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Decoupled length scales for diffusivity and viscosity in glass-forming liquids
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The growth of the characteristic length scales both for diffusion and viscosity is investigated by molecular
dynamics utilizing the finite-size effect in a binary Lennard-Jones mixture. For those quantities relevant to
the diffusion process (e.g., the hydrodynamic value and the spatial correlation function), a strong system-size
dependence is found. In contrast, it is weak or absent for the shear relaxation process. Correlation lengths are
estimated from the decay of the spatial correlation functions. We find the length scale for viscosity decouples from
the one of diffusivity, featured by a saturated length even in high supercooling. This temperature-independent
behavior of the length scale is reminiscent of the unapparent structure change upon supercooling, implying the
manifestation of configuration entropy. Whereas for the diffusion process, it is manifested by relaxation dynamics
and dynamic heterogeneity. The Stokes-Einstein relation is found to break down at the temperature where the
decoupling of these lengths happens.
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I. INTRODUCTION

If nucleation is avoided, upon cooling to the glass transition
temperature the structural relaxation time of liquids increases
by several orders of magnitude. A crucial question is how the
spatial correlation length behaves in this sluggish process. One
of the most famous theories to explain the glass transition is
the mode coupling theory (MCT) [1]. In this theory, the origin
of the dynamic slowdown is the structural frustration upon
approaching density jamming points, when the atoms become
trapped by their nearest neighbours. Thus, the only relevant
length scale in MCT is the atomic cage size. Predictions
of this theory have been validated by several experimental
and numerical results [2,3]. Discrepancies become significant
near the crossover temperature Tc, where the dynamics of
system should be completely frozen according to simple
MCT, in contradiction to experimental results and com-
puter simulation. Below Tc, the dynamics of the system,
despite being sluggish, can still relax through cooperative
motion of small groups of atoms, e.g., jump or stringlike
movement [4]. In this region, the fluctuation of dynamics
is strongly spatiotemporal inhomogeneous, i.e., it shows the
so-called dynamic heterogeneity (DH) [5–9]. The length scale
for this heterogeneous fluctuations increases drastically near
Tc and exceeds the typical length scale of an atomic cage
[10–14].

The emergence of atomic collective movements in space
and time leads to many abnormal phenomena in transport
processes. For instance, upon supercooling, the diffusion
coefficients and the shear viscosity exhibit a clear transition
from simple exponential to stretched exponential decay, i.e.,
an Arrhenius to non-Arrhenius transition at a temperature
above Tc [15–17]. Also in this transition, the Stokes-Einstein
relation (SER), which formulates a simple relation between
single-particle diffusion and cooperative relaxation of the
surrounding solvent, breaks down [17,18]. In view of thermally
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activated processes, the non-Arrhenius behavior, i.e., D or
1/η ∼ exp[EA(T )/kBT ], indicates a change of the activation
volume due to the temperature dependence of the activation
energy. A plausible speculation is that this volume would
be consistent with that of dynamic heterogeneity, and then
all these abnormal phenomena can be rationalized by the
DH [17,19].

One way to realize this speculation is by empirically
scaling the diffusivity and/or structure relaxation time with
the correlation length. A commonly used formula for this
scaling includes a conventional power law, A ∼ ξw, and a
thermoactivation behavior, log(A) ∼ ξv (A could be relaxation
the time, viscosity, or diffusivity). The correlation length, ξ ,
is usually calculated as the four-point correlation length that
evaluates the dynamic heterogeneity, or the point-to-set cor-
relation length measured through the pinning protocol [5,20].
The exponents for this empirical scaling differ from system to
system and even differ for relaxation time and diffusion in the
same system [13,21,22]. Another more physically meaningful
approach is from generalized hydrodynamics. One quantity
is the wave-vector-dependent viscosity or viscosity in a
generalized Stokes-Einstein relation [23,24]. The length scale
determined from this has been reported to coincide with that
of the dynamic heterogeneity [25,26]. Another quantity is the
wave-vector-dependent diffusivity. The corresponding length
scale accounts for the crossover from Fickian to non-Fickian
diffusion [27,28]. Recently, researchers have attempted to
scale diffusivity and shear viscosity (or structural relaxation
time) by a single correlation length, coinciding with the one
of the DH [26]. However, it is still unclear why diffusivity
and viscosity should couple with the same correlation length,
since a slow subsystem where the SER holds would exist in
undercooling [29,30].

At high temperatures, there is no controversy that the length
scales for all these processes, i.e., dynamic heterogeneity,
diffusivity, and viscosity, are all correlated and the same as
the atomic diameter—the only relevant length scale in dilute
liquids. Upon supercooling, the situation becomes more com-
plicated because of the constraint of the dynamic fluctuations
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by the potential energy landscape. The complex shape of the
potential energy landscape makes the ergodicity of the system
temperature dependent and eventually relaxation processes
(e.g., α and β relaxations) decouple from each other [31,32].
As a consequence, multiple length and time scales are found
in the glass-forming liquids [33,34]. A noticeable example
of the multiple length scales is the decorrelation of static
and dynamic correlation length upon supercooling. The static
correlation length can be calculated in three different ways:
local-order correlation (e.g., bond orientation order), point-to-
set correlation (via random pinning or wall frozen protocol),
and structural frustration methods. Despite some consistent
results found for the same correlation lengths for dynamic het-
erogeneity and bond orientational order [35,36], a discrepancy
between the static and dynamic lengths has been reported for
all these methods (see Refs. [21,37], [20,22,38], and [39,40]
for the three methods, respectively). A common finding is
that, with decreasing temperature (or density increasing), the
dynamic length increases significantly faster than the static
one.

Other than the relation of static and dynamic lengths, the
length scales for diffusivity and viscosity have not been studied
intensively, despite their importance for the understanding
of the decoupling of the different relaxation processes. Via
computer simulation, we will address this problem mainly by
utilizing the finite-size effect.

Unlike the pinning or structural frustration method, the
finite-size effect can detect underlying correlation lengths
without perturbing the equilibrium fluctuations in real space.
This method has been extensively used for the scaling of
critical length when a system approaches a first-order or glass
transition point [19,41,42]. The key point of it is that the
size of the simulated box can be considered as an additional
physical length, which directly interplays with the correlation
length of the underlying physical processes. This effect is
essentially important concerning collective movement; e.g.,
ignoring this effect would lead to an incorrect measurement
of the length scale of the conventionally used four-point
correlation function [43]. By utilizing this method, recent
investigations have shown different system-size dependencies
of structural relaxation time and dynamic susceptibility [44].
The correlation length extracted by the configuration entropy
is found to be much shorter than the one of the dynamic
heterogeneity.

In the following, we present a molecular dynamics simu-
lation study for the length scales underlying diffusivity and
viscosity in a binary Lennard-Jones mixture. The system-size
dependency of diffusion and shear viscosity is interpreted in
terms of their hydrodynamic values and the corresponding
spatial correlation functions. Quantities related to the diffusion
process show a much stronger system-size dependency than the
shear relaxation process. Correlation lengths are also estimated
by spatial correlation functions. We find that the length scale
for viscosity decouples from the one of diffusion, distinguished
by a saturated length scale in high supercooling. Consistently,
the fluctuation of shear-stress field is found to limit about 8–10
atomic diameters, not growing up on further undercooling. The
length scale required for the viscosity is attributed to the static
configuration of liquids, while is the dynamic collectivity for
the diffusion coefficient.

II. SIMULATION DETAILS

The molecular dynamics simulation is conducted using a
Lennard-Jones potential with Kob-Anderson parameters [3]:

Uαβ(r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
+ Aαβr + Bαβ

]
,

where α,β ⊆ {A,B}, σAA = 1.0, εAA = 1.0, σAB = 0.8,
εAB = 1.5, σBB = 0.88, and εBB = 0.5. Following common
practice, the potential is truncated at r = 2.5σαβ . The pa-
rameters Aαβ and Bαβ ensure that the potential and its
first derivative go smoothly to zero at the cutoff. The
composition A80B20 is investigated due to its strong resis-
tance against crystallization. All simulations are performed
via the software package LAMMPS [45]. The equations of
motion are integrated with a standard velocity-Verlet al-
gorithm with a time step of 0.0015 at high temperatures
(T � 1) and 0.003 otherwise. The samples are first constructed
at high temperature (T = 5), then cooled down to the target
temperature with the average pressure (= 5.0) fixed. At the
target temperature, the samples are first equilibrated at NPT
ensemble (i.e., constant particle number N, pressure P = 5.0,
and constant temperature T) used to find the corresponding vol-
ume. Then we switch to an NVE ensemble (micro-canonical
ensemble), when the data are collected after an additional
relaxation. By this procedure, a clear cage effect is found in
the system when T � 0.8 (featured as an observable second-
step relaxation emerges in the self-intermediate scattering
function at the wave-vector value of the first maximum in
the static scattering function). The mode-coupling crossover
temperature is found approximately at T = 0.46 (obtained by
fitting of the temperature-dependent self-diffusion coefficient).
A series of different particle numbers is used for the finite-
size effect investigation, N = 200, 400, 800, 1600, 3000,
6000, 12 000, 24 000, 50 000, 100 000. To improve statistics,
averages over several samples for each system size were taken
(up to 50 samples averaged for small systems, down to 2
samples for the largest system).

A generalized form for the definition of a spatial correlation
(or four-point correlation) function is

CA(r,t) = 〈(Ai(t) − Ā)[Aj (t) − Ā]δ[r − |�ri(0) − �rj (0)|]〉
〈[Ai(t) − Ā]2〉〈δ[r − |�ri(0) − �rj (0)|]〉 ,

(1)

where Ai(t) is a local quantity of atomic attribute, i or j

is the atomic index, and Ā = 〈Ai(t)〉. For the displacement
field correlation function Cdisp, Ai(t) = |�ri(t) − �ri(0)|2. For
the atomic-level shear stress correlation function Cstr, Ai(t) =
σ

xy

i (t) − σ
xy

i (0), where σ
xy

i = mvx
i v

y

i + ∑
j rx

ijF
y

ij , and Fij is
the force on atom i exerted by atom j .

III. RESULTS

A. Finite-size effect for transport coefficients

The diffusion coefficients are calculated through the
Einstein relation Dα = limt→∞〈|rα

i (t) − rα
i (0)|2〉/6t , where

α designates the atomic species. In normal liquids, the
diffusion coefficients calculated by computer simulation
are strongly affected by long-range interactions arising from
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FIG. 1. System-size-dependent diffusion coefficient for particle
A. The data are normalized by the factor DA

0 , which is the diffusivity
for infinite system size, obtained via the fitting of formula 2 (solid
green lines). Numbers of particles used for the points from right to
left are N = 200, 400, 800, 1600, 3000, 6000, 12 000, 24 000, 50 000,
100 000.

hydrodynamics [46]. The system-size-dependence of the
self-diffusion coefficients due to hydrodynamic fluctuation has
been described theoretically as [47,48]

DL = D0 − kBT ξ

6πηL
, (2)

where ξ = 2.837 is a constant, L is the cubic box length, and η

is the viscosity of the system. Notice that η is L independent in
normal liquids (see Ref. [48]) or saturated for large-box-size
systems in supercooled liquids (see viscosity data below) in
this fragile liquid.

Utilizing this formula, we fit the system-size-dependent
diffusion coefficients of particle A via the sole free parameter
D0 (the diffusivity for infinite system size). Results are shown
in Fig. 1. In normal liquids (T � 0.8), the theoretical formula
[Eq. (2)] describes the diffusion data well, from the smallest
box size to the largest one (see green lines in Fig. 1). This
changes at low temperatures (T � 0.6). The hydrodynamic
description only fits to large systems. At low temperatures,
it is known that the diffusion process cannot be considered
as a single particle’s movement, but some correlated motion
for a group of atoms in the form of jump or stringlike
movement [4,49]. If the simulation box size is comparable
or smaller than the length of this collective movement, the
diffusion process can be affected by strong self-interaction
through the period boundary condition. A hydrodynamic
description fails then, and the scaling behavior is governed
by the constrained situation where the correlation length
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FIG. 2. System-size-dependent shear viscosity. The vertical
dashed line is an estimation of the constant critical box length ( = 9 σ )
above which the finite-size effect disappears for all low-temperature
liquids.

competes with the box length. This crossover gives clue to
the upper limit of such a correlation length. As shown in
Fig. 1, the crossover points, extracted from the intersection
of hydrodynamic description (green lines) and the constrained
situation (blue dashed lines), shift to larger and larger box sizes
as the temperature decreases. This indicates a growing length
scale required for the diffusion process, which would be due
to the increase of number of atoms participating in stringlike
movement.

The shear viscosity can be calculated in the equi-
librium state through the Green-Kubo relation η =
V/(kBT )

∫ ∞
0 〈Pxy(t)Pxy(0)〉dt , where V is the volume of the

simulation box and Pxy is the off-diagonal pressure of the
system. Results for the shear viscosity are shown in Fig. 2. At
high temperatures (T � 0.6), no significant finite-size effect
emerges within the error bars. At low temperatures, smaller
systems exhibit a higher viscosity than the larger systems. In
small systems, more degrees of freedom or relaxation channels
are cut off by the finite box size. This leads to slower dynamics
similar to the diffusion case shown in Fig. 1. A striking result
is that the critical box size for the viscosity to reach the bulk
value does not increase significantly in highly supercooled
liquids, indicating a saturated length scale for viscosity upon
supercooling. This saturation behavior, however, is in contrast
to the length scale for diffusivity and dynamic heterogeneity.
We stress the importance of this problem, as it indicates
a nondiverging length scale when approaching the glass
transition temperature. Due to the error bars of the viscosity
calculation at low temperatures (up to 8%), the critical system
box size where the size effect disappears is not exact (as shown
in Fig. 2). We keep cautious on this point at this moment and
will discuss it further down.
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B. Spatial correlation functions

In order to get more detailed information about the
correlation behavior in the diffusion and viscous processes,
we turn to the measurement of spatial correlation functions.
For the diffusion coefficient, the relevant quantity is the
displacement field. The calculated spatial correlation function
for atomic displacement is shown in Fig. 3. Here, we focus
on the time scale τα , which is defined as the time when the
dynamic susceptibility χ4(t) reaches its maximum. Dynamic
susceptibility is defined as χ4(t) = 1/N [〈W 2(t)〉 − 〈W (t)〉2],
where W (t) = ∑

i �[a − |�ri(t) − �ri(0)|], �(x) is the Heavi-
side step function, and a is a constant (chosen as 0.3 here).
By default, this time scale is also used in the following for the
atomic level shear-stress field.

At high temperatures (T > 0.6), the correlation of the dis-
placement field is nonzero only for short-range distance, with
the strong oscillation attributed to density fluctuation. With
decreasing temperature, this correlation survives for longer
distances, indicating that more atoms move in a cooperative
way. The spatial decay of the displacement correlation can
be described by an exponential function, with the exponent
giving the characteristic correlation length. This has been
previously reported by measuring the collective movement
of atoms [8,50–52]. Mathematically, if a correlation function
decays exponentially as exp(−r/ξ ), its Fourier transformation
will be in the form of Lorentzian formula ∼ξ/(1 + q2ξ 2).
Thus, this spatial correlation function actually measures
the same correlation behavior as the dynamic heterogeneity
does [10–14]. As illustrated by the dash-dotted lines in
Fig. 3, the characteristic length extracted from fitting shows
an increase with decreasing temperature, or in other words,
a tendency to diverge upon supercooling. We notice that if
we define another correlation length as the distance where
the correlation function decays to some finite value δ (e.g.,
δ = 10−4, for the largest system investigated), we will get
a length scale approximately coinciding with the crossover
critical box length in Fig. 1. Thus, the results for finite-size
scaling and correlation function are consistent. This indicates
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FIG. 3. Modulus of the spatial correlation function of the dis-
placement field for different systems. In the lower two panels, (c) and
(d), clear dip points emerge as the correlation function turns from
positive to negative. The decay of the correlation and the dip points
show a clear system size dependence.

the dynamic heterogeneity accounts for the breakdown of the
hydrodynamic description [i.e., Eq. (2)], as the collectivity
between atoms cannot be neglected at this time.

A pronounced negative correlation region can be found at
low temperatures (when the sign of Cdisp changes from positive
to negative, the plot exhibits a dip as shown in the lower panels
of Fig. 3). This anticorrelation is attributed to the well-known
backflow, or vortex pattern, generated by the hydrodynamic
fluctuation [53] and has been verified by the perpendicular
part of this correlation function in a Brownian system [54]. An
interesting phenomenon is that the size of the hydrodynamic
vortex, i.e., the minimum length of anticorrelation, strongly
depends on the box size in the simulation. For larger system
sizes, the distance where the backflow happens is longer (or
equivalently later). Thus, exponential fitting of the correlation
functions in small systems will lead to smaller correlation
lengths. This kind of underestimation has also been reported
for length-scale calculations in Fourier space [14]. As an
approximation, here we use the largest system, i.e., N =
100 000, to measure the correlation length (result is shown
in Fig. 6). The actual correlation length in an infinite system
would be larger than the value we obtained. But the tendency
to increase with undercooling will not change.

We now turn to the spatial correlation function for the
atomic level shear stress, which is relevant to shear viscosity
(see Sec. II for its definition). Due to propagation, the shear-
stress correlation function oscillates around the abscissa (see
Fig. 5). Again, we use the absolute value to make the semilog
plot, shown in Fig. 4. Strikingly, the decay of the stress
correlation is insensitive to the temperature (see Fig. 4). A
characteristic length 1.2 σ can be considered as the upper
limit of the correlation length for all investigated temperatures.
This value is clearly lower than that of the displacement field.
For the viscosity calculation, as the main contribution of it
comes from virial part at low temperature, it could be the
manifestation of the static structure and then possibly shares
the same underlying correlation length. This result is consistent
with the temperature-independent static length found in the
structural frustration scenario [39,40].
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FIG. 4. Spatial correlation function of atomic-level shear-stress
field for (a) N = 6000 particles system and (b) N = 100 000 particles
system. The decay of the correlation function does not show a clear
system-size dependence.
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IV. DISCUSSION AND CONCLUSION

The shear-stress correlation function can be connected with
the viscosity by considering that

η = 1

V kBT

∫ ∞

0

〈[∑
i

σ
xy

i (t)

][∑
i

σ
xy

i (0)

]〉
dt

= 1

V kBT

∫ ∞

0
dt

∫
V

dr

〈∑
ij

σ
xy

i (t)σxy

j (0)δ(r−|�ri −�rj |)
〉
,

(3)

where σ
xy

i = mvx
i v

y

i + ∑
j rx

ijF
y

ij , is the atomic-level shear
stress of atom i, with Fij being the force exerted by atom
j on atom i. The term inside the brackets 〈· · · 〉 actually is the
cross term for different times in the spatial correlation function
(see its definition in Sec. II). Thus, the time convergence of
the stress autocorrelation function for viscosity measurement
is determined by the correlation function Cstress(r,t). To study
the spatiotemporal fluctuation of Cstress(r,t) which relates to
the viscosity calculation, we plot 4πr2Cstress(r,t) in Fig. 5.

First, the oscillation behavior of the correlation is observ-
able, with the periodicity coinciding with the atomic diameter.
With time elapsing, this oscillation propagates to larger
distances. As reported recently [55,56], the front propagation
speed corresponds to that of a longitudinal sound wave. As the
longitudinal sound velocity depends weakly on temperature,
the shape of the shear-stress wave does not differ so much
between a high temperature (left panels) and low temperature
(right panels) at short time scales. In long time scales (t 	 τα),
the longest propagation distance for a shear-stress wave is also
quite close in normal liquids and highly supercooled liquids,
although the viscosity of the system has drastically increased
by more than three orders of magnitude for the temperature
range illustrated.

To show the finite-size effect, we take two different system
sizes, i.e., N = 1600 and N = 100 000. For all time scales
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FIG. 5. Spatial correlation function of the atomic shear stress field
at different times. The left panels (a)–(d) are for high-temperature
liquid (T = 1), while the right panels (e)–(h) are for low-temperature
liquid (T = 0.47). Two different system sizes are shown, i.e., N =
1600 and N = 100 000, for a comparison.

and temperatures, no pronounced difference can be observed
between the small and large systems. This indicates even in
highly supercooled liquids the length scale required for the
shear-stress relaxation is still small and cannot be detected
by the small system size. For highly supercooled liquid
(T = 0.47), in the long time limit, the longest distance where
shear-stress waves can propagate to is about 8–10 σ , which
coincides with the result of 10 interatomic distance found
in normal liquids [55,57]. This length scale would be the
maximum distance required for shear relaxation in these
fragile liquids, and is almost temperature independent. As an
estimation, we found the systems with box length larger than
9 σ show almost the same saturated viscosity value (as vertical
dashed line shown in Fig. 2).

This temperature-independent behavior of the length scale
for the shear-stress reminds of the similar phenomenon
for the structure, e.g., the unapparent change of the pair
distribution function (or static structure factor) for liquids
upon supercooling or even vitrification [5,24]. In the process
of glass transition, although jamming of the systems in
dynamics makes the atomic movement more collective, the
configurational structure does not change significantly. As
the attenuation of the shear-stress autocorrelation function is
mainly determined by local static atomic structure, it exhibits
both temperature and system-size insensitive behavior, as
shown in Fig. 5.

We summarize the length scales extracted from finite-size
dependent hydrodynamic value (from Figs. 1 and 2) and the
spatial correlation functions (from Figs. 4 and 3) in Fig. 6.
As in Fig. 6(a), the critical box length required for diffusion
coefficient to reach the hydrodynamic value shows a diverging
tendency upon supercooling, similar to the length scale of
dynamic heterogeneity. The characteristic correlation length
from displacement field also exhibits the same tendency [see
Fig. 6(c)]. For viscosity, it is of an upper limit critical length
scale, which eventually becomes smaller than the one of
diffusivity at low temperature.

As the displacement field and the stress field defined
here are isotopic, the characteristic length is a directional
average of all the biased correlations, which actually is the
common situation of atomic movement in viscous liquid,
e.g., the form of stringlike movement (with the dimension
of approximately 1.5 [58]). The length scales measured via
displacement correlation function are much smaller than the
length of correlated atoms measured by isotopic effect [30], but
are comparable to the mean length of the mobile clusters [4] (up
to around 2 atomic diameters). As the finite-size effect always
detects the maximum length of any correlated movement, it
gives the upper limit of the correlation length, whereas the
spatial correlation functions give the lower limit.

A commonly used relation for self-diffusion coefficient and
viscosity in molecular and atomic liquids is the Stokes-Einstein
relation. The violation of this relation in supercooled liquids is
usually connected with collective movement due to dynamic
heterogeneity [17,29,59,60] or similarly the separation of fast
and slow particles [29,30]. In the present system, the onset
temperature for a significant break down of the SE relation is
at around T = 0.6, as shown in Fig. 6(b). This temperature,
actually, is also approximately the temperature where the
characteristic length for the diffusivity exceeds the upper limit
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FIG. 6. (a) The critical box length required to reach the hydro-
dynamic value for the diffusivity (from Fig. 1) and the viscosity
(from Fig. 2). The inset picture (b) is the Stokes-Einstein relation
for a small and large box-length systems. (c) The correlation lengths
calculated by exponential fitting of the spatial correlation function
for displacement (Fig. 3) and atomic shear-stress (Fig. 4) fields. The
green arrows mark the temperature point where the SER significantly
brakes down.

length for the viscosity. In supercooled liquids, due to the
sluggish dynamics, diffusion via collectively motion becomes
more important and could eventually overwhelm the role

played by configuration entropy. This competition is reflected
in the different length scales required for diffusion and
viscosity. Once the typical length scale from the displacement
exceeds that from the stress field, diffusion process cannot be
solely dominated by the configuration entropy any more. At
this time, the SE relation begins to break down.

In conclusion, we utilize the finite-size method, combined
with spatial correlation functions to investigate the underlying
length scales for diffusion and viscous processes. For the dif-
fusion a growing length scale is found with undercooling, con-
sistent with the length scale of the dynamic heterogeneity; For
shear viscosity the corresponding length scale saturates with
undercooling and exhibits an almost temperature-independent
behavior. The fluctuation of atomic-level shear stresses is
found to be constrained to about 8–10 atomic diameters. This
result is consistent with previous finite-size results for the
structural relaxation time [44] and the static length gained
by the structural frustration method [39,40]. We attribute the
length scale of the shear relaxation process to the manifestation
of the configurational entropy, while the one of the diffusion
process to the collectivity due to dynamic heterogeneity. The
competition between these two mechanisms can be seen in
the decoupling of the length scales from the displacement
and the shear-stress fields.
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