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Effects of spatial diffusion on nonequilibrium steady states in a model for prebiotic evolution
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Effects of spatial diffusion in a Kauffman-like model for prebiotic evolution previously studied in a “well-
mixed” limit are reported. The previous model was parametrized by a parameter p defined as the probability that a
possible reaction in a network of reactions characterizing the artificial chemistry actually appears in the chemical
network. In the model reported here, we numerically study a grid of such well-mixed reactors on a two-dimensional
spatial lattice in which the model chemical constituents can hop between neighboring reactors at a rate controlled
by a second parameter η. We report the frequency of appearance of three distinct types of nonequilibrium
steady states, characterized as “diffusively alive locally dead” (DALD), “diffusively dead locally alive” (DDLA)
and “diffusively alive locally alive” (DALA). The types are defined according to whether they are chemically
equilibrated at each site, diffusively equilibrated between sites, or neither, respectively. With our parametrization
of the definitions of these nonequilibrium states, many of the DALA states are growing rapidly in population due
to the explosive population growth of a few sites, while their entropy remains well below its equilibrium value.
Sharp temporal transitions occur as exploding sites appear. DALD states occur less commonly than the other
types and also usually harbor a few explosively growing sites but transitions are less sharp than in DALA systems.
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I. INTRODUCTION

In many models and discussions of prebiotic evolution,
spatial considerations play a central role. The reason is that
the processes that might result in nonequilibrium (lifelike)
states, however defined, tend to be fragile and susceptible to
decay to equilibrium by various kinds of perturbation. Spatial
isolation from perturbations is often invoked as a mechanism
by which such decay might be avoided [1,2]. Spatial isolation is
often similarly invoked as a way of protecting nonequilibrium
metastable behavior from decay to equilibrium at later stages
of evolution [3].

However, in studies of a model of prebiotic evolution
on which we previously reported [4], the artificial chemical
system was assumed to be “well mixed” so that every molecule
could react with every other one, as it is in many similar
models [5], and explicit effects of any spatial heterogeneity
were ignored. When metastable “lifelike” states occurred in
that model, they were protected from decay to equilibrium
by bottlenecks in the dynamics of these states due to the
sparseness of the network of chemical reactions without any
explicit reference to space.

We did find that metastable nonequilibrium states occurred
in that model, as long as the network of chemical reactions
was sufficiently sparse to block decay to equilibrium, but
sufficiently connected to allow growth of the molecular
ensemble out to the maximum allowed lengths. The sparseness
of the chemical network was characterized by a parameter p

(the probability that a chemical reaction from a list of all
possible reactions is included in the chemical network) and, in
terms of it, the probability of occurrence of lifelike states had
a maximum at a small finite value of p.

Here we report results of simulations of an extension of
that model which allows the possibility of the diffusion of
the (artificial) chemical constituents on a spatial lattice. We
place copies of our previous model on the vertices of a two-
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dimensional lattice and allow molecules to hop between these
“islands” (or perhaps “cells”) at a rate controlled by a second
parameter η. There are two implicit time scales in such a
model: one characterizing intraisland reactions (controlled by
p) and the other characterizing the diffusion between islands
(controlled by η). As a physical realization one might imagine
a heterogeneous mineral surface on which reacting regions are
separated by diffusion barriers.

We address the question of the effects of the presence of this
type of diffusion on the likelihood of appearance, and possibly
growth and evolution, of lifelike states as studied earlier in the
absence of diffusion. In the previous study, we characterized
a steady-state system as lifelike under the condition that it
was out of chemical equilibrium and had dynamic internal
chemistry. In the model studied here we explore three kinds
of nonequilibrium steady states which are respectively out of
diffusive equilibrium but in chemical equilibrium within each
island [diffusively alive and locally dead (DALD)], in diffusive
equilibrium but out of equilibrium on each island [diffusively
dead and locally alive (DDLA)], or out of equilibrium in both
respects [diffusively alive and locally alive (DALA)]. All are
found to occasionally occur with measurable frequency in the
model in different regions of the p-η plane.

In the next section we describe our previous model and its
extension to a system consisting of a two-dimensional lattice
of islands or local sites. Population dynamics with identical
chemical networks are simulated, as in our previous model,
on each site, but now diffusion may occur between these sites.
(In the rest of the paper we will use the terms “islands” and
“sites” interchangeably to refer to the same entities in the
model.) Sections III and IV summarize the entropic criteria
used to distinguish the three kinds of nonequilibrium (that is
lifelike) states. Sections V and VI present results followed by
a discussion and conclusions.

II. MODEL

As in our previous work [4], and following [5–7], the enti-
ties which we call “polymers” or, equivalently, “molecules”
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FIG. 1. Structure of the model implementation for a single site.

in the model are strings of 0’s and 1’s which abstractly
represent polymers built from two types of monomers. Further
discussion of this choice appears in [4]. A qualitative “road
map” of the computations which we carry out in all the
Kauffman-like models which we have been studying for a
single site is shown in Fig. 1. Given model parameters, namely
p for the single-island model of Ref. [4] and p and η for
the model studied here, we first generate a large ensemble of
“artificial chemistries” numerically. The chemical constituents
or species that are modeled as binary polymer strings may, in
the model, undergo ligation and scission. The parameter p is
the probability that, of all the possible ligations and scissions
which are possible for polymers of length up to a maximum
lmax, a particular reaction is included in a realization of the
model. To generate general conclusions in the absence of
detailed knowledge of the rates of such reactions in terrestrial
or putative extraterrestrial biochemistry, we generate a large
(typically 104) set of “artificial chemistries” consistent with the
parameter p and then compute probabilities of various types
of occurrences by averaging over the resulting ensemble of
artificial chemistries and dynamic realizations. The algorithm
for generating, given p, an artificial chemistry on a single
chemically “well-mixed” site is the same as that fully described
and used in Ref. [4]. In the work described here we use the same
procedure to generate chemical networks and then distribute
identical copies of each such network on all the sites of the
spatial lattice in order to carry our dynamical simulations.
The dynamics of the model described here differs from that
in [4] because the transfer of molecules between the sites
is an allowed dynamical event as described below and in
Appendix A. Some discussion of the choice to use identical
chemical networks on all the sites appears below.

As before, population dynamics are computed only for
networks which are “viable,” by which we mean that there
is at least one reaction path from a “food set,” here chosen to
be a set of monomers and dimers, to a polymer string of the
largest allowed size. (In Ref. [4] the largest allowed polymer
comprised ten monomers for most of the reported results, but
here computational limitations have forced a limitation to a
largest polymer length of six in most reported results.)

The population dynamics themselves are generated stochas-
tically many times for each artificial chemical network. The
results of these dynamical simulations are not identical, even
when dynamics are carried out on identical chemical networks,
because the dynamics are stochastic and, therefore, not
deterministic. From the entire ensemble of dynamical results
we then generate statistics for the probability of occurrence
of various types of resulting steady states, deemed by one
definition or another to be lifelike. (For example, in Ref. [4]
we typically generated about 50 dynamic realizations for each
chemical network and carried out simulations on roughly 104

chemical networks for each value of p.)
Fixing p and requiring viability on each site does not

fully define the two-dimensional model of sites on a two-
dimensional lattice. Options for fully defining the model
include (i) generating an artificial chemical network consistent
with p and then reproducing it on all the sites; (ii) generating a
chemical network and reproducing it on each site, but assigning
different reaction rates v [as defined in Ref. [4] and in Eq. (1)
below] to each chosen reaction in the network on different
sites; (iii) generating different chemical networks, consistent
with the same p, that are placed on each site (so that dynamics
are carried out with different possible chemical reactions at
each site); (iv) keeping only p the same on each site, so
there are heterogeneous chemistries at each site, as in (iii),
but lift the requirement that the networks on each island must
be viable; or (v) placing different chemical networks at each
site using a spatially dependent variation of p across the lattice
of sites. Option (v) requires the introduction of new parameters
to characterize any variation in p.

In the present paper, we report results on a model in which
we took option (i). Because the dynamics are stochastically
implemented, it will not necessarily be the case in option
(i) that all of the sites will realize steady states in the same
manner (if at all). An argument in favor of option (i) is that
one might expect the laws of chemistry to be independent
of the location of the reactants in space. On the other hand,
chemical heterogeneity may be realized at different spatial
sites due to spatial variation in such environmental variables
as temperature or pH. Thus, options (ii) through (v) might
roughly model real situations not realized by option (i). Many
interesting new topological and dynamical possibilities arise
in options (ii) through (v), and we plan to study them later.

Using option (i), we define a viable network as one which
contains at least one reaction path allowing production of a
polymer of maximum length starting from the food set. We
only carried out dynamics simulations for those networks
which were found to be viable, as in Ref. [4]. In the calculations
giving the reported results, we used an 8 × 8 square lattice of
sites with periodic boundary conditions and a maximum poly-
mer size of six. The maximum polymer size is unfortunately
small but was imposed by computational limitations. With
an approximate periodicity determined by the parameter η,
diffusive “hops” of randomly selected molecules were made
from their resident site to one of its four neighbors. The precise
relation of η to the number of diffusive events is described in
Appendix A, where a review of the Gillespie algorithm [8] used
in the dynamics simulations also is presented. Roughly, η is
the fraction of dynamical events, which include both reactions
and diffusive hops, which are diffusive hops. An interesting
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and somewhat unexpected result to be discussed in more detail
below is that the model only exhibits interesting behavior at
low diffusion, i.e., at small values of η.

The chemical dynamics of the model has the same form
within each site as that for the single-site model described
in [4] and is governed by stochastic implementation of the
probabilities described in the master equation,

dnl/dt =
∑
l′,m,e

[vl,l′,m,e(−kdnln
′
lne + k−1

d nmne)

+ vm,l′,l,e(+kdnmn′
lne − k−1

d nlne)], (1)

where nl is the number of polymers of species l, vl,l′,m,e is

proportional to the rate of the reaction l + l′
e−→m, e denotes

the catalyst, l and l′ denote the polymer species combined
during ligation or produced during cleavage, and m denotes
the product of ligation or the reactant during cleavage. As
discussed in Ref. [4], the parameter kd is a rough proxy for
the effects of temperature in the model. As before, in the
simulation results reported here we set kd = 1 corresponding
to “infinite temperature,” which simply means that forward
and reverse reactions have equal probability.

In the dynamics portion of the code within this model, we
added a procedure to check, during each dynamic simulation,
that the calculated ratio of instantaneous to equilibrium entropy
had reached steady state as described in Appendix B. This
was done because, with very small η values, the dynamical
simulations took significantly longer to reach steady state than
they had in the single-site case, and we needed to both be
sure that the systems were, in fact, in steady state and to
save computational resources by not carrying out excessive
computational simulation after steady state had been reached.

III. INSTANTANEOUS, PARTIALLY EQUILIBRATED,
AND GLOBALLY EQUILIBRATED ENTROPIES

The number of spatial islands is set to a value M (here 64)
and the maximum polymer length to a value lmax (here 6). A
fine-grained, “microscopic” description of a state is given by a
(2lmax+1 − 2)M-tuple of integers {nl,i}, where l labels specific
species as in Ref. [4] and nl,i is the number of polymers of
species l on site i. Generalizing the coarse-graining procedure
used in Ref. [4] for a single site, we introduce a coarse graining
that is specified by the set of numbers {NL,i}, where NL,i is
the number of polymers of length L on site i. There can be a
further coarse graining to describe a “macrostate” within our
multisite model by specifying solely the set of numbers {NL},
where NL = ∑M

i=1 NL,i is the total number of polymers with
length L in the system. With this notation one finds the number
Wglobal of microstates associated with the coarser macrostate
specified by {NL} to be

Wglobal({NL}) =
∏
L

(NL + 2LM − 1)!

(2LM − 1)!NL!

=
∏
L

∑
∑

i NL,i=NL

M∏
i=1

(NL,i + 2L − 1)!

(2L − 1)!NL,i!
. (2)

A formal derivation of the second equality appears in
Appendix C. We refer to Sglobal = ln Wglobal as the instanta-
neous global entropy.

Maximizing ln(Wglobal) subject to the condition
∑

L NL =
N (the total number of polymers in a system) gives

Sglobal,eq(N ) = (MGlmax − lmax)F

(
N

MGlmax − lmax

)
(3)

for the equilibrium global entropy. Here F (x) = (1 +
x) ln(1 + x) − x ln x, Stirling’s approximation has been used,
Glmax = 2lmax+1 − 2, and the Boltzmann constant (kB) has
been dropped for convenience. This entropy maximization
corresponds to fully equilibrated populations of NL,i =
gLN/(MGlmax ) for polymers of length L at site i, where
gL = 2L − 1.

At the less coarse-grained level, corresponding to specify-
ing the set of numbers {NL,i}, we define a local entropy Si at
each site,

Si({NL,i}) =
∑
L

ln

[
(NL,i + 2L − 1)!

(2L − 1)!NL,i!

]
, (4)

and a total local entropy,

S({NL,i}) =
M∑
i=1

Si({NL,i}). (5)

From the second expression for Wglobal above (as derived in
Appendix C) we then have

Sglobal({NL}) = ln

⎧⎨
⎩

∑
∑

i NL,i=NL

exp[S({NL,i})]
⎫⎬
⎭. (6)

From this it is easy to show that it will always be the case
that Sglobal � S with the equality only holding approximately
if the sum in the exponent on the right of the expression
above relating Sglobal to S is dominated by its largest term.
These nonequilibrium quantities can both be evaluated using
the instantaneous values of {NL,i} at any time during the
simulation. We show some examples of such evaluations in
Fig. 2. As expected, the inequality is always obeyed, but the
conditions for the near equality are not always met.

If we maximize S subject only to the constraint
∑

L,i NL,i =
N , then we find

Seq(N ) = MGlmaxF

(
N

MGlmax

)
, (7)

which is close to but less than the maximum value of Sglobal

given by Eq. (3). In our simulations MGlmax − lmax = 64(27 −
2) − 6 = 16 250, whereas MGlmax = 16 256 so the difference
is negligible and will shrink further for larger lmax. Thus, we
see that, at equilibrium, the sum in (6) is very nearly dominated
by its largest term and maximizing either S or Sglobal leads to
global equilibrium with the population distributions NL,i =
gLN/(MGlmax ).

We now consider the possibility of partial equilibrations,
focusing attention on S. We can maximize S as a function
of the set of numbers {NL,i} for fixed values of {NL} without
requiring that the values NL,i within a site take the equilibrium
values resulting from the reactions within each site. We refer
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FIG. 2. Instantaneous, global, and globally equilibrated entropies
as a function of the number of reaction steps for a realization of the
dynamics with p = 0.00761 and η = 10−7.

to this as “diffusive equilibration,” and we expect it to occur
for sufficiently large values of η. Maximizing S subject to the
conditions

∑
i NL,i = NL gives

Sdiff eq({NL}) = M
∑
L

gLF

(
NL

gLM

)
, (8)

in which F (x) = (1 + x) ln(1 + x) − x ln x as before (but x

has a different value). In this case, the equilibrium values for
the number of polymers of length L at site i is given by NL,i =
NL/M , which intuitively is expected in diffusive equilibrium.
If the instantaneous state is close to this diffusively equilibrated
state with NL,i = NL/M but far from the fully equilibrated
state with NL,i = gLN/(MGlmax ), then we refer to the system
as DDLA.

Turning to the other type of partial equilibration, we maxi-
mize S subject to the conditions that the numbers of polymers
at the sites, i.e., Ni = ∑

L NL,i , are fixed, but we do not require
that NL = ∑

i NL,i be fixed. In this way, the maximization
takes account of equilibration through the chemical reactions
within each site but does not require diffusive equilibrium. The
resulting partially equilibrated entropy is found to be

Schem eq({Ni}) = Glmax

∑
i

F (Ni/Glmax ) (9)

and the corresponding population distribution is NL,i =
gLNi/Glmax . When the instantaneously evaluated values of
NL,i are close to this distribution but far from the fully
equilibrated distribution NL,i = gLN/(MGlmax ), then we refer
to the system as DALD.

If the instantaneous values NL,i are far from both partially
equilibrated distributions we refer to the system as DALA.
The quantitative definitions chosen to characterize “close to”
and “far from” in these descriptions are provided in the next
section.

IV. DISCRIMINATING PARTIALLY EQUILIBRATED
FROM FULLY NONEQUILIBRIUM STATES

IN THE SIMULATIONS

Though the partially equilibrated states defined above are
well defined, it is not sufficient to compare the instantaneous
value of S to the partially equilibrated values in order to deter-
mine whether the instantaneous state is partially equilibrated
in one of the states defined. Instead, we consider the position
of the state in the space of “macrostates” defined by the set
of variables {NL,i}. The number of these variables is lmaxM ,
which in our simulations is 384 and is to be contrasted with
the “microstate” specification in terms of the variables {nl,i},
of which there are MGlmax , which is 8064 in our simulations.

We have shown above that when S is maximized at fixed
NL = ∑

i NL,i , which we call diffusive equilibration, then the
set of numbers {NL,i} take the values NL,i = NL/M . We can
regard this maximization as taking place in a hyperplane in
the space of macrostates defined by the constraint equations,
of which there are lmax, so the hyperplane has dimension
(M − 1)lmax. We denote the partially equilibrated position
NL,i = NL/M in that hyperplane by Pd (which is a 384-tuple
of numbers). Similarly, we showed that if we maximize S at
fixed Ni = ∑

L NL,i , then the maximum occurs at the point
NL,i = gLNi/Glmax . That maximization takes place in another
hyperplane of dimension M(lmax − 1). We denote that point of
chemical equilibration by Pc. We provide a simplified sketch
to illustrate the situation in Fig. 3.

In the simulations reported below, there is another con-
straint, namely that the “food” populations on each site are

P

Pd

Pc

Rd

Rc

Macrospace, d = Mlmax = 384

Plane with fixed NL = i NL,i, d = (M − 1)lmax = 378

Plane with fixed Ni = L NL,i, d = M(lmax − 1) = 320

FIG. 3. Illustration of the geometry of the macrospace in which
partial equilibrations can take place. P represents the Mlmax-tuple
{NL,i} of instantaneous populations during the simulation. Pd is the
Mlmax-tuple of populations which maximize the entropy S under the
constraint NL = ∑

i NL,i and Pc is the Mlmax-tuple of populations
which maximize the entropy S under the constraint Ni = ∑

L NL,i .
The plane illustrated is the two-dimensional plane in which the two
Mlmax-dimensional vectors Pc-P and Pd -P lie. The lines between
them in the picture are the projections of the hyperplanes defined by
the constraints Ni = ∑

L NL,i and NL = ∑
i NL,i onto the plane of

the figure. The quantities Rc and Rd are the Euclidean norms of those
vectors as defined in Eqs. (10).
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kept at a fixed value (50 in the reported results) and are
therefore not expected to equilibrate. Thus, the relaxation
toward equilibrium to which the discussion in this section
applies is actually carried out numerically in the chemical
space not including the food set, and so the dimensions in
Fig. 3 are all reduced by 128 (=2M , since the food set consists
of polymers of length one and two).

At any point during the simulation we have values of
the variables {NL,i} and easily compute the coordinates
of the instantaneous point P in the macrospace (which is
just given by the values of {NL,i}) and of the partially
equilibrated points Pd and Pc from those values. To determine
how close the instantaneous values of the macrovariables
are to partial diffusive or partial chemical equilibration, we
compute the Euclidean distances in the macrospace between
the instantaneous point P and the partially equilibrated points
Pd and Pc, denoting the distances by Rd and Rc, respectively:

Rc =
√∑

L,i

(NL,i − gLNi/Glmax )2,

(10)

Rd =
√∑

L,i

(NL,i − NL/M)2.

If a system is fully globally equilibrated, both values will
be near zero, but cases in which one value is small and the
other is large are realized in the simulations and provide a
quantitative definition of the meaning of partial equilibration
in the two senses discussed. We are only interested in states
for which the instantaneous calculated entropy S [found from
Eq. (5)] is less than its fully equilibrated value [found from
Eq. (7)], following our earlier postulate that lifelike states must
not be in full equilibrium [4]. Given that constraint, we then
separate the entropically steady states which we find to be out
of equilibrium by values of Rc and Rd . We find, as we show
below, that they fall roughly into classes characterizable as
DDLA (small Rd , large Rc), DALD (large Rd , small Rc), and
DALA (large Rd and Rc). An appropriate normalization for
the values of R is 1/(

√
2N ), where N is the total number of

polymers, because it is easy to show that the maximum value
of R at given N is

√
2N .

V. RESULTS FOR FREQUENCY DISTRIBUTIONS
OF UNEQUILIBRATED AND PARTIALLY

EQUILIBRATED STATES

In Figs. 4 and 5 we show three-dimensional scatter plots
indicating the steady-state values of the quantities Rd/(

√
2N )

and Rc/(
√

2N ) for systems in entropically steady states
such that S/Sglobal,eq is less than 0.6 and thus out of global
equilibrium. As noted at the end of the last section, these results
are obtained by use of the population statistics of the “nonfood”
populations only, excluding the six species of “food” polymers
of lengths one and two whose total populations per site are
held at 50. Scatter plots are shown for several values of the
parameters p and η.

In these and other results reported in this paper we have
not applied the dynamical constraint discussed in [4] when
selecting states deemed lifelike. That constraint assured that
the states selected continued to behave in a sufficiently
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FIG. 4. Scatter plots of the normalized distances from partial
equilibria on the horizontal and vertical axes and their entropy ratio
denoted by the point color for p = 0.00320 and differing values of η.
Of 105 randomly constructed networks, the ones deemed viable had
50 ensembles simulated each with a different initial condition and
plotted. The dashed lines denote the cutoff values of 0.03/

√
2 used

for the different classifications of lifelike.

dynamical manner though the ratio of the entropy to its
equilibrium value had reached steady state. The dynamical
constraint was not used here because doing so imposed an
unacceptable numerical burden in this larger system. However,
we have made calculations in a few cases, as reported in
Sec. VII, which suggest that adding the dynamical constraint
does not change the overall dependence of lifelike frequencies
on p and η significantly, though the number of states deemed
lifelike is reduced.

As discussed, the entropically steady state values fall
roughly into three groups: those with small Rd/(

√
2N )

and large Rc/(
√

2N ), which are regarded as DDLA; those
with small Rc/(

√
2N ) and large Rd/(

√
2N ), regarded as
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FIG. 5. Scatter plots of the normalized distances from partial
equilibria on the horizontal and vertical axes and their entropy ratio
denoted by the point color for p = 0.00761 and differing values of η.
Of 104 randomly constructed networks the ones deemed viable had
10 ensembles simulated, each with a different initial condition and
plotted. The dashed lines denote the cutoff values of 0.03/

√
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for the different classifications of lifelike.
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FIG. 6. The probabilities of forming the different lifelike states DALD (a), DDLA (b), and DALA (c), as well as the probability of the system
being generally lifelike (S/Sglobal,eq < 0.6) in (d) given a random network formed with parameter p and simulated with hopping parameter η.
[The sum of the values in (a), (b), and (c) yields (d).]

DALD; and those with both Rc/(
√

2N ) and Rd/(
√

2N ) large,
regarded as DALA. By choosing, somewhat arbitrarily, cutoffs
of 0.03/

√
2 on Rc/(

√
2N ) and Rd/(

√
2N ) to define these

different types, we can get an overview of the parameter
dependence of the likelihood of these different types of steady
states as indicated in Fig. 6.

The sample of results shown in Figs. 4 and 5 are quite
characteristic in showing that DALD states, which would occur
near zero along the horizontal axes of the figures are quite rare
[data on their abundance appears in Fig. 6(a)]. DDLA states
[with probability distributions shown in Fig. 6(b)] appear along
the vertical axes and match the behavior we observed in the
single-site studies of Ref. [4] at large η quite well, as shown
in Fig. 7. These states are essentially spatially homogeneous
copies of our previous single-site results.

The most unexpected results are the DALA states appearing
as a band along a diagonal line in the Rc-Rd plane, which is
particularly evident in Fig. 5, though similar, sometimes more
complex, distributions appear in that region for other values of
p as seen in Fig. 4.

The distribution of DALA states as a function of p and η

appears in Fig. 6(c). Of particular interest with regard to the
DALA distribution is the fact that the DALA states appear for
quite large values p, where our single-site model gave mainly
chemically equilibrated systems. In terms of our postulated
criterion for “lifelike” states, namely that they should be out

of equilibrium, these states seem to be attractive candidates
for a new kind of lifelike state in the model. Accordingly, we
explored their nature further, as described in the next section.
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FIG. 7. Comparison of results for the probability of occurrence of
steady states with S/Seq < 0.6 in the single-site, well-mixed, model of
Ref. [4] (with lmax = 6) with results for the probability of occurrence
of states with S/Sglobal,eq < 0.6 in the model of this paper with η = 0.5
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and polymers removed on the right y axis as a function of time with the entropy ratios before and after the population explosion marked.

VI. DALA AND DALD STATE ANALYSES
AND POPULATION GROWTH RATES

An interesting and surprising result is that many DALA
states occur at small values of η, as expected, but at relatively
large values of p at which our earlier one-site studies would
suggest that local (chemical) equilibrium would commonly
occur. To study these states further, we have explored their
detailed dynamical history in some cases, as illustrated in
Fig. 8. In these cases, after an initial, apparently stable,
steady state exhibiting similar (though not identical) out-of-
equilibrium behavior on all sites, a single site suddenly and
explosively grows in population to completely dominate the
total population, after which the system subsides into a new
metastable state with a lower entropy ratio S/Sglobal,eq. The
site with dominant population (typically nearly 50 times larger
than other sites) has a single-site entropy which is nearly in
chemical equilibrium, while the other sites remain far from
chemical equilibrium. At the “exploded” site an analysis of
the flows, illustrated in Fig. 8, shows that the site has saturated
the limit of 950 nonfood polymers per site and polymers are
being removed as well as added to maintain the food set at
the minimum value taken to be 50 here. It appears, however,
that the “explosion” may be triggered by a rare diffusive
transfer of a molecule from a neighboring site as discussed
below.

These explosive events can occur more than once in a
simulation run, as shown in Fig. 9, leading to an additional
high-population site at each explosive growth episode. Some-
times the high-population states occur together in space but
in other cases they are widely separated. We computed the
correlation function of the populations on different sites over
the ensemble of DALA, as shown in Fig. 10. Figure 10 shows
that, on average, there are correlations between the populations
on different sites which grow stronger as η increases, as
expected intuitively.

In order to distinguish the states with explosive sites from
those without explosive sites, we define a steady state to have

a disproportionate population spread (DPS) if there is at least
one site with a nonfood population of over 900 and at least
one site with a nonfood population of less than 100. Using
this classification of states represented by points in the DALA
region of the scatter plots in Figs. 4 and 5 gives results shown
in Fig. 11. Comparing Figs. 5(b) and 11(c) and 11(d) indicates
that, at least when p = 0.00761 and η = 10−5, the diagonal
band of DALA states are essentially all of the exploding, DPS,
type. This pattern is repeated for most of the studied values of
p though, as illustrated by comparing Fig. 4(b) with Figs. 11(a)
and 11(b) for p = 0.00320 and η = 10−5, the situation is more
complex in some cases (The range of p’s explored is shown
in Fig. 6).

Computing the frequencies with which the states previously
classified as DALA were also of the exploding, DPS, type
occur in the ensemble of dynamically simulated states yields
Fig. 12. Comparing Fig. 12 with Fig. 6(c) indicates that most
(roughly 70%) of the states classified as DALA are of the
exploding, DPS type. The other states classified as DALA are
similar to the DDLA states. At large η they appear to be similar
to the nonequilibrium states found in [4].

We further investigate the DALA DPS and non-DPS states
by studying the nonfood polymer population growth rate. In
Fig. 13 we plot the values of the logarithmic derivative of
S/Sglobal,eq with respect to the real (Gillespie) time on the
vertical axis and the corresponding logarithmic derivative of
the nonfood molecule population on the horizontal axis. Each
point gives the average value of these two quantities for a
different dynamical system while it is in an entropic steady
state as determined by our code. Results are shown for DPS
and non-DPS DALA states and η = 10−5 with p = 0.00761
in Fig. 13. As expected, the points cluster around zero on the y

(entropy growth rate) axis as the code selects states in entropic
steady state, as explained in Appendix B. For most values of
p and η results like those in Figs. 13(a) and 13(b) for p =
0.00761 are seen so that, unlike our previous results on single
sites, the population of many of the DPS states with exploding
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apparently produced when polymers diffused from the initial exploded site to its neighbors causing them to explode. In panel (c) a site near the
lower left corner has exploded independently of the larger cluster. The entropy ratio first drops with successive explosions and then rises to the
full equilibrium value as the region of exploded sites expands to fill the entire lattice.

sites is exponentially growing in time. Though exponential
population growth may suggest possibilities of evolutionary
phenomena within the model, it is not clear that these explosive
DPS states should be regarded as lifelike, as discussed in the
next section. We have not established that all of the states
with exponentially growing populations have exploding sites.
However, when we perform ensemble averages on the states
represented by points in Fig. 13, we find that, on average, the
DPS populations are growing exponentially in time and the
non-DPS populations are not.

Combining these results, it is inferred that the DALA which
do not have exploding sites (non-DPS states) are similar
to those seen in Ref. [4], where we found a chemically
nonequilibrated entropic steady state and very little population
growth. Many DALA states have sites where the population
has exploded and have reached local chemical equilibrium,
while many sites in those states have low populations and
nonequilibrium entropies. The very small values of S/Sglobal,eq

in those states arise because the lattice is diffusively very far
from equilibrium.
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FIG. 10. The nonfood population correlation function as a function of site separation for DALA states with p = 0.006 40 and varying
values of η. The correlation function for which results are shown is C(�r) = C̃(�r)/C̃(0), where C̃(r) = (1/M)

∑
�r ′ Nnf(�r ′)Nnf(�r ′ + �r) −

(1/M)
∑

�r ′ Nnf(�r ′)2 and Nnf(�r) is the number of nonfood polymers at site �r . η values are (a) η = 10−4, (b) η = 10−3, and (c) η = 10−2.
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partitioned based on whether the system is of the exploding “DPS”
type.

Individual sites in the DALD states are closer to chemical
equilibrium than those in the DALA states, as expected.
Detailed inspection of the temporal history of several DALD
states reveals sites with exploding populations as in the DALA
states. The exploding sites in DALD states appear much faster
and grow at a slower rate than those in the DALA states, so
that the temporal transition to a low-entropy state is less sharp,
as illustrated in Fig. 14.

VII. DISCUSSION AND CONCLUSIONS

Extending our previous model by reproducing it on the
sites of a lattice and allowing diffusion of molecules between
the sites, we have numerically explored the probability and
nature of dynamical nonequilibrium states as a function of the
parameters p and η which, respectively, control the chemical
reaction and diffusion rates. For large η we see results which
are similar to those obtained earlier [4] for single sites. For
smaller η we distinguish nonequilibrium states which are
partially equilibrated with respect to chemical reactions but not
diffusion (DALD), with respect to diffusion but not chemical
reactions (DDLA), and with respect to those that are not
partially equilibrated in either sense (DALA). The frequencies
with which these different nonequilibrium states appear in our
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FIG. 12. Probabilities of DALA states with a disproportionate
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FIG. 13. The logarithmic derivative of the nonfood polymer
population and the entropy ratio of the explosive and nonexplosive
systems for DALA states for p = 0.00761 and η = 10−5. In general,
the growth of the explosive systems had some nonzero polymer
population growth while the nonexplosive systems growth centered
around zero. A similar, but less clear, distinction was observed for
other p values.

numerical model of 8 × 8 sites on a square lattice as a function
of p and η is summarized in Fig. 6. DALD states appear rarely
in a restricted range of p at small η. DDLA states appear at
larger η in a fashion whose p dependence mirrors that found
earlier for single sites. These states appear to consist essentially
of reproductions of our previous results on all the sites.

The distribution and nature of the DALA states was
unexpectedly interesting. They occur with relatively high
frequency at p values, which are large enough to drive most
single sites to equilibrium, and at small η. Exploring the nature
of the DALA states in more detail, we found that they fall
broadly in two groups, as illustrated in the scatter plots in
Fig. 5. The less interesting group is qualitatively similar to the
DDLA states, and those states were classified as DALA only
as a consequence of our choice of cutoff for nonequilibrium
states in the definition of DALA. The more interesting group
is represented by the states scattered along a diagonal in
Fig. 5. As discussed and illustrated in Figs. 6 and 8, they
consist almost entirely of systems in which a small fraction
of the 64 sites have, suddenly on the Gillespie real-time scale,
“exploded” in the sense that their population has begun to
grow exponentially in time while their local entropy goes to
equilibrium.

We find that the source of the material feeding these explo-
sions comes from the local food source, which is maintained
at a fixed value in the simulation. It does not necessarily arise
from diffusion of particles from the surrounding sites, which
remain locally out of equilibrium and lifelike by our previous
single-site criterion. There is some evidence, not yet fully
confirmed, that the explosions are triggered by the diffusion
of one or a few particles into the site which explodes. The
triggering seems to usually occur more than 105 reaction
steps before the explosion is fully developed. Running these
simulations further we usually find a series of population
explosions, separated by periods of steady-state entropy. Each
explosion causes a precipitous drop in the ratio of the total
local entropy to its fully equilibrated value associated with the
highly spatially heterogeneous nature of the resulting state.
Often, but not always, the explosions occur at sites neighboring
previously exploded sites, so that a cluster of exploded sites
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develops. When the number of exploded sites becomes very
large, the entropy rises again as the system becomes fully
equilibrated both diffusively and chemically, as illustrated in
Fig. 9.

To develop a statistical measure of the likelihood of these
exploding sites, we quantitatively characterized a state with

disproportionate population spread (DPS) which distinguishes
these states from DALA states which are similar to DDLA
states (that is spatially nearly homogeneous but out of chemical
equilibrium), with results shown in Fig. 11. The DPS states
occur at small η and large p with the indicated frequencies.
They are exponentially growing in population while the ratio
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that the system is in steady state; p = 0.00452.
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of their global entropy to its equilibrium value remains nearly
constant as illustrated in Fig. 13.

It remains to determine what, if any, significance these
results may have for evaluating the probability that a set
of interacting spatially separated but diffusively coupled
chemical systems might evolve prebiotically to a recognizable
precursor of a biological system. Our previous single site
criterion for classifying a system as lifelike was that a lifelike
system should be dynamic and out of chemical equilibrium.
If we extend that definition of lifelike to only require, in
the spatially heterogeneous case, that the system be out of
global equilibrium, then the DPS states which we have found
certainly qualify as lifelike. On the other hand, looking in
detail at the DPS states, one sees that such a conclusion is
intuitively somewhat troubling: The exploding sites in DPS
systems are locally near chemical equilibrium while their
surroundings are out of equilibrium. There are some hints of
cooperativity in the sense that diffusion events may trigger
explosions, but cooperativity does not appear to be very
extensive. Qualitatively, the dynamics of these DPS systems is
somewhat reminiscent of what is seen in growth of biofilms [9]
and in cancer [10], but it is unclear whether such similarities
are significant or not. The DPS states appear to be at a
kind of tipping point in which a small perturbation of the
local nonequilibrium state at each site can trigger a sudden
transition to a rapidly growing state with nearly equilibrium
entropy. Models of some diseases, such as Alzheimer’s
disease [11], with a qualitatively similar structure have been
reported.

We will, in the future, further explore the nature of these
DPS systems, as well as the rare, but possibly more biologically
significant, DALD systems, focusing particular attention on
intersite correlations [4].

A technical issue which could alter features of the statistical
distributions reported here is the definition of “steady state”
we have used to select lifelike systems: We have numerically
assumed here that a system is in steady state if its entropy has
not changed significantly for 105 reaction steps, as explained
in Appendix B. It can be argued that it would be more
natural to define steady state in terms of the Gillespie real
time. In the presence of exploding sites, the two measures
of time will differ significantly. The lifetime of the steady
states associated with DALA and DALD explosions is shorter
in real time, because large populations shorten real Gillespie
time relative to reaction step time. We show some results in
Fig. 15, which indicate that the use of Gillespie time does
reduce the probability of DALD and DALA states. The effect
for this example is a reduction of not more than about 20%
in the probability, and the shape of the curves describing the
dependence on η is very similar to the one obtained using
“event time” to determine the existence of steady state as
described in Appendix B.

We made a few calculations in which we added dynamical
constraint like the one used in Ref. [4] to the criteria for
selection of entropically steady states as lifelike. We show
a result in Fig. 16, which suggests that the main effect of such
dynamical constraints will be to reduce the overall magnitude
of the frequencies of occurrence of lifelike states without
otherwise significantly changing the parameter dependencies
of those frequencies. However, this point merits further
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FIG. 16. The probability of forming a DALA lifelike state with
p = 0.00452 and varying values of η with and without the dynamical
constraint cut used in [4]. For the dynamical cut we require that
ωm > ωc, where ωm was determined from the (discretized) relation∫ ωm−ωm

|C(ω)dω|2∫ ∞
−∞ |C(ω)dω|2 = 1/2. Here ωc = 0.0002(2π/�tave), is a parameter of

the model and �tave is the average Gillespie time step. C(ω) is the time
Fourier transform of C(τ ) = (1/Nst)

∑
t,l,i nl,i(t)nl,i(t + τ ), where

nl,i(t) is the number of polymer species l on site i at time t . Nst

is the number of discrete time steps in the sum on t .

investigation because we have preliminary indications that the
dynamical nature of the entropically steady states changes
significantly with η.

Other issues that warrant additional exploration include the
dependence of the observed phenomena on the availability
of food. In the present calculations, food at each site was
maintained externally at a fixed supply, and this provision is
one reason that the DPS sites could grow without limit. For
example, we will explore a model in which the total food
supply in the entire system (but not at every site) is held fixed.
This will mean that the exploding sites must depend on their
neighbors to sustain their growth, which we would expect to
have a significant influence on these systems.
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APPENDIX A: DYNAMICS ALGORITHM

For network generation, the procedure described in Ap-
pendix A of [4] is used and the same network of reactions
is copied onto each site of the spatial lattice. The dynamics
algorithm is similar to that described in Appendix B of the same
reference, but is altered to take account of spatial structure
and diffusion. We assume that the rate of diffusive hops per
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polymer is the same for all polymers and in all directions
and is parametrized by the variable η, as described in more
detail below. The dynamics routine makes use of the Gillespie
algorithm [8], which permits efficient stochastic simulation of
the master equation (1) for the chemical dynamics on each
site, as was done in Ref. [4]. At the most microscopic level,
states in the system at each time step are characterized by sets
{nl,i} of polymer populations, where l labels the species and i

labels the site. The algorithm proceeds as follows:
(1) Choose a “food set” of initial polymer populations on

each site by randomly picking a fixed number (here 50) of
monomers and dimers from the six available species of those
lengths. (Thus, the initial distribution of food species varies
from site to site.) During the simulation, if the food population
becomes less than 50 on a site, randomly selected species
from the six available food species types are added to bring
the number to 50.

(2) At each simulation time step, sum all the intrasite
chemical reaction rates possible in the lattice and denote the
result Asum where

Asum =
∑
sites

⎡
⎣ ∑

ligations

vl,l′,m,enlnl′ne +
∑

scissions

vl,l′,m,enmne

⎤
⎦.

(A1)

Denote the hopping rate per polymer by D and the total
population of polymers N . Draw a random number r evenly
distributed between 0 and 1. If

r >
Asum

(Asum + DN )
, (A2)

then perform a diffusive hop by selecting a site and a polymer
resident on it and moving this polymer to a randomly selected
neighboring site. Otherwise, select an onsite reaction with
a probability indicated by the master equation and adjust
numbers {nl,i} to take account of the associated ligation or
scission reaction, as in Ref. [4]. The real (Gillespie) time
elapsed for the step is computed by drawing a random
number generated from an exponential distribution with mean
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FIG. 17. Hopping rate vs the diffusion coefficient. The dotted
curve is a linear function to guide the eye.

Asum + DN , as described in [8]. The parameter η used in the
main text is related to D as D = η

1−η
. For the very small η

values used here, η is very close to D and may be regarded as
the fixed reaction rate of diffusion per molecule.

(3) Calculate the total number of polymers on each site
(Ni). If Ni exceeds a target Nsite max (fixed at the outset to be
1000), then choose polymers at random within the site and
remove them until the number is less than or equal to Nsite max.

(4) Return to (2).
As a check on the interpretation of η described in step 2,

we show simulation data in which the simulated number of
diffusive hops per the real (Gillespie) time as described above
are plotted versus η/(1 − η) in Fig. 17. The relationship is
linear and p-independent as expected.

APPENDIX B: STEADY-STATE DETECTION

Because the systems considered here reached entropic
steady state slowly on computational time scales, we found
it convenient to implement a routine that acted “on the fly”
to check when an entropic steady state was realized during
simulation. This was done so that we would continue to
run systems which reach steady-state entropic values slowly
but could end computations early in the simulation time for
states that had reached entropic steady state quickly. This
saved computational resources and assured that all reported
data was for systems in entropic steady state. After 106

simulation steps the code kept a running record of the values
of S({NL,i})/Sglobal,eq(N ) every ten steps over subsequent 105

simulation step intervals. At the end of each interval, a linear
least-squares fit of those data was performed [12] and a
slope estimate (β) and its error (σβ) were calculated. If the
ratio |β|/σβ < 3, then the system was judged to be in an
entropic steady state and the simulation of that realization
of the model was stopped. The data from its steady-state
behavior was then included in the analysis described in the
text.

APPENDIX C: CONFIGURATIONAL ENTROPY

As in Ref. [4], at the most coarse-grained level, we consider
the configurational entropy associated with a state described
only by by the number of polymers NL of each length L not
in the food set. In the model there are 2L possible polymer
species of length L, which could be at any of the M sites.
The number of microscopic states associated with this coarse-
grained description is

Wglobal({NL}) =
∏
L

∑
∑

i NL,i=NL

M∏
i=1

(
NL,i + 2L − 1

NL,i

)
, (C1)

where NL,i is the number of polymers of length L at site
i, and we have used the binomial notation

(
n

k

) = n!
k!(n−k)! . The

binomial counts the possible species configurations of length L

there could be at site i, and the product over i and the restrictive
sum (

∑
i NL,i = NL) counts how many ways the number of

polymers of length L (NL) could be distributed over the lattice.
Last, the product over L accounts for every polymer length.
We derive Eq. (2) for Wglobal by use of the negated upper index
rule for binomials [13] and a generalization of Vandermonde’s
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identity [14], which are, respectively,(
n

k

)
= (−1)k

(
k − n − 1

k

)
, (C2)

∑
∑k

j=1 ij =m

k∏
j=1

(
nj

ij

)
=

(∑k
j=1 nj

m

)
. (C3)

Applying these identities and manipulating the expression for
Wglobal({NL}) yields expressions containing binomials with
negative upper indices. These, however, appear as ratios of the
form (−n)!/(−m)! and can be evaluated to give a real finite
result as a limit of the ratio of 	 functions [limz→0

	(z−n)
	(z−m) =

m!
n! (−1)n−m, for positive integers n,m, where 	 is the 	

function]. This results is the form for Wglobal,

Wglobal({NL}) =
∏
L

(
NL + M2L − 1

NL

)
, (C4)

establishing Eq. (2). Equation (2) can also be derived by a
counting argument closely similar to the one used in Ref. [4]
considering the ways of distributing NL polymers and 2LM −
1 walls (M − 1 site walls and 2L − 1 species walls at every site,
see also [15]). Numerical quantities computed from Eqs. (C1)
and (C4) were also found to be equivalent.
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