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Reanalysis of the electrode polarization in electrolytic cells limited by blocking electrodes
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We evaluate the effect of ions on the electric response of an insulting liquid by means of the total electric
polarization induced in a cell by an external field. The limiting surfaces are assumed blocking and identical and
the ions pointike nonpolarizable charged particles. The analysis is limited to the case where the selective ionic
adsorption is absent, in such a manner that in the absence of external electric field the sample is locally and
globally neutral. We obtain formulas for the effective dielectric constant renormalized by the presence of the
ions in the absence and presence of adsorption from the surfaces. Our results coincide with those obtained by
means of the electric impedance of the cell. From the coincidence of the results relevant to the effective dielectric
constant we infer that the ions in an insulating liquid do not have a conductive or dielectric nature. They are just

electric charges dissolved in an insulating liquid.
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I. INTRODUCTION

The influence of ions dissolved in an insulating liquid on
the electric response of an electrolytic cell limited by blocking
electrodes to an eternal electric field has been analyzed
theoretically long ago by Macdonald [1]. The model used
for the mathematical description was based on the equations
of continuity for the positive and negative ions, and on the
equation of Poisson for the electric potential across the cell,
relating the actual potential to the bulk density of ions. This
model is known as the Poisson-Nernst-Planck model (PNP).
It has been generalized to take into account the effect of real
electrodes on the response of the cell, and to other media in a
series of papers by Macdonald and co-workers [2]. In the PNP
model the liquid in which the ions are dissolved is considered
as a continuum homogeneous medium, characterized by a di-
electric constant (of the liquid free of ions) and by the diffusion
constants for the positive and negative ions. Their influence on
the electric response is related to variation of the ionic bulk
density distribution. These parameters are assumed frequency
independent in the range where the influence of the ions on the
electric response of the cell is important, and coinciding with
those in the steady state. Moreover, the ions are considered
pointlike and nonpolarizable. In this framework, assuming
that the external electric field is a simple harmonic function of
time of small amplitude, solving the linear partial differential
equations of the PNP model the electric impedance of the cell
can be evaluated. The PNP model developed by Macdonald
and co-workers [2] has been widely used for the dielectric
characterization of liquid containing ions. The limits of the
PNP model in the analysis of the experimental data have been
discussed in [3-7]. According to these authors the disagree-
ment between theoretical predictions of the PNP model and
the experimental data should be expected because the original
model has been developed for dilute electrolytes. Empirical
correction methods which yields ion experimental data in rea-
sonable agreement with the PNP model are proposed in [3,7].

Our aim is to evaluate the total electric polarization induced
by an external electric field in a sample, in the shape of
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a slab, of an insulating liquid containing ions. We assume
that the limiting surfaces are blocking and identical and the
selective ionic adsorption neglected, in such a manner that
in the absence of external electric field the sample is locally
and globally neutral. We show that the effective dielectric
constant of the sample determined via the electric polarization
coincides with that determined via the electric impedance of
the cell. Expressions for the effective dielectric constant in
the presence or absence of adsorption are derived. From these
results it follows that the recent model proposed by Sawada
[8] is questionable.

Our paper is organized as follows. In Sec. II a general
discussion on the electric polarization due to a distribution of
pointlike particles is reported. The simple case in which the
electrodes are not adsorbing is presented in Sec. III. In that sec-
tion we show that the effective dielectric constant determined
via the polarization of the cell, as for insulating media, and via
the electric impedance of the cell, as for conduction media,
coincide. The same type of calculation when the electrodes
are adsorbing is presented in Sec. IV. Also in this case we
show that the effective dielectric constant determined via
polarization or via impedance coincide. Section V is devoted
to the conclusions.

II. POLARIZATION AND EFFECTIVE DIELECTRIC
CONSTANT

Let us consider a body, of volume 7 limited by a surface
X, containing a charge distribution described, in the contin-
uum approximation, by the charge density p(r,t). The time
dependence of the charge distribution p(r,#) can be due to the
motion of the charges inside the body. We assume that the
body is globally neutral, and hence

/p(r,t)dr =0. (D

T

In this framework the dipole moment is independent of the
origin of the reference frame used for the description, and
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given by [9]

p(1) = / r p(r,1)dr. ®)

In the case where the sample has the shape of a slab of thickness
d and surface area S, we use a Cartesian reference frame having
the z axis perpendicular to the limiting surfaces, at z = d/2,
and p(r,t) = p(z,t) only. In this situation the dipole moment
of the body is parallel to the z axis p(¢) = p(t) u, where u, is
the unit vector parallel to the z axis, and p(#) is given by

dJ2
pt) = Sf z p(z,t)dz. 3)
—d)2

In the case where the charge is partially distributed in the bulk,
with a bulk density p(z,#) and partially on the surfaces, with
a surface density o (¢), the charge density is given by

oz, t) = pp(z,t) +0(t)8(z —d/2) —o(t)8(z+d/2), (4)

where § is Dirac’s function. For the charge distribution given
by (4) the dipole moment is

2
p(t) = S{/ z pp(z,t)dz 4+ o (1) d}. %)
—d/2
The polarization, P(¢), is defined as the bulk density of the
dipole moment, P(t) = dp/dr, and its spatial average value is
(P(z)) = p(¢)/t. The average polarization of our body in the
shape of a slab is then along the z axis of amplitude,

1 dj2
(P(@)) = —/ z pp(z,t)dz + o (2). (6)
dJ_qn
If the charge distributions described by p,(z,¢) and o (¢) are
due to the application of an external difference of potential
AV (t) to the electrodes in such a manner that the electrodes
are at V(£d/2) = £V/2 it is possible to define an effective
dielectric constant of the body by means of the macroscopic
relation

(P(1)) = [€etr — €(0)]Eex (1), (N

where E(#) = —[V(¢)/d]u, is the external field applied to
the sample, and £(0) is the dielectric constant of the medium
in the absence of the external field. For the case under
investigation where the sample is in the shape of a slab, we get

d [1 4?2
ettt = €(0) VO { 7 /—d/z z pp(2)dz + a}. (8)
The analysis presented above is valid in the quasistatic limit
when the continuum description of the electric charge works
well. This means that the electric charges are pointlike and are
distributed in a continuous manner in the insulating medium
of dielectric constant £(0). In this framework Eq. (8) gives
the effective dielectric constant of the medium containing the
electric charges. We note that in the analysis the charges are
supposed pointlike, and nonpolarizable. Hence the presence of
the charges does not modify the value of £(0) [10,11]. The case
where the ions are polarizable particles, discussed in [12], is
more complicated. In this case the ions also give a contribution
to the dielectric spectrum. However in our analysis, as in that
reported in [8], the small contribution to the effective dielectric
constant related to the polarizability of the ions is not taken
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into account. To generalize our analysis to this more realistic
situation, it is necessary to evaluate the contribution to the
effective dielectric constant related to the ions redistribution,
not only related to their electric charge, but also to their
polarizability. This can be done considering the solution as
a mixture, along the line discussed in [9] (p. 65). The work is
in progress.

We can now apply the formalism presented above, well
known in the static cases, to the situation in which the charge
is due to ions dispersed in an insulating liquid. We consider
a liquid containing, in thermodynamical equilibrium, a bulk
density of ions Ny, very small with respect to the bulk density
of the liquid N. In this case the assumption of full dissociation
works well, and the generation-recombination phenomenon
can be neglected. The ions are assumed identical in all aspects,
except for the sign of the electrical charge, indicated by ¢.
In particular they have the same diffusion coefficients D
and electric mobilities . Also the electrodes are assumed
identical with respect to the ions. This implies that there is not
selective adsorption from the electrodes. In the presence of an
external difference of potential V(t) = Vyexp(iwt), the ions
move toward the electrode of opposite sign. We indicate by
n,(z,t) and n,,(z,t) the bulk density of positive and negative
ions in the sample in the presence of the external field, and by
sp(d/2,1), s,u(d/2,t) and s,(—d/2,t), s,,(—d /2,t) the surface
density of positive and negative ions at z = +d /2, respectively.
For the symmetry of the problem n,(z,t) = —n,(—z,t), as
well as s,(d/2,t) = —su(—d/2,t) = s(t) and s,(d/2,t) =
—Ssp(—=d/2,t) = —s(t).

III. NO ADSORPTION FROM THE ELECTRODES

Let us consider first that case where the electrodes are not
adsorbing, and hence s(¢) = 0. Indicating by ¢, the dielectric
constant of the liquid free of ions, we have £(0) = ¢,. In this
framework, as discussed elsewhere [13], for small V,,

n@.t) = —nu(2.1) = po sinh(Bz) exp(ion),  (9)
where
B =(1/0)V1+i(w/wp), (10)
and
epB? Vo
PO="74g Sinh(Bd/2) + i (0/wp) (Bd/2) cosh(Bd/2)

(1)

In (10) A is the length of Debye defined by A=

VerKpT/(2Nog?), KpT is the thermal energy, and wp =
D /A? the circular frequency of Debye. The bulk charge density

1S

p(z.1) = qlny(z,t) = nu(z,0)] = 2pg sinh(Bz) &', (12)

and the total dipole moment of the cell, defined by (3) and
taking into account (11), is then

Bd/2 — tanh(Bd /2)

wnh(Bd2) + i@jop pdn & -

p(t) = —&, VoS
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It follows that the spatial average polarization (P(z,t)) =
p(t)/(8d), is found to be

Vo 1
(P(z,1)) = —¢&p 7 m
Bd/2 — tan(Bd/2) it

% : e (14)
(1/A2B) tanh(Bd/2) + i(wd /2D)

Since in the present case

Vo .
(P(2.1)) = (6ett — ) Eext(t) = —(£cfr — m;‘) e, (15)

we derive for .4 the final expression
Bd /2 — tanh(Bd/2)
tanh(Bd/2) + i(w/wp)Bd /2

"

From Eq. (16) the real ¢ and imaginary ¢ of the effective
dielectric constant can be easily obtained. A numerical analysis
of this problem, along the line discussed above, has been
reported by Sawada a few years ago [14].

In [13] by means of the PNP model has been evaluated,
with the same simplifying hypotheses of one group of ions
with identical ions in a sample limited by blocking electrode,
the electric impedance of a cell Z in the shape of a slab. Its
expression is

Seff=8h{1 + } (16)

z—_i 2 L anh(gd/2) +i &4 17)

=— ———— { —— tan i—t.
wepB?S | A28 2D

Using the concept of complex impedance, C = €S/d, where

€ is the effective complex dielectric constant determined by

means of the impedance, assuming the ions as moving in a

conductive medium, we have Z = —i /(wC), from which
i d (18)
€= —— —.
wZ S
Substituting (17) into (18) we get for € the expression
1+
€ =g, Bd)2 +i(w/wp) (19)

tanh(Bd/2) + (w/wp)(Bd/2)’

that coincides with (16), i.e., € = et [7].

The conclusion of this simple calculation is that the ionic
charges have neither a dielectric nor conductive characteristics.
They are just electric charges, whose motion and influence on
the electric potential is described by the equation of continuity
and the equation of Poisson, relating the bulk density of ions
to the actual electric potential. Their influence on the electric
response of a cell to an external stimulus can be evaluated by
means of the average polarization, as for dielectric media, or
by means of the electric impedance, as for conductive media.
The results coincide for all frequencies.

We stress that the external charges sent by the power supply
on the electrodes have not to be taken into account in the
calculation of the polarization induced by the field on the
medium. Of course if we are interested in the total dipole
moment of the cell with respect to points outside of the cell,
the dipole moment expression iS pyi(t) = p(t) + oexi(t) Sd,
where o (?) is the external charge sent by the power supply
to fix the difference of potential between the electrodes. But
this total dipole moment has not any interest in the analysis of
the response of the cell to an external stimulus. If this quantity
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is considered important, it can be evaluated in the following
manner.

From Poisson’s equation V - D = p, for our one dimen-
sional problem, we obtain dE /dz = p/¢,, and hence

E(z,t) = E(—d/2,t) + l /Z o(x,t)dx. (20)
&b J—a)2

In the case under consideration, where V(%d/2,t) =
+(Vy/2) exp(iwt), simple considerations show that
E(—d/2,t) = —0ex(t)/ep. Consequently from (20) we
obtain

oexi(t) = —ep E(z,1) + / p(x,t)dx. 21
—d)2

Integrating over the thickness of the sample we easily get

1 dj2 z
Oext = —{81; Vo +/ (/ ,o(x,t)dx)dz}. (22)
d —d/2 \J-dn2

Taking into account (9) and (11) we finally obtain

N {1+ Bd/2 — tanh(Bd /2) } .
o) = & NV Y LR B D) T wjappd 2] ¢
(23)

d

Note that in the framework of the present calculus, where the
ionic charges remain in the bulk, the total dipole moment
of the cell, due to the internal and external charges, is
independent of the bulk density of ions, and it is given by
Pot(t) = e, VoS exp(iwt), as shown in a different manner on
a particular case in [10].

IV. ADSORPTION FROM THE ELECTRODES

Let us consider now the situation in which the ionic charges
are adsorbed by the electrodes. In the framework of previous
analysis (sample in the shape of slab, limited by identical
electrodes, one group of positive and negative ions, identical
in all aspects, except for the sign of the electric charge) in
Langmuir’s approximation the adsorption of positive ions at
z = d /2 is described by

dj =kny(d/2,t) — ls ) (24)
a7 ’ T

where n,(d/2,t) is the bulk density of positive ions just in
front of the electrode, k and 7 are the adsorption coefficient
and desorption time, respectively [15]. For the symmetry of
the problem n,(z,t) = —n,,(—z,t), as well as s,(d/2,t) =
—Su(—d/2,t) = s()and 5,,(d/2,t) = —s,(—d/2,t) = —s(1).
The net surface charge density is o(d/2) = 2gs(t). As before
we assume that the sample is submitted to a periodic external
voltage of the type V(t) = Vj exp(iwt). In this case in the
steady state Eq. (9) is still valid, and

s(t) = po sinh(Bd/2) exp(iot),  (25)

1+iwt

where po has to be determined by means of the boundary
conditions related to the surface current density and to the
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electric potential, as discussed in [15]. A simple calculation gives

_8b,32 Vo

44 [1+ @/awp)H(@)] sinh(Bd)2) + i (@/wp) (Bd/2) cosh(Bd/2)’ (26)

bo =

where

ktd 1 +iw/wp
Hw) = — —7 27
@) =92 Ttior @7
is a complex number frequency dependent taking into account the adsorption phenomenon. Note that in the absence of adsorption
(« = 0 and T = 0), H vanishes identically, and Eq. (26) coincides with Eq. (11), as expected.

In this case, repeating the calculation of the previous section, starting from Eq. (8), deduced for insulating media, we get for

the effective dielectric constant of the sample the expression

Bd/2 —[1 — H(w)] tanh(Bd /2)

Eeff =8b{1 +

[1+i(w/wp)H(w)]tanh(Bd/2) + i(w/wp)Bd /2

}, (28)

that generalizes Eq. (16) to take into account the adsorption phenomenon, in Langmuir’s approximation. From this expression
the frequency dependencies of the effective real e, and imaginary e, parts of e.¢ can be derived.
The electric impedance of the cell in the presence of adsorption has been obtained in [15] and can be written as

where

KT anh(Bd)2), (30)
+ 1wt

K(w) = T
is another complex number frequency dependent taking
into account the adsorption phenomenon. In the absence of
adsorption (x = 0 and T = 0), K = 0 and Eq. (30) coincides
with Eq. (17), as expected. Substituting (30) into (18) we obtain
for the effective complex dielectric constant, determined via
the impedance, the expression

[1+i(w/wp)][1+ K(w)]
tanh(B8d/2) + i(w/wp)[1 + K(w)]’
that coincides, identically, with (28).

€ =e(Bd/2) €2y

V. CONCLUSIONS

We have analyzed the influence of the ions on the effective
dielectric constant of a dielectric medium. The analysis has
been limited to the case in which the sample is in the shape
of a slab, and only one group of positive and negative ions is
present in the liquid. We assumed furthermore that positive and

. 2
2= S+ K@)l {Azﬂ

tanh(B8d/2) +i [1 + /C(a))]%}, (29)

(

negative ions are identical in all aspects, except of the sign of
the electric charge. The effective complex dielectric constant
has been determined via the electric polarization of the cell, as
in insulating media, taking into account the ionic distribution.
We have also determined the effective dielectric constant via
the electric impedance of the cell, as in conducting material,
taking into account the effective total electric current across the
cell, due to the conduction and to the displacement. We have
shown that the dielectric constants determined by means of the
two methods are identical. From this result it follows that the
ions in an insulating liquid do not have conductive or dielectric
nature, as suggested recently [8]. They are pointlike particles,
whose description is based on the continuity equation, stating
the conservation of particles, and on the equation of Poisson
relating the effective electric potential across the cell with the
charge density.
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