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Yielding of glass under shear: A directed percolation transition precedes shear-band formation
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Under external mechanical loading, glassy materials, ranging from soft matter systems to metallic alloys, often
respond via formation of inhomogeneous flow patterns, during yielding. These inhomogeneities can be precursors
to catastrophic failure, implying that a better understanding of their underlying mechanisms could lead to the
design of smarter materials. Here, extensive molecular dynamics simulations are used to reveal the emergence of
heterogeneous dynamics in a binary Lennard-Jones glass, subjected to a constant strain rate. At a critical strain,
this system exhibits for all considered strain rates a transition towards the formation of a percolating cluster of
mobile regions. We give evidence that this transition belongs to the universality class of directed percolation.
Only at low shear rates, the percolating cluster subsequently evolves into a transient (but long-lived) shear band
with a diffusive growth of its width. Finally, the steady state with a homogeneous flow pattern is reached. In the
steady state, percolation transitions also do occur constantly, albeit over smaller strain intervals, to maintain the
stationary plastic flow in the system.
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I. INTRODUCTION

An external shear field leads in general to a rejuvenation
of the glass state, transforming the amorphous solid into a
flowing fluid [1,2]. Under a constant strain rate, the transition
to plastic flow can be located via the dependence of the shear
stress on the applied strain. It is marked by a maximum in
the stress-strain relation, the stress overshoot, which for a
simple planar Couette flow geometry occurs typically at a
strain of the order of 0.1 [2–5]. Beyond this maximum, the
system evolves into a steady-state regime where it displays a
homogeneous flow pattern, e.g., in the case of planar Couette
flow, manifested as a linear velocity profile. However, the
strain necessary to reach this steady-state regime depends on
many factors such as the history of the initial undeformed
glass state and the applied strain rate [6,7].

In the transient regime before the steady state is reached,
the emergence of spatially inhomogeneous flow patterns is
very common. These are initiated by localized plastic events
that appear prior to the occurrence of the stress overshoot
[2,8]. Subsequently, an inhomogeneous response in the form
of shear bands [9–14], with co-existing regions of contrasting
mobilities spanning large scales [9], is often observed. Despite
the fact that dynamical heterogeneities, in various forms, be it
during yielding or during steady flow, have been detected in
experiments [15–18], numerical simulations [19–28], and phe-
nomenological models [29–32], the microscopic processes that
eventually lead to the formation of such complex structures,
whether transient or persistent, still remain ill understood.

The question about the origin of the inhomogeneous
response is intimately related to the question of how flow
is initiated in an amorphous solid under applied shear. Recent
studies suggest that the response of the glass to the applied
strain is governed by local heterogeneities that are either al-
ready present in the undeformed solid or form during the initial
application of the shear field [1,2,4]. These heterogeneities are
associated with “hot spots” of higher mobility that grow while
the strain of the system increases [33,34].

In this work, we focus both on the onset of plastic flow
and the formation of flow heterogeneities in thermal glasses,

which are often characterized as simple yield stress fluids [35].
In such a system, we first reveal the nature of the yielding
transition under applied shear. Subsequently, we demonstrate
how shear bands emerge and evolve, once the glass has yielded.
Note that our analysis is probably only generic to simple
thermal glasses (e.g., in the context of soft matter systems,
colloids, emulsions, etc.) and not to other solids such as gels
[36–39] or network-forming glasses such as silica [40,41].

In the case of thermal systems yielding under a finite
applied shear rate, the interplay of thermal noise and external
mechanical load leads to local structural rearrangements. As
a consequence, the yielding process is more complex than
for athermal systems, and thus different from the quasistatic
limit where many of the investigations have been focused
so far. In our studies of a sheared thermal model glass
under constant strain rate, we identify the hot spots using
local mean-squared displacements (MSDs) and explore their
spatiotemporal evolution using MSD maps [20,34]. The hot
spots develop into clusters of mobile regions, associated with
a correlation length that grows with increasing strain and
that eventually diverges at a critical strain where the mobile
regions exhibit a percolation transition. This transition marks
the transformation of the system from a nonflowing state to
plastic flow. We give evidence that it belongs to the universality
class of directed percolation (DP), as expected for systems
under external drives. Different from normal percolation, DP is
associated with an anisotropic growth of the correlation length
towards the critical point. As put forward by the DP conjecture
[42,43], DP universality is believed to be very robust, applying
to a broad class of nonequilibrium phase transitions [44].
However, up to now there are only a few examples where
DP transitions have been found in experimental systems (see,
e.g., Refs. [45,46]). Here, we demonstrate that a DP transition
marks the onset of flow in a sheared glass and is the basis for
the possible formation and growth of shear bands.

We use large-scale molecular dynamics (MD) simulations
of a binary Lennard-Jones (LJ) mixture [47] to study the
mechanical response of a quiescent amorphous solid when an
external shear rate is imposed on it. We track the locations of
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regions of large mobilities and thereby we reveal the existence
of the DP transition driven in the direction of applied shear.
While the DP transition is seen for all shear rates, visible
shear banding only emerges for small shear rates near the
yielding threshold. We demonstrate that the glass eventually
fluidizes by the long-time diffusive invasion of the shear band
into the rest of the system, with the diffusion time scales
dependent on the imposed shear rates. Thus, we provide a
quantitative description of how initial local mobilities build up
to the eventual macroscopic flow of the material. In the steady
state, percolation transitions constantly occur in small strain
intervals, �γc ≈ 0.02. These transitions keep the system in a
flowing state.

II. METHODS

Our focus is on the understanding of the yielding response
of a quiescent thermal glass. We consider a well-studied glass
forming system: a binary 80:20 mixture of LJ particles (say A
and B). The interaction between a pair of particles, separated
by a distance r , is defined as

ULJ
αβ(r) = φαβ(r) − φαβ(Rc) − (r − Rc)

dφαβ

dr

∣∣∣∣
r=Rc

,

φαβ(r) = 4εαβ[(σαβ/r)12 − (σαβ/r)6] , (1)

for r < Rc, with α,β = A, B. The parameters setting the
energy scale are defined as εAA = 1.0, εAB = 1.5εAA, εBB =
0.5εAA. The parameters with the unit of a length are given
as σAA = 1.0, σAB = 0.8σAA, σBB = 0.88σAA and the range
of the interactions is set to Rc = 2.5σAA. Thus, energies and
lengths are expressed in units of εAA and σAA, respectively. The
masses of both types of particles are equal, i.e., mA = mB = m.

The unit of time is
√

mσ 2
AA/εAA. In the following, all the

quantities are expressed in the latter units. More details on the
model and the interaction parameters can be found in Ref. [47].
We note, here, that a wide variety of dense soft glasses, like
colloids, emulsions, etc., can be modeled by using such LJ
mixtures.

Using the package LAMMPS (“Large-scale Atomic/
Molecular Massively Parallel Simulator”) [48], we perform
MD simulation at constant particle number, N , constant
volume, V , and constant temperature, T (i.e., in the NV T

ensemble). Different geometries are considered, placing the
particles in boxes of dimensions 10 × 10 × 40, 15 × 15 × 60,
20 × 20 × 80, 25 × 25 × 100, 30 × 30 × 120, 40 × 40 × 40,
and 50 × 50 × 50. The temperature is kept constant via a
dissipative particle dynamics (DPD) thermostat [49].

Our method for the preparation of glass is as follows:
At a density ρ = 1.2, we first equilibrate the system at the
temperature T = 0.45, which is in the supercooled regime.
Then, we quench it to a temperature T = 0.2 below the
mode coupling transition temperature [47]. We wait until
tw = 104 and apply shear on the xz plane in the direction
of x with different constant strain rates γ̇ = 10−2,10−3,3 ×
10−4,10−4,3 × 10−5, and 10−5. To simulate a sheared bulk
glass, we use Lees-Edwards periodic boundary conditions
[50].

We also do simulations for a denser glass (ρ = 1.3), where
we first equilibrate a supercooled system at the temperature
T = 0.67. Then, it is quenched to T = 0.10, far below the
mode coupling transition temperature, and aged for tw = 104.
We choose a long aging time, since we are interested in probing
the formation of dynamical heterogeneities which are expected
to be observed for large tw.

III. RESULTS

A. How to identify hot spots

When the shear is applied to the quiescent glass at time t =
0, the material deforms exhibiting the typical stress (σ ) versus
strain (γ̇ t) response [shown in Fig. 1(a) for different imposed
shear rates γ̇ ], with the height of the overshoot depending
on γ̇ [6]. The measured steady-state stress as a function of
the imposed shear rate is shown in the inset of Fig. 1(a); it
has the typical Herschel-Bulkley form [6]. The monotonic
shape of the flow curve implies that there are no mechanical
instabilities. Thus, in this system, there are no permanent flow
heterogeneities, which are known to exist when steady-state
flow curves are nonmonotonic [13,14,28,31]. We note that
monotonic flow curves such as the one shown in Fig. 1(a) are
typical to most dense soft glasses [17,51].

During the onset of flow from the quiescent state, the
corresponding single particle dynamics can be quantified by
measuring the nonaffine MSD, �rz

2, in the direction transverse
to the applied shear; the data are shown in Fig. 1(b). The
particles undergo ballistic motion at early times and are then
caged, before the occurrence of a superdiffusive regime, prior
to diffusion. The onset of superdiffusion occurs around the
stress overshoot in the stress-strain curve, when the built-up
stress is released via the particles breaking their local cages to
subsequently diffuse [3].

In experiments, flow heterogeneities are often diagnosed
via the spatial profiles of local velocities [15,17]. Similarly,
we measure the spatial profiles of the local flow velocities
(averaged over strain intervals of 0.5%), vx(z), for an imposed
shear rate of 10−4, at different times after the imposition
of shear [marked on the corresponding stress-strain curve in
Fig. 1(a)]. The spatial profiles are shown in Fig. 1(c) for one
of the initial states in our ensemble. In the elastic regime, at
γ̇ t = 0.02, the velocity profile is linear, but starts deviating
from this shape as the stress overshoot is approached at
γ̇ t = 0.06. This deviation becomes stronger in the transient
regime (at γ̇ t = 0.5, shown in blue diamonds). Interestingly,
the velocity profile regains its linear shape as plastic flow sets
in (at γ̇ t = 1.0, shown in orange stars). The observation of
increased heterogeneity, after the stress overshoot, is consistent
with experimental observations [15].

However, local velocity profiles only capture the short-
time heterogeneities in dynamics. In order to obtain a more
cumulative picture from t = 0, we look at the spatially resolved
maps of �rz

2(t) [20,52]. To construct the MSD maps, we
divide the simulation box into small cubic sub-boxes having
linear size of σAA. At any time t , we calculate the average MSD
of the particles populating each sub-box at t = 0 (unsheared
glassy state). In Fig. 1(d), we show the time evolution of such
a map, for an initial state under the imposed shear rate of
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FIG. 1. (a) Stress-strain response of the glass at temperature
T = 0.2 for an age of tw = 104 and sheared with a constant strain rate.
Data shown for different shear rates: γ̇ = 10−3,3 × 10−4, and 10−4.
The inset shows the flow curve. Red solid line shows the fitting with
Herschel-Bulkley form σ ss

xz(γ̇ ) = 0.3974 + 2.2963γ̇ 0.43. (b) Variation
of z component of the MSD of large particles with strain. Brown
dotted line marks μth. The inset is a zoom into the superdiffusive
regime for the three different shear rates, shown in linear scale.
(c) Velocity profiles, for γ̇ = 10−4, at five different strain values
marked in (a). Green solid line represents the expected linear profile.
(d) MSD maps at γ̇ t = 0.06,0.5 for γ̇ = 10−4. (e) Maps of local
strain corresponding to MSD maps shown in (d). (f) Maps of local
mobility corresponding to (d). Mobile regions are marked in blue
while immobile regions are marked in green.

γ̇ = 10−4. At a strain of γ̇ t = 0.06, the local dynamics
is nearly homogeneous on this scale. However, at γ̇ t =
0.5, spatially heterogeneous dynamics is observed, with the
more mobile particles localized in a shear-band-like structure
spanning the xy plane.

We can also construct similar maps of local strain. Again,
we divide the simulation box into small cubic sub-boxes,
as in the case of MSD maps. The numerical derivative of
the z component of displacement with respect to x, i.e.,

εzx = ∂�rz/∂x, is calculated. This derivative is plotted for
each sub-box to construct the map. These maps exhibit a
localization behavior similar to the MSD maps; see Fig. 1(e).
Thus, large local MSDs are also regions of large strains.
Henceforth, we use �rz

2 to analyze local dynamical properties.

B. Yielding: A percolation transition

In order to quantify and characterize the spatiotemporal
evolution of the mobile regions, we define a region to be mobile
or not, by setting a threshold μth = 0.02 on the local �rz

2. As
marked by the dashed line in Fig. 1(c), such a choice of μth is
larger than the plateau value in the MSD and thus corresponds
to motions beyond cage breaking. We then define the local
mobility ψ as

ψ =
{

1 if μ � μth

0 otherwise
, (2)

where μ is the average MSD of particles in a sub-box. Follow-
ing this convention, we digitize the whole system into mobile
and immobile regions. The mobility maps corresponding to
Fig. 1(d) are shown in Fig. 1(f). We also note that there is a
slight dependence of results on the choice of threshold but the
qualitative behavior does not change.

We now demonstrate that a percolation transition occurs
with increasing strain, involving these mobile regions. As the
system evolves under the applied shear rate, we monitor the
fraction of mobile cells, p, at any given instant. Figure 1(d)
suggests that such mobile regions do form clusters. Thus,
we compute what fraction of these mobile regions, pspan, is
part of a cluster that spans the system, recalling that such
an observable is the order parameter for determining the
occurrence of a percolation transition. In Fig. 2(a), we plot
pspan as a function of p, which shows that beyond a critical
fraction pc all the mobile cells are part of such a spanning
cluster. This indicates the occurrence of a percolation transition
of these mobile cells. Furthermore, we observe that the
variation of pc is nearly independent of the imposed shear rate,
as seen in Fig. 2(a) for a wide range of γ̇ . Thus, the percolation
process is generic to the system’s response under shear. In
Fig. 2(b), we visualize the spanning clusters corresponding
to the same initial state, for three different shear rates, in the
vicinity of pc corresponding to each γ̇ . Here, we note that the
near localization of the spanning cluster in the xy plane is a
finite-size effect, due to the large aspect ratio of the simulation
box. This is clarified when we visualize the spanning cluster in
a cubic geometry, as shown in Fig. 2(c) for γ̇ = 10−4 in a 503

system, which is indeed a three-dimensional fractal object.
Next, for different imposed γ̇ , if we monitor the numerical

growth of mobile cells with increasing strain, a distinct
variation is revealed; see Fig. 2(d). For example, at a strain of
γ̇ t = 0.5 (marked by orange dotted line), we see that around
50% of the sites are mobile at low strain rates while the
same is close to 75% at high strain rates. This implies that
subsequent to the percolation transition (at the critical strain
corresponding to pc, which is around 0.07 for γ̇ = 10−4)
the spatial heterogeneity of activity is more long lived for
smaller strain rates, as is shown in Fig. 2(c), via cuts in the xz

plane of the local MSD maps corresponding to the evolving
trajectories of the states shown in Fig. 2(b). While for the
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FIG. 2. Emergence of percolation transition. (a) Variation of pspan with p, in the box of dimension 20 × 20 × 80, for strain rates γ̇ =
10−2,10−3,3 × 10−4,10−4,3 × 10−5, and 10−5. (b) Percolating cluster at the critical point for γ̇ = 10−2,10−3, and 10−4 (left to right) in a
20 × 20 × 80 system. (c) Percolating cluster at the critical point for γ̇ = 10−4 in a 503 system. (d) Variation of p with strain for all strain rates
shown in (a). Orange dotted line corresponds to the γ̇ t = 0.5. (e) 2D slice of MSD map for trajectories shown in (b), at γ̇ t = 0.5.

largest shear rate mobile regions proliferate in the system, for
the smaller shear rate they are more localized and take the
form of a well-structured shear band. Thus, one can infer that
the local dynamics, post-percolation, changes with decreasing
shear rate.

To clarify the nature of the percolation transition, we
determine the critical point for the percolation process, pc,
using finite-size scaling. In Fig. 3(a), we show how pspan

varies with p for five different system sizes—we observe
that the onset of percolation shifts to larger values of p with

(a) (b) (c)

FIG. 3. Occurrence of directed percolation (DP) transition. (a) Variation of pspan with p for five different system sizes 10 × 10 × 40
(black circles), 20 × 20 × 80 (magenta squares), 30 × 30 × 120 (red stars), 40 × 40 × 40 (green diamonds), 50 × 50 × 50 (blue triangles)
for γ̇ = 10−4. (b) Finite-size scaling of critical points for the systems sizes shown in (a); the red solid line shows the fit according to the
scaling law pc(Lx) = 0.3034 − 2.412L−1/1.106

x corresponding to DP. Green dash-dotted line shows the same scaling function with parameters
corresponding to standard percolation: critical point pc(∞) = 3.116 and ν = 0.8765. The blue dotted line shows the asymptotic pc(∞) for DP
which is 0.3034. (c) Cluster size distribution around pc for the system sizes shown in (a); data show a power-law decay with exponent −2.39
which is consistent with the prediction for DP.
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FIG. 4. (a) 2D projections, in xz plane, of MSD maps for 20 × 20 × 80 showing the evolution of shear band with time, for imposed
γ̇ = 10−4, at strains of γ̇ t = 0.2,0.5,1.0,3.0. (b) Variation of width of the band ξb, with γ̇ = 10−3,10−4,3 × 10−5. Also shown, using solid
green squares, is the growth of ξb in a 503 system, for γ̇ = 10−4. The zone between the solid red lines marks the regime of t1/2 growth. Inset
shows the dependence of time scale for fluidization, τf (defined in the text), with changing γ̇ ; the red line is a fit with γ̇ −1.28. (c) 2D projection
of MSD map for a 503 system at γ̇ t = 0.5 sheared with γ̇ = 10−4. (d) Corresponding evolution of spatial profile of mobility, �2(z), with strain,
in the 503 system.

increasing system size. In Fig. 3(b), we show that the threshold
obtained for different system sizes can be well described
by the finite-size scaling function pc(Lx) = pc(∞) + bL

−1/ν‖
x

[53], using pc(∞) = 0.3034 and ν‖ = 1.106, which are values
corresponding to a DP transition [54], with Lx being the length
of the box in the direction of the applied shear. To compare,
the corresponding numbers for standard percolation are pc(∞)
(= 0.3116) and ν (= 0.8765) [55]; the finite-size scaling
function using these parameters does not at all describe our
data [see Fig. 3(b), green line]. Furthermore, we compute the
size distribution of clusters of mobile cells in the vicinity of the
percolation transition [Fig. 3(c)]. As expected, the distribution
has a power-law shape, with the corresponding DP exponent
of −2.39 well characterizing the distribution [55,56]. Thus,

the percolation of the active regions, in this regime of flow, is
a directed process, driven in the direction of the external shear.

C. Post-percolation: Formation and growth of shear bands

Thus far, we have discussed the existence of an underlying
percolation process of the mobile regions, which occurs for
the entire range of γ̇ that we have studied. Now, we will focus
on how the dynamics proceeds once the percolating cluster
has formed. In order to quantify that, we construct MSD maps
(now with a threshold μth = 0.1). In Fig. 4(a), we show the
time evolution of the local mobility, via two-dimensional (2D)
projection of such maps, for γ̇ = 10−4. We observe that the z

width of the shear band increases with time and eventually the
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FIG. 5. Evolution of flow patterns in different samples. The upper and middle panel show data for 503 system at density 1.2 and temperature
T = 0.2. Lower panel shows the similar data for 533 system at density 1.3 and temperature T = 0.1. All the three samples are sheared with
constant strain rate γ̇ = 10−4. (a), (e), and (i) show MSD map around percolation transition, (b), (f), and (j) show percolating cluster near the
transition point. (c), (g), and (k) show MSD map at large strain while (d), (h), and (l) show strain map at the same strain.

entire system becomes mobilized. To quantitatively identify a
shear band, we divide the simulation box into xy layers with
a thickness of one particle diameter and calculate μ, which is
the z component of MSD, for each layer. We assign to each
layer a value ψ = 1 or 0 depending on whether μ is larger or
smaller than μth. To get the size of the shear band, we count
the number of adjoining layers for which ψ = 1. By marking
the interfaces of this band, we measure how the bandwidth, ξb,
evolves with time. For different imposed shear rates, this time
evolution is shown in Fig. 4(b). We see that ξb initially grows
quickly and then eventually it reaches a regime where the
data can be fitted with ξb ∼ t1/2, implying that the propagating
interface of the shear band has a diffusive motion. The diffusion
constant is dependent on the imposed shear rate. The smaller
the shear rate γ̇ , the slower is the diffusion, which leads to more

long-lived heterogeneities, as discussed earlier. For the largest
shear rate shown, γ̇ = 10−3, the diffusive regime is very short
lived as the band quickly spans the entire system. For even
larger shear rates, beyond percolation, mobile regions quickly
appear everywhere and fluidize the whole system, and, as a
consequence, a shear band is not clearly discernible. Further,
from the data for the growth of ξb, we extract the characteristic
time scale for the system to fluidize, τf , viz., ξb(τf ) = 40σAA,
for different imposed shear rates; see inset in Fig. 4(b). We see
that τf ∼ γ̇ −1.28; such a diverging time scale for fluidization,
in the vicinity of the yield stress, is consistent with earlier
measurements in simple yield stress fluids [15,20,57].

Here, we emphasise that the occurrence of a shear band
is not a finite-size effect. Similar spatial localization of
dynamics is also observed in cubic systems, as depicted
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FIG. 6. Percolation transition in the steady-state regime for the 20 × 20 × 80 system. (a) shows evolution of MSD with strain interval �γc,
for strain origins γ̇ t0 = 0.0,6.0,7.0,8.0, and 9.0, after shear is imposed. (b) Layerwise MSD. Simulation box is divided into eight layers and
average MSD for each layer is plotted for a strain origin of γ̇ t0 = 9.0. Inset shows the same layerwise MSD for time origin taken at the start of
the shear, i.e., γ̇ t0 = 0.0. (c) Percolation transition with respect to the time origins mentioned in (a). (d) Variation of p with �γc.

in Fig. 4(c), using a 2D projection of the MSD map for
the system size of 503. However, in this case, there are
increased fluctuations at the band interface compared to the
elongated geometry, wherein fluctuations are suppressed due
to finite-size effects. Nevertheless, for such a cubic system,
we are able to compute the spatial profiles of locally averaged
MSDs, �2(z). In Fig. 4(d), we show how the spatial profiles
evolve with increasing strain. A large localized fluctuation in
�2(z) emerges beyond the strain threshold corresponding to
the percolation transition. The width of this region of high
mobility increases with time, similar to the discussion above.
In fact, the measured ξb in the cubic system, for an applied
γ̇ = 10−4, has a temporal growth quite similar to what is
observed in the elongated geometry; see solid green squares in
Fig. 4(b). This indicates that the dynamical properties of the
invading front of mobility, that eventually fluidizes the system,
are not influenced by finite-size effects.

Further, we also note that the nature and extent of dynamical
heterogeneities can differ, once the system starts evolving after
the percolation transition has occurred. This is explored in
Fig. 5.

We consider the case of two independent trajectories for
the 503 system, evolving under applied γ̇ = 10−4. In each
case, the growth of mobile regions exhibits identical features
leading to the percolation transition at strain values prior to
the occurrence of the maximum in the stress-strain relation.
In Figs. 5(b) and 5(f), we show the corresponding spanning
clusters at the strain in the vicinity of pc. Subsequently, the
spatial organizations of the dynamical heterogeneities differ,
as is seen in Figs. 5(c) and 5(g), for the respective cases,
when the global strain has reached 0.5. In one case, we have
shear bands parallel to the direction of flow [Fig. 5(c)], as
discussed above, while in the other case the more mobile cells
form structures perpendicular to the flow direction [Fig. 5(g)].
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The latter response is characterized by a rapid avalanchelike
spreading of mobility, resulting in extensive plastic activity
as can be seen in the corresponding strain map [Fig. 5(h)].
This is in contrast to the localization of strain correspond-
ing to shear bands forming parallel to the flow direction;
see Fig. 5(d).

We also observe that thermal fluctuations play a significant
role in determining the nature of dynamical heterogeneities,
as expected. To show that, we compare the response under
an applied shear of γ̇ = 10−4, for the binary LJ mixture at
two different state points: ρ = 1.2, T = 0.20 (results of which
have been discussed so far) and at ρ = 1.3, T = 0.10. In the
latter case, just like before, a percolation transition is observed
at small strain values, with the corresponding spanning cluster
shown in Fig. 5(j). Subsequently, at a strain of 0.5 [Fig. 5(k)],
we see that a very localized region of mobility emerges with
the formation of a shear band parallel to the flow direction,
with not much activity elsewhere in the system. This spatial
localization is also clearly visible in the corresponding strain
map [Fig. 5(l)]. Such a response is in contrast to the earlier
case [Figs. 5(c) and 5(d)] where far more local spots of large
mobilities and consequent plastic activity are seen, in regions
outside the shear band. This difference in response is due to
the fact that the system at ρ = 1.3, T = 0.10 is comparably in
a deeper glassy state than when at ρ = 1.2, T = 0.20, with the
respective mode coupling glass transition temperatures being
0.65 and 0.435. As one travels further away from the mode
coupling transition temperature, there is a decrease in local
structural rearrangements induced by the interplay between
thermal fluctuations and the externally applied shear, leading
to more localized dynamical heterogeneities.

D. Percolation during steady flow

So far, we have discussed the dynamical response during
the onset of flow in a glass from a quiescent state. We
now compare these observations with the scenario during
steady flow, where dynamical heterogeneities have also been
observed and studied (e.g., [17,19,24]). In Fig. 6(a), we see that
the transient superdiffusive regime in the average nonaffine
MSD, observed during onset, is absent in the steady state
[3]. Furthermore, if we spatially resolve the average MSD
in layers parallel to the flow direction, we observe a clear
contrast. The dynamics is spatially heterogeneous during the
onset of flow, which homogenizes to a great extent in the steady
state; see Fig. 6(b). Nevertheless, if we do the identification
of mobile cells and their clustering (as done earlier during
the onset of flow), we observe percolation transitions with
respect to arbitrary strain values located in the steady-state
regime [Fig. 6(c)]. The strain interval, �γc, in which these
transitions occur, is �γc ≈ 0.02 and thus about a factor of
4 smaller than the critical strain of the initial transition.
Note that unlike the case of the onset of flow where the DP
transition was occurring from a quiescent to a flowing state,
the transitions in the steady state are between any two states
of a flowing system, separated by a strain window �γc. Then,
subsequent to the percolation transitions, there is a gradual
growth in the fraction of mobile cells with time [Fig. 6(d)],
in contrast to the sharper jump observed during the onset
of flow.

IV. CONCLUSIONS

In this work, we have explored how a model glass, subjected
to a constant strain rate, evolves from a quiescent state to
plastic flow. We have shown that this process is initiated by
a critical phenomenon, viz., a directed percolation transition.
Under shear, hot spots form in the amorphous solid, i.e., local
regions in the system where particles have undergone large
nonaffine displacements. These are local structural changes
transforming the initial quiescent glassy state which thus
cannot be regained via thermal fluctuations. Unlike liquids,
this is an essential feature of the glassy state, where a strong
nonlinear response to the external shear overrides thermal
fluctuations. Under continuing deformation, such hot spots
spatially spread with increasing strain and at a critical strain
percolate. Our finite-size scaling analysis shows that this
process is consistent with the DP conjecture [42,43]. Within
this conjecture, a system transforms from a fluctuating state
into an absorbing state, assuming that the system has no
quenched disorder, as is the case in our system. In our case,
the dominance of the external shear leads to the system getting
irreversibly trapped into an absorbed state of the percolating
cluster of hot spots.

The subsequent growth of the active regions after the DP
transition depends strongly on the applied shear rate. At larger
shear rates, we observe a quick proliferation of mobile spots
leading to a fluidization. On the other hand, at smaller shear
rates, the mobile spots spatially organize to form shear-banded
structures parallel to the shear direction. In such cases, fluidiza-
tion occurs by the slow diffusion of the mobile front in the
shear-gradient direction, leading to sustenance of shear bands
with long time scales for such small shear rates. However,
for such shear rates, we also observe different flow hetero-
geneities, with the most mobile region structured transverse to
the shear direction. In this case, there is nearly an avalanchelike
process which leads to extensive fluidization of the system.
Thus, in the vicinity of yield stress, there occurs a hierarchy of
dynamical heterogeneities, starting from percolating structures
of large mobilities occurring at a small strain, to the formation
of localized structures of larger mobilities at a later strain,
before the system eventually attains homogeneous flow.

It is natural that in the steady state, percolation transitions
also occur, since proliferation of plastic events, i.e., regions
of relatively large mobility, are always necessary for steady
flow to be sustained. However, observation of this requires
a sufficiently low shear rate such that the fluidized system
exhibits the caging of particles over sufficient time scales.
Then, the shear couples to hot spots of high mobility, as
happens initially after the switch-on of the shear field from
the quiescent state. In contrast to the initial percolation
transition that marks the onset of plastic flow, the transitions
in the steady state occur constantly over small strain intervals,
thus maintaining stationary plastic flow with a homogeneous
flow pattern. It remains to be investigated how these steady-
state percolation transitions are related to the avalanching of
plastic events, as observed in steady-state flow under athermal
conditions [58–60], imprints of which have also been reported
for thermal systems [61,62].

Here, our focus has been on characterizing the yielding
response of thermal glasses, which are simple yield stress
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fluids. There are other such soft solids, e.g., gels, for which
structures are different than thermal glasses and the response
could be more complex (e.g., [36–39,57]). Thus, future work
needs to explore whether the yielding scenario outlined in our
work is also visible in such materials.
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