
surface, rinsed with de-ionized water, and dried with nitrogen
gas. Sample cells containing dilute particles in 0.1mM NaCl
were prepared by dispensing the dispersion into Viton O-rings
(McMaster-Carr) coated with vacuum grease on cover slips or
slides and sealed using epoxy quick set glue (Loctite) and a
top cover slip.

B. Microscopy and magnetic field apparatus

For rotating doublet and single particle magnetophoresis
experiments, a 40× objective (Nikon) was used to monitor
particles. For single particle and particle rotation in doublet
experiments, a 100× oil objective (Nikon) was used to detect
orientation of “optical Janus” particles. For all experiments,
a Photron PCI-512 camera was used to record video at 60
or 120 frames per second (fps) of the field of view of the
microscope. Cover slips or slides with the colloidal particles
were placed on a stage in the center of a magnetic quadrupole
setup, which has been described elsewhere [45]. Briefly, two
sets of four solenoids are arranged in a quadrupole (see Fig. 3)
and solenoids receive a current that is 90◦ out of phase with the
preceding solenoid to produce a constantly rotating field with
uniform magnitude. In a second operating mode, a differential
current through opposing solenoids creates a controllable field
gradient along a single axis. A uniform 5 G/mm gradient was
applied for magnetophoresis experiments.

Videos were analyzed using particle tracking codes written
in FORTRAN for doublet rotation or in MATLAB for particle

FIG. 3. Image of the magnetic quadrupole apparatus, showing the
two sets of four solenoids.

FIG. 4. (a) Experimental image of a single particle with a gold
patch, and (b) the corresponding image obtained from increasing the
contrast, identifying the outline of the particle and the patch, and
calculating the location of the patch, marked with a black dot. (c) An
experimental image of two particles within a doublet, both with gold
patches, and (d) the corresponding image after analysis, showing in
blue the circles fit to the outlines of the particles, the borders of the
patches, and the locations of the patches marked with black dots.

rotation using algorithms similar to others reported in the
literature [19,46–48]. For particle angular orientation images,
we apply the bandpass filter bpass.m (adapted for MATLAB

from the original particle tracking codes [49]) that enhances the
contrast between the gold particle patch, the rest of the particle,
and the background. We then use the MATLAB built-in function
bwboundaries to identify the boundaries of our particles and
the patch by their higher intensities relative to the rest of the
image. The coordinate of the patch is determined by weighting
the intensities of all pixels within the patch. For single particles,
the center of the particle is the average position of the boundary
pixels. For particles within doublets, two circles are fit to the
doublet outline to find the centers of the particles. Lastly,
the orientation is calculated based on the angle of the patch
with respect to the centers of the particles. Figure 4 shows
experimental images before and after the analysis is applied
for single particles and particles within doublets.

C. Particle characterization

Single particle drift in a field gradient, or magnetophoresis,
can be used to calculate the static susceptibility as a function
of field intensity in the case where the intensity negligibly
changes in the field of view [50]. Static susceptibility values
(for brevity here and throughout, the effective static suscepti-
bility is referred to as the static susceptibility) calculated from
magnetophoresis experiments are shown in Table I. Further
details on the measurements are in the Appendix.

The dynamic susceptibility due to the Néel dipole
[Eqs. (25)–(28)] was determined by two independent methods:
particle property measurement system (PPMS) measurements
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TABLE I. Parameters used in the BD simulations.

Parameter Value Equation

−ςp (mV),a−ςw (mV) 50 (9), (15)
a (nm)b 1400 (8), (9), (11), (14), (15), (21)
κ−1 (nm) 30.3 (8), (14)
χo at 6 Gc 1.46 (24), (25), (27), (28)
χo at 10 Gc 1.33 (24), (25), (27), (28)
αd 0.87 (24),(25),(27),(28)
τN (s)d 2.5 × 10−9 (24), (25), (27), (28)
mB (10−16 A m2)e 3.0 (12), (16), (21)
fB at 6 G (%)f 3.75 (24), (25)
fB at 10 G (%)f 2.5 (24), (25)
fN at 6 G (%)f 96.25 (24), (25)
fN at 10 G (%)f 97.5 (24), (25)

aReference [8].
bReported by the manufacturer.
cFit to magnetophoresis experiments.
dFit to both PPMS measurements and torque balance experiments.
eFit to single particle critical frequency measurements.
fCalculated using mB and the total dipole [plug in χo in Eq. (20)].

and single particle rotation at high frequencies [when the
Brownian dipole does not contribute to rotation in Eq. (39)].
Phase lag and the in-phase and out-of-phase components at
different magnetic field frequencies were measured using a
PPMS (Quantum Design). The magnetic microparticles were
characterized either as a powder or in a dried agar matrix. For
the powder, the microparticles were dried on a glass slide
and scraped off. For the agar matrix, agar powder (Type
I, Sigma-Aldrich Company) was heated until dissolved in
DI water. Colloids were directly added to the solution and
sonicated. The dispersion was then poured onto a Petri dish
and left overnight to harden. Prior to measurement, the agar
gel was vacuum dried. Frequencies ranged from the minimum
of 10 Hz to 200 Hz at a constant field of 10 G and an oscillating
field of 6 G. Equations (26)–(28) were used to fit the PPMS
measurements for unknowns α and τN [note χo and fN cancel
in Eq. (26)], assuming they do not change in this field range.
In the second method, we conducted a torque balance of single
particle rotation at 10, 50, and 100 Hz, each at 6 and 10 G, and
fit χ ′′

N (ωf ) [Eq. (27)] via adjustable parameters α and τN , given
χo and an estimate of fN (which was verified via an iterative
method to simultaneously fit the Néel dipole measurements
and the Brownian dipole, described below). The parameters
that fit both PPMS and particle rotation data are shown in
Table I.

The magnitude of the Brownian dipole can be determined
from a torque balance at critical frequencies, at which the
Brownian dipole dominates the torque expression [Eq. (37)].
At frequencies <10 Hz, the Néel dipole component χ ′′

N (ωf )
is estimated to be ≈0.02 rad (from the above-mentioned
model) and at the critical frequency, the Brownian dipole
phase lag θf − θ1,B = 90◦; hence mB is the only unknown
in Eq. (39). The Brownian dipole mB and fractions fB and fN

were determined in an iterative fashion by minimizing error in
Eqs. (26)–(28) and Eq. (39). Explicitly, fB = mB/m, where
m is the total dipole in A m2 by using χo for susceptibility in
Eq. (20) and fN = 1 − fB , which is used to calculate χ ′′

N (ωf )

in Eq. (27); then χ ′′
N (ωf ) is used in Eq. (39). The values are

shown in Table I. It is assumed that the magnitude of the
Brownian dipole does not change significantly in this field and
frequency range.

D. Brownian dynamics simulations

BD simulations were performed based on Eqs. (3) and (4)
with an integration time of 0.01 ms, which is short enough
to assume constant force but long enough for momentum
relaxation [51]. Equation (3) can be approximated by using the
midpoint rule to avoid calculating the gradient of the diffusion
tensor [52–54]. Initial doublet, particle, and field orientation
was always 0° or parallel to the x axis, with an initial separation
of 3.03 µm, which is an estimate of the energy minimum
at all frequencies determined from a probability distribution
from experimental data. Simulations were run for at least
15 s, which was found to be sufficient to obtain particle and
doublet average rotation frequency, and adequate given that
doublets reach steady state after approximately <1 s. Particle
coordinates (positions, angles) were recorded every 1 ms.
Particle, wall, and solution properties used in the simulation
are shown in Table I. The Néel phase lag values from the
model [see Eqs. (26)–(28) and Table I] were directly used in
BD simulations at 6 G.

Due to the particles’ proximity to the underlying wall,
translational motion parallel to the wall will be slowed [55].
However, translation-rotation coupling increases with wall
proximity [44], speeding up translational motion. We made
the assumption that the overall net effect of the wall would be
a reduction in translational motion, although not as reduced
as a single particle translating parallel to the wall. To validate
this assumption, we ran Stokesian dynamics (SD) test cases
that included particle-particle, particle-wall, and multibody
hydrodynamics [44,54,56] and compared them to BD simula-
tions run with a 1.35 resistance increase for the translational
diagonal terms. The simulations agreed qualitatively near
the critical frequency and at high frequencies. Regarding
quantitative agreement, for ten trials at a high-frequency case
(50 Hz at 6 G), the difference in mean doublet rotation for SD
vs BD was ∼20% and the results were within one standard
deviation of each other. For ten trials at a frequency right
after the critical frequency (0.6 Hz at 6 G), the difference in
mean doublet rotation was ∼30%. Since both the SD and BD
results at these frequencies were still within the ranges that
were observed in experiment, we used the computationally
less expensive BD simulations.

IV. RESULTS AND DISCUSSION

A. Single particle rotation

Single particle rotation rates were measured in fields of
6 and 10 G and rotation frequencies from 0.1 to 100 Hz.
Representative rotational trajectories are plotted in Fig. 5(a)
from VM and BD simulations for particles in 0.8 and
80 Hz fields at 6 G. Oscillations in the angular trajectory
at 0.8 Hz demonstrate that the particle cannot rotate as fast as
the field, which occurs after a critical frequency. Figure 5(b)
shows the fast Fourier transform (FFT) of the sine of the
angular trajectories (normalized by the greatest nonzero peak)
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FIG. 5. (a) Angular trajectories of VM experiments and BD
simulations of isolated single particles at 6 G and 0.8 Hz (red, top)
and 80 Hz (blue, bottom) (see VM movies and BD renderings of
particles rotating at 0.8 Hz in Video S1 [27]). In all plots, experimental
results are shown by light, unfilled symbols, and the simulation results
are shown by dark, filled symbols. (b) Fast Fourier transform (FFT)
of the sine of the angular coordinate of the 0.8 Hz trajectories for
both experiment and simulation. Single particle rotation frequency vs
applied field frequency for (c) 6 G and (d) 10 G with experimental
averages with range bars (min and max) and BD simulation results.

for both the simulation and experiment at 0.8 Hz. The BD
simulation reproduces the single particle rotation, capturing
both a dominant frequency at 0.8 Hz and a secondary frequency
at ≈0.3 Hz.

Figures 5(c) and 5(d) summarize single particle rotation
frequency vs field rotation frequency at 6 and 10 G for
experiments and simulation. Particles rotate at the same
frequency as the field up to critical frequencies of ≈0.6 Hz
for 6 G and ≈1 Hz for 10 G. The results can be understood
by considering the torques on both the Brownian and Néel
dipoles. At low frequencies (<2 Hz for 6 G, <8 Hz for
10 G), the particles have an effectively “permanent” dipole,
on the time scale of the experiment, which aligns with the field
orientation via Brownian relaxation. At frequencies >2 Hz for
6 G and >8 Hz for 10 G, the field is rotating with a time scale
on the order of ∼0.1 s, whereas the Brownian relaxation time
is τB = 4 πηα3/kT ≈ 7.5 s, and therefore the torque from the
Brownian dipole averages zero.

Because the ensemble Néel dipole has a characteristic
relaxation time of τN ≈ 1 × 10−9 s, it is aligned with the field at
all frequencies. However, the Néel relaxation time distribution
is broad (described by α), with a finite out-of-phase component
of the Néel dipole [19], which produces a frequency-dependent
torque on the particle [20,57]. As such, the particle rotation
frequency plateaus, and then slightly increases as the phase lag
begins to increase in external fields up to 100 Hz. It is expected
that at frequencies >100 Hz, particle rotation will continue

to increase as the out-of-phase component increases [19].
The agreement between simulations and experiments shows
the dipole relaxation model accurately captures the measured
dynamics. We proceed with these properties to analyze doublet
rotation experiments.

B. Particles rotating within rotating doublets

We report in Fig. 6 the rotation of individual particles within
doublets in 6 and 10 G fields from 0.1 to 100 Hz. Rotation
frequency results were not significantly different from those
of isolated rotating particles. The variation in particle rotation
rates is most likely due to nonuniformity between particles,
such as size, static susceptibility, and phase lag. To demonstrate
the particle nonuniformity, Fig. 6(a) shows angular trajectories
of particles rotating at 0.8 and 80 Hz at 6 G. The two
experimental plots shown for the 0.8 Hz case are distinct
particles rotating in the same doublet. For comparison, the
isolated particle at 0.8 Hz in Fig. 5(a) rotates at a frequency in
between these two particles.

Figure 6(b) shows the FFT of the sine of the angular
trajectory of the faster particle in the doublet in Fig. 6(a).

FIG. 6. (a) Angular trajectories of VM experiments and BD
simulations of particles rotating within a doublet at 6 G and
0.8 Hz (red, top, and bottom) or 80 Hz (blue, middle) (see VM
movies and BD renderings of particles rotating in a doublet at 0.8
and 80 Hz in Videos S2 and S3 [27]). The two 0.8 Hz experimental
plots are of particles within the same doublet, illustrating the range
in magnetic properties. In all plots, experimental results are shown
by light, unfilled symbols, and the simulation results are shown by
dark, filled symbols. (b) FFT of the sine of the angular coordinate
of the faster 0.8 Hz trajectory for both experiment and simulation
and (c) the FFT of the slower 0.8 Hz angular trajectory minus a
linear fit of the same trajectory to capture the oscillation frequency
of both experiment and simulation. Single particle rotation frequency
within doublets vs applied field frequency for (d) 6 G and (e) 10 G
with experimental averages with range bars (min and max) and BD
simulation results.
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The faster particle has a critical frequency greater than 0.8 Hz
because it can still rotate with the field at 0.8 Hz, while
its partner cannot. The slower particle is oscillating about
an average rotation rate, indicating it is in a regime just
past the critical frequency. BD simulations are fit to match
the two particles’ trajectories by increasing the Néel dipole
phase lag for the faster particle, relative to the measured
average (to increase torque), and decreasing the phase lag for
the slower particle (to decrease torque). Figure 6(c) shows
the FFT of the slower particle trajectory minus a linear
fit to the average trajectory (which captures the secondary
oscillation frequency) for both experiment and simulation in
Fig. 6(a). The simulation captures the oscillation frequency in
the experiment, as seen by the matching peaks at ≈0.67 Hz.

Figures 6(d) and 6(e) summarize particle rotation frequency
within doublets vs the field rotation frequency for 6 and 10
G. The same general behavior is observed in these plots as
isolated, single particles (Fig. 5). The particle follows the
frequency of the field until a critical frequency of ≈0.6 Hz
at 6 G. For 10 G experiments, the critical frequency is at
≈1 Hz, which is less than the ≈2 Hz simulation estimate. The
discrepancy is most likely due to experimental oversampling
of “slow” particles (i.e., particles with a smaller phase lag
and/or smaller static susceptibility). Like the single particles,
particles in a doublet continue to rotate even when the field
frequency is several orders of magnitude greater than the
Brownian relaxation time because the torque on the Néel dipole
is nonzero. In the field frequency range 10–100 Hz, the particle
frequency plateaus just above 0.2 and 0.5 Hz for 6 and 10 G,
similar to the plateaus seen for single particles in Figs. 5(c)
and 5(d).

The trajectory of the oscillating particle at 0.8 Hz is fit to a
linear function to obtain an average rotation speed of 0.13 Hz.
An available literature model [22] [Eqs. (40) and (41)] predicts
the frequency of oscillations given the average particle rotation
and the field frequency as 0.8 Hz–0.13 Hz = 0.67 Hz, which is
close to the measured peak in Fig. 6(c). The critical frequency
can also be estimated from this model, and is found to be
≈0.44 Hz, which is lower than the average measured value
[see Fig. 6(d)]. This also confirms what has been observed
experimentally for this unique particle; it has a smaller overall
susceptibility, Brownian dipole, and/or a smaller Néel dipole
phase lag with the field, decreasing the field torque and
reducing the critical frequency.

The effect of unique particle properties is evidenced by
the large variation in particle rotation in the frequency regime
near the critical frequency, as shown in Figs. 5(c), 5(d), 6(d),
and 6(e). As expressed in Eq. (39), the Brownian dipole
mB and the out-of-phase Néel susceptibility χ ′′

N (ωf ) impact
rotation at the lower frequencies and near the critical frequency,
while χ ′′

N (ωf ) influences high-frequency rotation. Changing
the Néel dipole phase lag by ∼0.01 rad will shift the critical
frequency for unique single particles. It has been noted
previously for these particles that nonuniformity can alter
the observed dynamics [21]; thus the stochastic nature of
the system, including particle heterogeneity, explains why
in some cases the simulation data are not within range of
the experimental data. The parameters presented in Table I
reproduce with good agreement the features observed in the
single particle and particle in doublet experiments, but can

be tuned to obtain more quantitative agreement for distinct
particles.

C. Doublet rotation

Figure 7 displays representative measured and simulated
doublet rotational trajectories for doublets experiencing a 0.8
or 80 Hz field at 6 G. Oscillations in the 0.8 Hz trajectories
indicate this frequency is greater than the critical frequency
for doublets. The normalized FFT plots of the sine of the
0.8 Hz experiment and simulation trajectories in Fig. 7(b)
show alignment of the peaks at ≈0.3 Hz, demonstrating that
the simulation captures the dominant doublet frequency. The
FFT of the 0.8 Hz trajectories minus linear fits is shown in
Fig. 7(c) to obtain the frequency of the rotational oscillations.
The experiment data have two peaks at ≈0.8 and ≈1 Hz, most
likely due to particle nonuniformity, whereas the simulation
shows a single oscillation frequency at ≈1 Hz.

Oscillations in doublet rotation occur just past the observed
critical frequency because the dipoles of two particles rotate
faster than the doublet vector. When the angle between the

FIG. 7. (a) Angular trajectories of VM experiments and simula-
tions of doublets rotating at 6 G and 0.8 Hz (red, top) or 80 Hz (blue,
bottom) (see VM movies and BD renderings of rotating doublets at
0.8 and 80 Hz in Videos S2 and S3 [27]). In all plots, experimental
results are shown by light, unfilled symbols, and the simulation results
are shown by dark, filled symbols. (b) FFT of the sine of the angular
coordinate of the 0.8 Hz trajectory for both experiment and simulation
and (c) the FFT of the 0.8 Hz angular trajectory minus a linear fit of
the respective trajectory to capture the oscillation frequency for both
experiment and simulation. Doublet rotation frequency vs applied
field frequency for (d) 6 G and (e) 10 G with experimental averages
with range bars (min and max) and BD simulation results. In plots
(d,e), simulations with the exact mobility matrix [Eq. (30)] (black)
are compared to simulations run as if the particles are noninteracting
with all off-diagonal elements in the matrix zero (red) and as if the
particles have no translation-rotation or rotation-translation coupling
[i.e., b, b̃ in Eq. (30) are zero] (gray).
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doublet vector and the weighted average dipole (i.e., Néel and
Brownian) reaches 90°, the doublet vector rotates backward to
realign with the particle dipoles, and the cycle begins again.
The previously mentioned model for single particle rotation,
which relates the critical frequency and oscillation frequency
to the average rotation frequency for a given field frequency,
is adapted from a one-dimensional torque balance of a bound
doublet [22]. Such a simple torque balance may not easily
capture the doublet rotation rate, because (1) the doublet may
not be rigidly rotating, (2) the doublet vector is coupled to a
torque balance involving the individual particle dipoles, and
(3) the dipoles experience stochastic translation and rotation
that may not be captured by a simple average interaction.

We compare the simple model to the doublet rotational
trajectory at 0.8 Hz to determine how the model’s assumptions
may limit its applicability for quantitative predictions of freely
rotating doublets. First, we estimate that the overall dipoles
rotate at the same frequency as the field at 0.8 Hz; this should
be a valid assumption given the relaxation time of the Néel
dipole and the fact that the Brownian dipole is an order of
magnitude smaller than the Néel dipole (see Table I). Then,
given the average doublet rotation rate of 0.3 Hz, the oscillation
frequency should be 2(0.8 Hz–0.3 Hz) = 1 Hz [see Eq. (43)].
This is comparable to the observed peak in Fig. 7(c) for the
simulation, but the secondary peak at 0.8 Hz for the experiment
may indicate that the dipoles are not rotating at the same rate as
the field. Next, using the value of 0.8 Hz as the dipole rotation,
the estimate of the critical frequency can also be calculated
from the model, and for this doublet it is ≈0.6 Hz, which
is higher than the experimental upper bound of 0.4 Hz [see
Fig. 7(d)]. We attribute this discrepancy to the fact that the
doublet is not rigidly rotating.

Figures 7(d) and 7(e) summarize doublet frequency vs field
frequency at 6 and 10 G. BD simulations with the exact
particle-particle hydrodynamic tensor [Eq. (30) with all terms]
are plotted as dark circles and fall within the upper and lower
values observed in the experiments. Critical frequencies are
observed at 0.4 Hz for 6 G and 1 Hz for 10 G. Low-frequency
rotation below the critical frequency can be understood as
follows: The particles’ Brownian and Néel dipoles rotate at
the same frequency as the field, and as a result, the doublet
also rotates due to the favorable head-to-tail alignment of
their dipoles. This is captured in Eq. (16) where particles
experience a tangential force in the θr direction when their
dipoles are not aligned along the center-to-center vector r. At
intermediate frequencies just above the critical frequency, the
doublet vector increasingly lags behind the particle dipoles and
when the lag reaches 90°, the doublet rotates backwards (hence
the observed oscillations in the angular trajectory) to realign
with the dipoles. As described earlier, at higher frequencies,
the Brownian dipole torque averages out to zero but the Néel
dipoles of the particles are still rotating with the field (with a
characteristic lag). In this regime, the particles cannot reorient
around each other, on the time scale of the field rotation, to
align their Néel dipoles as part of doublet rotation. This would
imply that the doublet would not rotate at frequencies much
greater than the critical frequency for doublets due to viscous
drag. However, doublets are observed to continue to rotate at
high frequencies in VM experiments (see VM movie at 80 Hz
in Video S3 of the Supplemental Material [27]).

The significance of hydrodynamic interactions and their
contribution to doublet rotation is illustrated by testing two ad-
ditional approximate mobility matrices in the BD simulations,
which are also shown in Figs. 7(d) and 7(e). One approximation
is a mobility matrix with only diagonal terms corresponding
to aii = 1/6πηa and cii = 1/8πηa3 [red points in Figs. 7(d)
and 7(e) shifted to the right of the critical frequency]. These
simulations overestimate the critical frequency because the
particles experience an overall smaller viscous resistance.
In addition, doublet rotation vanishes at high frequencies in
simulations with only diagonal terms. These results imply
that the doublet rotates at low frequencies due to dipolar
interactions, a behavior that is still qualitatively captured by the
simple hydrodynamic model, and at high frequencies due to
hydrodynamic interactions that are not captured by this model.
It appears that rotation of the particles within the doublet
couples to their translation [b,b̃ in Eq. (30)], leading to overall
doublet rotation at high frequencies.

To test the role of translation-rotation, BD simulations
were also performed with b and b̃ removed from the mobility
matrix; the results are shown as gray points (shifted to the left
of the critical frequency) in Figs. 7(d) and 7(e). In this case,
the doublet rotation rate is underestimated for frequencies
>0.3 Hz for 6 G and >0.7 Hz for 10 G, indicating that
translation-rotation coupling contributes to doublet rotation
even at low frequencies. At higher field frequencies, doublet
rotation vanishes without including coupling, which indicates
that the translation-rotation coupling is the sole mechanism
causing doublet rotation in this regime. This effect would still
occur in simulations that only include far field hydrodynamics,
although to a lesser extent, because the coupling terms in
Eq. (32) remain qualitatively unchanged.

The results highlight the connection between individual
particle dynamics and doublet dynamics: The particles’ rota-
tion within the doublet produces an asymmetric flow, causing
particles to translate around each other and the doublet to
rotate. This finding is supported by another literature study
that also showed individual particle rotation contributed to
rotation of larger clusters via a translation-rotation coupling
mechanism [32]. Due to the relationship between particles
and doublet rotation, the doublet experimental results can be
used to confirm the dipole relaxation model applied in BD.
At 10 G, slightly greater Néel phase lag values (+∼0.01
rad) than those from the model fit parameters [α and τN in
Eqs. (26)–(28)] were found to better match single particle and
doublet experiments, but follow the trend of the model.

D. Particle separation dynamics

Particles in rotating doublets experience varying degrees
of fluctuations in their center-to-center distance, r = |r| with
varying field frequency. Separation distance as a function of
time is plotted in Fig. 8 for three representative frequency
ranges at 6 and 10 G. At frequencies below the critical
frequency [Figs. 8(a) and 8(d)], the dipoles are aligned with
r, and the dipole-dipole interaction is the same as if the
field were constant. As such, strong dipolar attraction holds
particles together with minimal fluctuations in r . At field
rotation frequencies much greater than the critical frequency
[Figs. 8(c) and 8(f)], the Néel dipole is rotating several orders
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FIG. 8. Representative plots of particle-particle separation, r , vs time, t , at 6 G (a–c) and 10 G (d–f) at frequencies below the critical
frequency [(a,d) 0.1 Hz], just after the critical frequency [(b) 0.6, (d) 2 Hz], and two orders of magnitude higher than the critical frequency [(c)
50 Hz, (f)100 Hz] for experiments (black, open circles) and simulations (green, closed circles). Oscillations in r are observed at frequencies
near 0.5 Hz for 6 G and near 2 Hz for 10 G (similar to frequencies where secondary angular oscillations are seen for single particles and
doublets in Figs. 5–7).

of magnitude faster than r such that the average angle between
r and the dipoles is assumed to be ≈45°. This still corresponds
to a net attraction between particles [Eq. (16)], although it
is much weaker than aligned dipoles at 0°, thus producing
slightly larger fluctuations in r compared to the low-frequency
limit.

For field rotation frequencies near the critical frequency
[Figs. 8(b) and 8(e)], the particles intermittently separate and
come back together at the same frequency as the oscillations in
the doublet rotation (see Fig. 7). The simultaneous oscillations
in θr (Fig. 7) and r (Fig. 8) are observable in both experiment
and simulations (see a representative VM experiment and BD
simulation of a doublet at 0.8 Hz in Video S2 [27]). In this
regime, the angle between the single particle dipoles and the
doublet vector is periodically between 55° and 90° and the
particles experience a temporary repulsion. For comparison,
the angular transition from attraction to repulsion occurs at
≈55° by solving a simplified version of Eq. (16) for point
dipoles with identical magnitude restricted to the x-y plane.
The temporary repulsion causes the particles to separate at the
same time as the temporary reversal in rotation direction when
the relative angle reaches 90°.

The BD simulation results in Fig. 8 capture the observed
r oscillations at 0.6 and 2 Hz for 6 and 10 G, as well as the
Brownian fluctuations in r in the low- and high-frequency
ranges below and above the transition frequency range. The
dipolar attraction is strongest when the angle between the
single particle dipoles and doublet vector is ≈0°, which is
the case at 0.1 Hz where the variation in r is seen to be
≈100 nm. The dipolar attraction between particles decreases

at 50–100 Hz, as shown by the ≈200 nm variation in r

at these frequencies. Variation in r is slightly greater in
the simulation than is observed experimentally (observed in
histograms of r), and this discrepancy is most pronounced
in the oscillation regime. The error is most likely due to
the approximate point-dipole potential [i.e., Eq. (16)] used in
simulations, which at close range overestimates the repulsion
by ∼10% when the dipoles are perpendicular to the doublet
vector and underestimates the attraction for aligned dipoles by
∼20% [58].

V. CONCLUSIONS

Our findings demonstrate agreement between experiments,
simulations, and models of superparamagnetic particle dynam-
ics in rotating magnetic fields for single particles and doublets.
Rotation of particles and doublets depends on dipole-field
interactions, dipole-dipole interactions, and hydrodynamic
interactions. Our results show that both dipolar interactions
(including relaxation mechanisms) and hydrodynamic interac-
tions (including exact two-body, translation-rotation coupling)
play an essential role in capturing nonequilibrium, steady-state
rotation of magnetic particles vs field rotation frequency. Simu-
lations and modeling results verify that single particle rotation
within doublets directly affects overall doublet rotation (via
hydrodynamics), which we show is essential for qualitatively
and quantitatively matching experiments with simulations. The
effect is most notable at high frequencies when an increased
Néel phase lag causes the particles to continue rotating. The
direct measurements and rigorous models developed for single
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FIG. 9. (a) Measured mean drift, ux , (points) vs field strength,
μoH , in gauss. The bars are max and min values. (b) Susceptibility,
χo, (points) vs μoH computed from Eq. (A4) and fit to the empirical
function in Eq. (A5) (solid line). The solid line in (a) is obtained by
inserting Eq. (A5) for the value of χo(H ) in Eq. (A4) and solving
for ux . Magnetization, M = χo(H )H , is also plotted in (b) (dashed
line) and agrees qualitatively with previously reported magnetization
curves for superparamagnetic particles [60].

particles and rotating particle pairs within doublets provide
a foundation to understand interactions and dynamics of
magnetic particles in time varying fields important to colloidal
assembly in field-driven systems.
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APPENDIX: MEASURING STATIC SUSCEPTIBILITY

The effective static susceptibility, χo, for the particles
is reported by the manufacturer as 0.96, but to obtain an
estimate at the order of the field intensities used in this work,

magnetophoresis experiments were conducted with a 5 G/mm
gradient at several field intensities. Single particle drift u is
measured using particle tracking, and measurements are shown
in Fig. 9(a). The susceptibility is calculated by solving a force
balance between the magnetophoretic force [59] and viscous
drag as

Fmag = (4/3)πa3χo(H )μoH∇H, (A1)

Fdrag = 6πηaf (h)u, (A2)

where f (h) = 2.8 is a hydrodynamic correction due to lateral
movement at height h from the wall [54,61], and h is estimated
from a balance of gravity and electrostatic repulsion as [62]

h = κ−1 ln[κBpw/G]. (A3)

By equating Eqs. (A1) and (A2) at steady state, the
susceptibility as a function of field strength, where the field
gradient and the drift are in the x direction, is as shown:

χo(H ) = (4/3)πa3μoH∇Hx

6πηaf (h)ux

. (A4)

We conducted six trials at 10 G, and three trials for all other
field intensities. The results are fit to an empirical function that
has the form

χo(H ) = c1 + c2 exp (−c3μoH ), (A5)

where c1 = 0.9569, c2 = 0.7709, and c3 = 0.072. Experi-
ments are not conducted at 6 G due to the need to run
very long videos to get an accurate drift. Instead, χo(6G/μo)
was determined based on Eq. (A5). Magnetization defined as
M = χo(H )H is plotted on a separate y axis in Fig. 9(b). Note
that throughout the main text, the H in χo(H ) is dropped and
χo is referred to as the static susceptibility.
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