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Solution of classical evolutionary models in the limit when the diffusion approximation breaks down
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The discrete time mathematical models of evolution (the discrete time Eigen model, the Moran model, and
the Wright-Fisher model) have many applications in complex biological systems. The discrete time Eigen model
rather realistically describes the serial passage experiments in biology. Nevertheless, the dynamics of the discrete
time Eigen model is solved in this paper. The 90% of results in population genetics are connected with the
diffusion approximation of the Wright-Fisher and Moran models. We considered the discrete time Eigen model
of asexual virus evolution and the Wright-Fisher model from population genetics. We look at the logarithm of
probabilities and apply the Hamilton-Jacobi equation for the models. We define exact dynamics for the population
distribution for the discrete time Eigen model. For the Wright-Fisher model, we express the exact steady state
solution and fixation probability via the solution of some nonlocal equation then give the series expansion
of the solution via degrees of selection and mutation rates. The diffusion theories result in the zeroth order
approximation in our approach. The numeric confirms that our method works in the case of strong selection,
whereas the diffusion method fails there. Although the diffusion method is exact for the mean first arrival time,
it provides incorrect approximation for the dynamics of the tail of distribution.
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I. INTRODUCTION

To describe evolution of biological organisms, one may use
either discrete time models (e.g., the discrete time Wright-
Fisher (WF) model [1–3], the Moran model [4], or the Eigen
model [5,6]) or continuous time models (e.g., the continuous
time Eigen model [6–8], the Crow-Kimura model [9–12],
and the Moran model [4]). The former is proper for the
evolution with nonoverlapping generations, and the latter
is proper for the evolution with overlapping generations.
Both situations are possible in biology. Bacteria typically
have overlapping generations, whereas for the viruses both
situations are possible. Persistent infections might be closer
to overlapping generations, whereas viruses causing cell lysis
and needing to alternatively copy positive and negative strands
would be closer to have nonoverlapping generations [13]. In
this paper we solve some problems of discrete time models,
which are more involved than the continuous time models.

The Wright-Fisher model [1,2] and the diffusion approxi-
mation [3,14] play a central role in population genetics. The
discrete time evolution models are defined as systems of
iteration equations in discrete time versions, and we try to
map them into continuous time differential equations to get
an analytical solution in the large population limit. Kimura
considered evolution in the neutral fitness landscapes as
a diffusion process and popularized the diffusion equation
method [14]. The diffusion equation method was widely
applied in chemistry and stochastic models as well as an
approximation of the master equation [15]. An alternative
method for investigating the chain of ordinary differential
equations is the Hamilton-Jacobi equation (HJE) method for
the investigation of the chemical master equation [16–20]
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and for the evolution models [21–23]. The HJE method is
very successful for the molecular evolution models [6,9]
where mutation creates transitions between different states,
whereas in the Wright-Fisher and Moran models of population
genetics we have random sampling due to the finiteness of the
population. In the case of continuous time evolution models
[6,9], the HJE gives a complete solution for the models: both
the exact steady state [21,22] and the exact dynamics [23,24]
for the smooth fitness landscapes. However, the diffusion
method gives completely incorrect results for the Eigen model
with nonzero fitness (selection) [23].

The limit of the application of the diffusion method is
an open problem for the population genetics models. The
method has been widely criticized in the literature for the
uncontrolled application in population genetics models [25].
It has been assumed that in population genetics models the
diffusion method works for weak selection [26]. We will
consider thoroughly the problem limits of the application of
the diffusion method in the case of strong selection, which is
the case at least for viruses [27] and bacteria [28,29].

This paper is organized as follows. In Sec. II, we solve
the discrete time Eigen model [5] by the HJE; the model is
widely applied to study virus evolution and to analyze the
experimental data for the serial transmission of viruses in
a chemical reactor. In Sec. III, we apply the HJE to study
the discrete time Wright-Fisher model [1–3]. In Sec. IV, we
discuss our approach and results, and in the Appendix we solve
the Moran model using the HJE method. Our method gives an
exact expression for the fixation probability for the latter case.

II. THE SOLUTION OF THE DISCRETE
TIME EIGEN MODEL

The discrete time Eigen model [5] describes the serial
transfer of a virus population in a chemical reactor. We

2470-0045/2016/94(4)/042422(8) 042422-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.042422


DAVID B. SAAKIAN AND CHIN-KUN HU PHYSICAL REVIEW E 94, 042422 (2016)

consider the following discrete time iteration process:

pi(n + 1) =
∑

j Qij rjpj (n)∑
j rjpj (n)

, (1)

where pi(n)’s are the frequencies of different types at time
step n, ri is the fitness of the ith type, and Qij ’s are the
transition probabilities due to mutations. The index i labels
different types of genomes. For simplicity we assume two
types of nucleotides in the genome, thus the genome is a chain
of L alleles, taking values ±1, similar to the Ising model
[30]. There are 2L types, labeled by index 0 � i � 2L−1. We
have for the mutation matrix Qij = qL−d(i,j )(1 − q)d(i,j ), q is
the probability of errorless reproduction of one nucleotide.
d(i,j ) is the total number of mutations to get genome j

from the genome i. We define the zeroth sequence with
only +1 alleles. We assume a symmetric fitness: the fitness
is a function of total number of mutations calculated from
zeroth sequence. The fitness function is defined as f (x) ≡ ri,

x = 1 − 2d(0,i)/L.
The dominator describes the dilution of population in a

chemical reactor.
We assume the following ansatz for the nth moment of

time:

Nipi(n) = exp[LU (x,t)], x = 1 − 2
d(0,i)

L
, t = n

L
,

(2)

where Ni ≡ L!
i!(L−i)! is the number of sequences in the ith

Hamming class, the collection of sequences having the same i

number of mutations from the zeroth sequence. We will map
our large system of (iteration) equations into a single nonlinear
partial differential equation for continuous variables. Then in
the limit of large L and 1 − q � 1, we have

pi(n + 1)/pi(n) = exp[LU (x,t + 1/L) − LU (x,t)] =
exp[U ′

t (x,t)],
∑

j rjpj = f [s(t)]. The numerator of Eq. (1)
has been already calculated before in detail [21]. Eventually,
taking the logarithm of both sides of Eq. (1), we derive

∂U (x,t)

∂t
= ln f (x) + γ

(
1 + x

2
e2U ′ + 1 − x

2
e−2U ′ − 1

)
− ln f [s(t)], (3)

where we denoted γ = L(1 − q) and U ′ = ∂U
∂x

(x,t). At time t

we have a surplus s(t) = ∑L
i=0 Nipi(n)(1 − 2i/L) and mean

fitness f [s(t)].
Equation (3) is the HJE for the Crow-Kimura model [21]

with the effective fitness g(x) = ln(ri), x = 1 − 2i/L and
effective time measured in L. In Ref. [23] we derived the exact
dynamics for such a Hamiltonian. Therefore, we have an exact
dynamics for the discrete time Eigen model as well. According
to Ref. [23], there are two different phases for the dynamics
of the maximum, depending on the initial distribution. In
Fig. 1 we compare our analytical results for the dynamics
of themaximum of distribution with the numerical solution of
Eq. (1). Moreover, the shock waves are possible for the smooth
fitness functions as for the Crow-Kimura model [31]. Although
there have been attempts to apply the diffusion approximation
for the quasispecies models with nonzero selection [32,33],
this is a rather poor approximation, giving the wrong results
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FIG. 1. A comparison of the dynamics for the discrete time Eigen
model with L = 100, ri = exp(−2i), q = 1 − 1/L, s = ∑

i(1 −
2i/L)pi(n) at the start of p0(0) = 1, and other p’s are equal to 0.
The smooth line corresponds to the numerical solution of Eq. (1), and
the solid circles are the analytical results by Eq. (8) from Ref. [23]
for x0 = 1.

even after several generations, see Figs. 4 and 5 in Ref. [23].
Diffusion approximation gives growing of the mean fitness
with time, whereas our method, supported by numerics, gives
nonmonotonic behavior for the mean fitness.

Let us discuss for a bit the relation of the discrete time
Eigen model with the standard continuous time Eigen model,
described via the distributions p̄i(t),

p̄i(t) =
∑

j

Qij rj p̄j (t) − p̄i(t)
∑

j

rj p̄j (t). (4)

For the same ri,Qij two models have an identical steady
state pi = p̄i . Nevertheless, their dynamics are different as
are different dynamics of the Crow-Kimura model and Eigen
models with the same fitness f (x) [23]. Moreover, although
the Crow-Kimura model with the smooth function f (x) has the
same steady distribution as the continuous time Eigen model
with the fitness function ef (x), they have different dynamics.
There is a case with a striking difference: The Crow-Kimura
model with the linear fitness function f (x) = kx has a smooth
dynamics, whereas the Eigen model with the exponential
fitness function ekx can have shock waves [34].

III. THE WRIGHT-FISHER MODEL

The Wright-Fisher model describes the dynamics of
population with two alleles a and b with some mutation
probabilities, selection coefficients, and constant population
size L. pi(n) is the fraction of population with the i,a alleles
at time n, 0 � i � L. We consider the iteration of pi via the
formula [4],

pj (n + 1) =
∑

i

pi(n)Pij ,

Pij = (L

j

)
(ηi)

j (1 − ηi)
L−j . (5)

Here Pij is the i → j transition probability, and ηi’s are
the parameters of the model, defined through mutation and
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selection coefficients,

ηi = i(1 + s)(1 − u) + v(L − i)

i(1 + s) + (N − i)
,

(6)
η(x) = x(1 + s)(1 − u) + v(1 − x)

1 + sx
.

Here (1 + s) is the ratio of the first and second allele fitnesses,
u is the mutation probability from a to b, and v is the inverse
mutation probability.

Actually, ηi resembles the discrete time Eigen model for
the specific choice of mutation matrix Qij : In the denominator
we have just the sum by the frequencies multiplied by their
Wrightian fitnesses, whereas the numerator is the same as
in (1).

We are interested in the steady state distribution (when
there are back and forward mutations), in the dynamics of the
maximum, in the fixation probability in the case of nonzero
selection, and mean first arrival time.

The diffusion approach assumes that at the limit L → ∞
the array of pi can be replaced via a smooth function p(x),

pi = Cp(x), x = i/L, (7)

where C is some coefficient and x becomes a continuous
variable at the limit of large L. Then after one iteration we
can write, expanding in Eq. (5) the pj − pi in degrees of 1/L,

p(x,n + 1) = p′(x,n)A(x) + p′′(x,n)B(x),

A(x) =
∑

j

Pij

i − j

L
, (8)

B(x) =
∑

j

Pij

(i − j )2

2L2
.

This is a typical case of diffusion approximation where one
ignores the terms with a higher order derivative ∼p(n).

Instead of diffusion approach Eqs. (7) and (8), in this paper
we will use an alternative ansatz,

pi(n) = exp[LU (x,n)], (9)

and clarify when the diffusion method gives correct results.
Let us use an ansatz (9) and an approximate expression,

L!

i!(L − i)!
= exp[−Lx ln x − L(1 − x) ln(1 − x)].

We replaced the sum via index i in Eq. (5) via an integration
by continuous variable y ≡ i/L then used a substitution
y − x = x and used the saddle point method. Eventually we
obtained the following iteration rule:

U (x,n + 1) = �(x,h) + U (x + h,n)|max(h),

�(x,h) = {−x ln x − (1 − x) ln(1 − x) + x ln η(x + h),

+ (1 − x) ln[1 − η(x + h)]}. (10)

We cannot derive a simple differential equation for the
dynamics of the maximum at any period in time.

A. The steady state distribution of the Wright-Fisher model

When there is only a mutation (neutral case without
selection), Eq. (6) reduces to

ηi = x(1 − u) + (1 − x)v. (11)

In this case it is of special interest to find the steady state of
the iteration law by Eq. (5),

pj =
∑

i

piPij . (12)

We consider the steady state solution and identify U (x,n) →
U (x) for a large n after infinite relaxation. We expand the
solution of U (x) in Eq. (10) via degrees of u,v, U (x) =∑

l=1 Ul(x). Thus we have for the steady state distribution
pi ,

pi(n) = exp

[
L

∑
l=1

Ul(x)

]
, (13)

and Ul(x) ∼ ul , which is equivalent to the expansion via
degrees of y − x.

Let us expand �(x,h) + U (x + h) in degrees of h. We have
a system of two equations for two variables U (x) and h(x),

�(x,h) + U (x + h) = U (x),
(14)

� ′
h(x,h) + U ′(x + h) = 0.

Holding only the quadratic terms ∼u2, we get

�2(x,h) = {[k(−1 + x) + x]u − h1}2

2(−1 + x)x
, (15)

where we denoted k = v/u, �(x,h) = �2(x,h) + O(u3).
Putting the latter expression into Eq. (13) and approximating
U (x + h) = U (x) + U ′(x)h, we obtain

h1(x) = u[−x + k(1 − x)],
(16)

U ′
1(x) = 2u

−x + k(1 − x)

x(1 − x)
.

Integrating Eq. (16) from the maximum point x0 = k/(k + 1)
we get the diffusion theory result from [4]

U1(x) = 2(u + v) ln 2(u + v) − 2u ln 2u − 2v ln 2v

+ 2v ln x + 2u ln(1 − x),

p = eLU1(x). (17)

Having the first order solutions h1(x),U1(x), we can calculate
the next corrections putting in Eq. (13) U (x) = U1(x) +
U2(x), h(x) = h1(x) + h2(x). Let us denote �3(x,h) as the
third order terms ∼u3 in the expansion of �(x,h) as well
as � ′

2(x,h) = d�2(x,h)/dh, h′
1 = dh(x)/dx. We obtain a

system of equations for U2(x),h2(x),

�3(x,h) + � ′
2(x,h)h2(x) + U ′

1(x)h2(x) + U ′
2(x)h1(x)

+U ′′
1 (x)h1(x)/2 = 0,

� ′
3(x,h) + U ′

2(x,h) + � ′
2(x,h)h2(x)

+U ′′
1 (x)h1(x) = 0. (18)
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Solving the system (18) we find U ′
2, then integrating from the

point x0, we derive

U2(x)/u2

= −1

3
(1 + k)[5 + 5k + 7k ln(k)] + 1

3
(1 + k)

×
(

− 5

−1 + y + ky
+ 5k2

k + y + ky
+ 7 ln(1 − y − ky)

+ 7k ln(k + xy + ky)

)
, (19)

where we denote k = v/u.

B. The limits of diffusion approximation

The diffusion theory result Eq. (17) is valid when we can
ignore the second term in the exponent for p in Eq. (13),
thus exp(LU2) � 1. Equation (19) gives U2(x) ∼ (x − x0)2

behavior, where x0 is the maximum of distribution. In the
expression,

p = exp[LU1(x) + LU2], (20)

U2 has both ∼u2(x − x0)2 and ∼v2(x − x0)2 terms. Therefore,
we get the following constraint for the validity of the diffusion
theory:

L(x − x0)2(u2 + v2) � 1, (21)

whereas our approach is correct under the much softer
constraint,

(u2 + v2) � 1. (22)

In Fig. 2 we compare the numerical solution for (5) and (6)
(solid dots) with the diffusion theory result (17) (dashed line)
and our result (smooth line) Eqs. (13) and (19) for the steady
state distribution. The accuracy of our method is much higher.
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FIG. 2. A comparison of the steady state distribution of the
Wright-Fisher model by Eq. (5) L = 100, u = 0.1, v = 0.2, s = 0.
The smooth line is our result by Eqs. (13), (17), and (19), and the
dashed line is calculated by the diffusion theory of Eq. (17). The solid
circles are the results of the numerical solution of Eq. (5) after many
iterations.

C. The dynamics in the Wright-Fisher model with mutations

Let us consider the short time evolution in the Wright-
Fisher model when the population was initially focused at x0.
Replacing � by �2 and taking U (x + h) = U (x) + U ′(x)h,
we get after the integration via h,

U (x,n + 1) = U (x,n) + a(x)U ′(x,n) + b(x)U ′(x,n)2

2
,

(23)

where a(x) = [v(−1 + x) + ux], b(x) = 1
x(1−x) . It is the HJE

du/dt + H (x,u′) = 0 with the Hamiltonian,

−H (x,p) = a(x)U ′(x,n) + b(x)U ′(x,n)2

2
. (24)

For the maximum of the distribution we get an equation using
the methods of characteristic [26],

dx/dt = H ′
p(x,0) = −a(x). (25)

The same equation has been derived by the diffusion method
for the mean of distribution. A similar derivation gives the
variance of distribution [35], identical to the result by the
diffusion method [4].

We can use the methods of the HJE for the quadratics Hamil-
tonian [(A15)–(A17)] to calculate the whole distribution.

Our approach and the diffusion method give identical
results near the maximum. Equation (23) deviates from our
rigorous result in Eq. (10) for L|x − x0| � 1 as we dropped
the higher order terms in the expansion of �(x,h) in Eq. (10)
to get Eq. (23). Thus, the diffusion approximation gives an
incorrect result for the dynamics of ln pi(n) for i, far from the
peak of distribution even for zero mutation rates.

D. The fixation probability in the diffusion approach

Consider the Wright-Fisher model without mutations but
with the selection described via the parameter s. There are two
absorbing states for the Markov model i = 0 and i = L, and
we are interested in the probability πi ≡ π (x), x = i/L that
the system with starting state i will proceed to state i = 0. This
is the fixation probability of the allele a. By definition,

π (0) = 0, π (1) = 1. (26)

Consider the Wright-Fisher model in Eq. (5) with ηi given as

ηi = i(1 + s)

i(1 + s) + (L − i)
, η(x) = x(1 + s)

1 + sx
. (27)

In Ref. [4] Eq. (2.141), the following exact relation has been
derived for πi :

πj =
∑

i

πiPji . (28)

Equation (28) just describes that the probability of going to
fixation from state i equals the sum of probabilities of going
to states j multiplied to the fixation probability in the j th
state. We have a transposed matrix compared with Eq. (5) [4].
Equation (12) gives the steady state distribution of the WF
model, whereas the meanings of πi and pi are different in
these two cases.
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Using the approximation of Eq. (8) for the choice in
Eq. (27), the following equation has been derived [36] for
π (x):

π ′(x)sx(1 − x) + π ′′(x)x(1 − x)/(2L), (29)

taking into account the border conditions (26), it has been
derived [36]

π (x) = 1 − exp(−2Lxs)

1 − exp(−2Ls)
. (30)

We are interested in the case,

Ls � 1, s � 1. (31)

Equation (30) gives [4]

p(x) ≈ exp(−2Lsx). (32)

E. The fixation probability in the HJE approach

Let us calculate π (x) using an alternative method. We
assume the following ansatz:

πi = A[1 − pi],
(33)

pi ≡ p(x) = exp[LU (x)].

To ensure the second constraint from Eq. (26), we get

A = 1

1 − exp[LU (1)]
. (34)

For the pi’s we have the same Eq. (28) as for πi .
Using the Stirling formula and Eq. (31) for p(x), we obtain

from Eq. (28),

U (x) = max[�(x,h) + U (x + h)]|h,
�(x,h) = (x + h) ln η(x) + (1 − x − h) ln[1 − η(x)]

− (x + h) ln(x + h) − (1 − x − h) ln(1 − x − h),

(35)

or

U (x) = �(x,h) + U (x + h),

� ′(x,h) + U ′(x + h) = 0. (36)

Now our small parameter is s. We repeat the method from the
previous section,

U (x) = U1(x) + U2(x) + · · · , (37)

where U1 ∼ s, U2 ∼ s2. The second order term in the expan-
sion of � is

�(x,h) = − [x(1 − x)s − h]2

2x(1 − x)
. (38)

Using the expression (38), we get from Eq. (35) the system of
equations for h1(x),U1(x),

− [x(1 − x)s − h1(x)]2

2x(1 − x)
+ U ′

1(x)h1(x) = 0,

(39)
[x(1 − x)s − h1]

x(1 − x)
+ U ′

1(x) = 0.

40 60 80 100
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0.8
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FIG. 3. The ratio of the analytical results and the numerics
R ≡ (1 − π theor

i )/(1 − π num
i ), πi is the fixation probability in the WF

model by Eqs. (26) and (27) with L = 1000. π num
i is the numerical

result, and π theor
i is the analytical result. We consider the case of

i = 100. The selection is defined as s = S/L. The dashed line
corresponds to the result given by the diffusion theory result Eq. (30),
the solid dots are calculated by Eq. (44) of Ref. [26], and the smooth
line is our analytical result of Eq. (41). Although at small selection
S, all three analytical methods give accurate results (R ≈ 1), and for
the higher values of S our method is much more accurate than the
diffusion method.

Thus we obtain

U ′
1(x) = −2s,

(40)
h1 = −x(1 − x)s.

To calculate higher order terms, we replace in Eq. (36)
h(x) = h1(x) + h2(x), U (x) = U1(x) + U2(x). Looking
again at Eq. (18) we get with O(s2) accuracy,

p(x) = exp

[
−2sLx

(
1 − s

(1 + x/2)

3

)]
,

(41)

π (x) = 1 − exp
[−2sLx

(
1 − s

(1+x/2)
3

)]
1 − exp

[−2sL
(
1 − s

(1+1/2)
3

)] .

We see that the diffusion theory result is correct for

Ls2x � 1. (42)

In Ref. [26] it has been assumed that the diffusion theory result
is correct under the condition,

Ls2 � 1. (43)

The last condition is broken at least for the case of bacteria
[28]. In Fig. 3 we compare our analytical result in Eq. (43)
with the results of the diffusion method as well as with the
expression for the fixation probability suggested in Ref. [26],

π (x) = 1 − exp[−2Lx ln(1 + s)]

1 − exp[−2L ln(1 + s)]
. (44)

F. The diffusion equation for the mean first arrival time

For the mean arrival time one has the following exact
equation [4]:

t̄i =
L∑

j=0

pij t̄j + 1.
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To solve this equation, we again use the diffusion approxi-
mation, assuming that dn+1T

dxn+1 � Ldnx dnT
dn+1x

, and the following
formula has been derived in Ref. [4]:

t̄(x) = −2L
(1 − x) ln(1 − x)

x
.

The solution is a smooth function, contrary to the case in the
previous section. Therefore, there is no constraint like Eq. (21)
now, and the diffusion theory yields the exact result at the limit
L → ∞ [37,38].

IV. DISCUSSION

In this paper we applied the exponential ansatz and the
related HJE equation to solve discrete time models of evolution
theory and investigated the limits of validity for the diffusion
approximation. The investigated models are the working
mathematical tools in virology and population genetics. We
gave the exact solution for the dynamics of the discrete time
Eigen model (a rather reasonable description for the virus serial
transfer experiments) and advanced the solution of the Wright-
Fisher model for the case of strong selection. Our analytical
results are well confirmed by the numerics, see Figs. 1– 3.
Figures 2 and 3 illustrate the higher accuracy of our analytical
results compared with the diffusion theory results. Our key
result Eq. (41) is more accurate than the analytical expression
from Ref. [26], the current champion in accuracy. Although the
Wright-Fisher model has been under active consideration for
seven decades, some important issues remained still unsolved:
the solution of the steady state, the fixation probability in
the case of strong selection and mutations, and the limits of
application for the diffusion theory. The diffusion equation
works well for the first arrival time calculation where it yields
exact results [4,37]. Our exponential ansatz allows us to solve
the steady state expressions for the probability distribution
or fixation probability with any given accuracy via a series
expansion in the selection or mutation coefficients (the bulk
term in this series is the result by diffusion approximation).
Moreover, we can calculate also O(1/L) correction terms,
taking correction terms in the Stirling formula and following
the standard methods of the HJE [39]. The diffusion method
gives the correct dynamics for the maximum and variance of
distribution but does not describe the dynamics of the tail of
distribution. The diffusion approximation works well near the
maximum of (steady state) distribution and when the initial
state is close to the absorbing state in the case of fixation
probability, even if there is a strong selection and the constraint
of Eq. (43) is broken.

We can apply the truncated Hamiltonian version of the WF
model to solve approximately the dynamics when the fitness
changes with time. Such mathematical problems arose for the
chemotherapy optimization in the case of cancer [40].
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APPENDIX: THE MORAN MODEL

1. The derivation of the HJE

We consider the following Markov model where pi’s are
the probabilities of different states and Pij ’s are the transition
probabilities [4]:

pj =
∑

i

piPij ,

Pi,i+1 = i(L − i)

L2
= μi,

(A1)
Pi,i−1 = i(L − i)r

L2
= λi,

Pii = 1 − Pi,i−1 − Pi,i+1.

Here L is the population size r = e−s , and s is the selection
coefficient. We assume now that at any nth moment in time,

pi(n) = exp[Lu(x,t)],

x = i

L
, t

n

L
, (A2)

In the limit of large L we have

∂u

∂t
= ln[λ(x)ep + μ(x)e−p + 1 − μ(x) − λ(x)],

μ(x) ≡ μi = x(1 − x), (A3)

λ(x) ≡ λi = x(1 − x)e−s .

While deriving Eq. (A3), we ignored the terms u′′/L, assuming

u′′/L � u′. (A4)

Equation (A3) is a Hamilton-Jacobi equation and can be solved
using the methods of characteristics [23,41,42].

2. The dynamics

Consider the characteristics equation, the Hamilton equa-
tion for the coordinate x and momentum p. As the Hamiltonian
is time independent, q ≡ ∂u

∂t
is constant along the characteris-

tics. We have from the HJE,

q = ln[λ(x)ep + μ(x)e−p + 1 − λ(x) − μ(x)],

ep = A −
√

A2 − 4λμ

2λ
, (A5)

A = eq − 1 + λ + μ.

We have the Hamiltonian equation,

dx

dt
= λ(x)ep − μ(x)e−p

λ(x)ep + μ(x)e−p + 1 − λ(x) − μ(x)
. (A6)

Expressing ep from (A5) via x and q and integrating dt/dx

from Eq. (A6), we obtain

dx

dt
= ±

√
[eq − 1 + λ(x) + μ(x)]2 − 4λ(x)μ(x)

eq
. (A7)

We can define time along the characteristics,

T (q,x) =
∫ x

x0

dx
eq√

[eq − 1 + λ(x) + μ(x)]2 − 4λ(x)μ(x)
.

(A8)
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For the dynamics of the maximum y(t) = x, we set q = 0 and
obtain the known result [4] dy

dt
= λ(x) − μ(x).

Let us calculate now the population distribution at any
moment in time. For the given x,t we first find q, which gives
T (q,x) = t .

If the population originally is focused at point x0, then
we have the following expression for the distribution at the
moment in time t :

u(x,t) =
∫ x

0
dy p(y) + qt, (A9)

where

p(x) = ln

[
A +

√
A2 − 4λμ

2λ

]
, A = eq − 1 + λ + μ.

(A10)

The variance of the distribution is
∑

i pi( i
N

)
2 − (

∑
i pi

i
N

)
2 =

1
−Nu′′

xx
, which is calculated using the formula

b(x)2
∫ x

x0
dy{c(y)/[b(y)]3} from Ref. [35] with

b(x) = λ(x) − μ(x), c(x) = λ(x) + μ(x). (A11)

3. The fixation probability for the Moran model

We can derive the fixation probability using Eq. (28). For
the Moran model this probability can be calculated exactly [4],

π (x) = 1 − exp(−Lxs)

1 − exp(−Ls)
. (A12)

Let us derive this result in our approach. We again look at the
limit L � 1 and again investigate Eq. (28) using the ansatz
(31). We derive

(eu′ − 1)λ(x) + (e−u′ − 1)μ(x) = 0. (A13)

The solution is simply

eu′ = e−s . (A14)

TABLE I. The comparison of the distribution function u(x)
calculated exactly by (A9) u0(x) and approximately (A17) and u1(x)
for the Moran model with s = 0.1 after T = 2N generations. The
original distribution was focused at x = 0.2.

x 0.3 0.4 0.5 0.6 0.7 0.8

u0(x) 0.03084 0.20011 0.32604 0.48256 0.6784 0.9332
u1(x) 0.03078 0.19987 0.32715 0.48734 0.6908 0.9575

Thus u = −sx, and the condition (A4) is valid. We have
p(x) = c exp[−Lsx], and the condition Eq. (25) gives the
exact result (A11).

4. The dynamics for the quadratic truncation
of the Hamiltonian

Let us truncate the Hamiltonian from Eq. (5) in degrees
of p,

q = {[λ(x) + μ(x)] − (λ − μ)2}p
2

2
+ [λ(x) − μ(x)]p

≡ Ap2

2
+ Bp. (A15)

Then

t =
∫ x

x0

dy√
2qA + B2

, (A16)

and

u(x,t) =
∫ x

0
dy p(y) + qt

(A17)
p(x) =

√
2qA + B2/A − B

A
.

In Table I we compare the exact solution for u(x) with the
solution derived via quadratic truncation.
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