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Algebraic study of drifting spiral waves
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This two-dimensional study is motivated by cardiac electrophysiology, and focuses on rotating spiral waves
in reaction-diffusion (RD) models. Here we deal with a spiral’s translational drift under a constant externally
imposed gradient G. A long-standing problem may be stated as follows: Given the dimensionless drift velocity
V/G, find its nontrivial direction angle � relative to G. A deductive algebraic treatment yields a solution,
cos � = −V/G. Three features are worth noting: the combination of algebraic and RD contexts; a somewhat
extensive derivation contrasting with a compact result; and the generality due to the absence of reaction details in
the formula. Agreement with a computational database is good to fair, if spirals of very low density are excluded.

DOI: 10.1103/PhysRevE.94.042421

I. INTRODUCTION

Over the last few decades, electric excitation waves in the
heart muscle have become the object of ever more elaborate
and realistic models [1–3]. Much of the mathematics makes use
of reaction-diffusion (RD) theories. The present work, which
assumes an RD system, is algebraically based, and deals with
uniformly rotating nonmeandering spiral waves. If a weak
constant external vector field G is applied to the propagation
medium, a translational drifting motion of the spiral is
observed. The weakness of G preserves the spiral’s rotation,
and one may use a perturbation method to analyze the drift.

The physical nature of G is unspecified. It could be an
electric field, or the concentration of a chemical substance, etc.
For our purposes its important effect is to break the rotational
symmetry of the medium and induce a drift with constant
velocity V.

The drift problem of concern in this study asks for the
unique angle between V and G. The main result consists of
Eq. (30) further on. For definiteness we assume that G points
in the +x direction. To begin, the equations are assumed to
be unperturbed, G = 0. The mathematical assumptions are as
follows.

Two variables, u(x, y, t) and v(x, y, t), are assumed to
propagate in a medium that is uniform and independent of
time; it is also isotropic in the absence of an external gradient.
Under appropriate conditions the above-mentioned waves
are produced. We start with the modified FitzHugh-Nagumo
equations [4]

∂tu − ∇2u + �(u, v) = 0, (1)

∂tv + �(u, v) = 0. (2)

In these equations, u stands for the (macroscopically mea-
sured) transmembrane potential of an electrically excitable
heart muscle cell; v represents a local ionic current (also
macroscopically measured) across the membrane. In a more
realistic model, there may be well over a dozen such currents.

The coefficient of −∇2u (the diffusion constant) is set
equal to 1 for simplicity. The reaction functions � and �

are usually nonlinear and can be quite complicated; they are
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assumed given, and have no dependence on space or time
except implicitly by way of the variables u and v. Uniformity
of the medium is expressed by that feature, and applies also to
the other terms ∂tu, ∂tv, and ∇2u. This fact lets us define the
combination

−∇2u (u, v) + �(u, v) ≡ �(u, v), (3)

leading for Eq. (1) to a form similar to (2), namely

∂tu + �(u, v) = 0. (4)

II. ZERO-GRADIENT CASE

The unperturbed spiral is assumed here to undergo rigid
rotation about a fixed center (the origin of coordinates); the
literature of the subject mostly assumes a clockwise rotation.
We accordingly have

∂t∂x = ω∂y, (5)

∂t∂y = −ω∂x, (6)

where ω is the angular frequency. Equations (5) and (6) are
valid to first order in x or y from the rotation center. [In order
to confirm these equations and their signs one may apply the
operators in question to a clockwise rotating distribution such
as (x sin ωt + y cos ωt) in the (x, y) plane; a bit further from
the origin, and with added terms in x2, etc., the equations are
seen to break down.]

Applying ∂x and ∂y to Eqs. (4) and (2), we have

ω∂yu + (∂xu)∂u� + (∂xv)∂v� = 0, (7)

− ω∂xu + (∂yu)∂u� + (∂yv)∂v� = 0, (8)

and similarly for the ∂tv equations using �(u, v). Thus
we obtain four simultaneous linear equations for the four
quantities ∂xu, ∂yu, ∂xv,∂yv. Setting for short

∂u� = a, ∂v� = b, ∂u� = c, ∂v� = d, (9)

we find for the above-mentioned four equations the coefficient
matrix

M =

⎛
⎜⎝

a ω b 0
−ω a 0 b

c 0 d ω

0 c −ω d

⎞
⎟⎠ . (10)
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A nontrivial solution requires

det M = 0, (11)

or, after calculation,

(ω2 − ad + bc)2 + (a + d)2 = 0. (12)

Thus, remarkably, condition (11) splits into a pair,

ω2 − ad + bc = 0 (13)

and

a + d = 0. (14)

All cofactors of det M can be shown to vanish.

III. COMOVING (X, Y ) UNDER NONZERO G

Application of G is particularly simple in its effect on M:
namely, in the perturbation expansion, M has a zero first-order
term in G. This is readily seen from the fact that, while G is
a vector, every element of M, including ω, is a scalar. Since
the calculations that follow are limited to first order in G, all
elements of M will be treated as independent of G.

The perturbed Eq. (4) reads

∂tu − G∂xu + �(u, v) = 0. (15)

We implement the unknown drift by transforming the (x, y, t)
coordinates to comoving (X, Y, T ):

x = VxT + X, y = VyT + Y, t = T , (16)

so that

∂x = ∂X, ∂y = ∂Y , ∂t = −Vx∂X − Vy∂Y + ∂T . (17)

In the above, ∂T is taken at constant X, Y. Equation (4) now
reads

(−Vx∂X − Vy∂Y + ∂T )u − G∂Xu + �(u,v) = 0. (18)

It will be useful to evaluate this equation at the center of
rotation C where X = Y = T = 0 (the origins coincide) and
where

∂T u = ∂T v = 0; (19)

it should be noted that the constancy of u and v at C is
the essential marker for that point, whether stationary or
comoving. We focus on the vicinity of C, where, using (16) in
Eq. (18) we have

u(x, y, t) = u(X + VxT ,Y + VyT ,T ) (20)

and similarly for v. We are assuming t = T = 0 for the time
when moving and laboratory origins coincide. Therefore, at
point C, Eq. (20) just assigns to u its G = 0 value, and the
same is true for v. According to Eqs. (4) and (2), that also
implies � = � = 0 in Eq. (18). Taking (19) into account,
Eq. (18) now reduces to

(Vx + G)∂Xu + Vy∂Y u = 0. (21)

In an entirely similar way we find

Vx∂Xv + Vy∂Y v = 0. (22)

Further information can be obtained from (21) and (22) by
applying ∂T to them.

In addition, ∂T may be applied to Eq. (18) before taking
T = 0. With use of Eq. (20) as well as ∂T u = (∂T )2u = 0 and
similarly for v, the result is

−ω(Vx + G)(∂Y u) + ωVy(∂Xu)

+Vx[(∂u�)(∂Xu) + (∂v�)(∂Xv)]

+Vy[(∂u�)(∂Y u) + (∂v�)(∂Y v)] = 0. (23)

Correspondingly, from the � equation analogous to (18),

ωVx(∂Y v) − ωVy(∂Xv) + Vx[(∂u�)(∂Xu) + (∂v�)(∂Xv)]

+Vy[(∂u�)(∂Y u) + (∂v�)(∂Y v)] = 0. (24)

IV. V -DEPENDENT MATRICES

The coefficients of ∂Xu, ∂Y u, ∂Xv, ∂Y v, in that order, can
now be listed in a four-by four matrix N whose rows represent
Eqs. (21)–(24):

N =

⎛
⎜⎜⎝

Vx + G Vy 0 0
0 0 Vx Vy

−ωVy + aVx ω(Vx + G) + aVy bVx bVy

cVx cVy −ωVy + dVx ωVx + dVy

⎞
⎟⎟⎠. (25)

Concluding the algebraic information from the RD equations, yet another set of four rows, the matrix P below, is obtained by
again applying ∂T to (21)–(24):

P =

⎛
⎜⎜⎝

Vy −Vx − G 0 0
0 0 Vy −Vx

ω(Vx + G) + aVy ωVy − aVx bVy −bVx

cVy −cVx ωVx + dVy ωVy − dVx

⎞
⎟⎟⎠. (26)

Further use of ∂T brings nothing new; that operator simply
toggles between N and P. In particular, we see by inspection
that det N = det P. Together, those two matrices represent a

set of eight simultaneous linear homogeneous equations that
have a nontrivial solution in common. Thus, every subset
of four equations has a nontrivial solution and must have a
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zero determinant. Calculating any such determinant generally
gives a redundant result. However, two determinants can be
sufficient to yield the values of Vx and Vy as functions of
G. [A simplification occurs as follows: in the 4 × 8 matrix
consisting of N and P, multiplication of rows or columns by
c or c−1 makes all resultant 4 × 4 determinants dependent on
the product bc rather the individual b or c. Then, owing to
Eqs. (13) and (14), the surviving parameters are only ω and δ.]

V. SOLVING FOR � VERSUS V

As a first example we require det N = 0. After calculation,
and omitting an overall factor V 2

x + V 2
y , that condition reads

G2 + G

(
2Vx − d

ω
Vy

)
+ (

V 2
x + V 2

y

) = 0. (27)

Our second chosen constraint uses a composite matrix Q,
described as follows. The eight equations in N and P will
be labeled (N1, . . . , N4) and (P 1, . . . , P 4 ); the matrix Q

is defined with rows (N1, N4, P 2, P 3), and its det Q = 0
condition reads, with omission of a d2(V 2

x + V 2
y ) factor,

GVx + V 2
x + V 2

y = 0. (28)

For comparison with simulations, we define the drift speed V

and drift angle � by

Vx = V cos �, Vy = V sin �. (29)

Equation (28) then states that

cos � = −V

G
, (30)

and with its help, (27) reduces to
(

V

G

)2

+ d

ω

V

G
sin � − 1 = 0, (31)

and therefore

tan � = − d

ω
. (32)

VI. DISCUSSION

Equation (30), which follows from a purely algebraic anal-
ysis, is the main result presented here. It makes no reference to
the reaction functions and accordingly, it possesses unexpected
universality. Running the unperturbed spiral simulation is not
required. A particlelike characterization of the rotation center,
leading to Eqs. (5) and (6), is the only approximation that
needed to be made.

Formula (32), however, requires knowledge of ω. That
parameter can be viewed as incorporating the details of
reaction functions � and � in all space-time. In order to obtain
ω, we need to run the unperturbed spiral. Thus, compared to
(30), Eq. (32) seems less useful; it also requires a good estimate
of d. Such an estimate may require us to know the location of
the rotation center in the (u, v) plane. If steep changes exist in u

or v, considerable errors in d can be expected. In the presently
used database, d happens to be a discontinuous function of
u. With some care a reasonable prediction for � can still be
obtained; the analysis lies beyond the present scope, however.

FIG. 1. Theory vs simulation data: the dimensionless drift speed
V/G is plotted against the drift angle �. The curve follows Eq. (30);
the points are taken from the database of Ref. [4]. Comments are to
be found in the text.

In verifying the results presented above, the limits of
applicability are as follows. According to (30), V must point
into the x < 0 half plane. This is in fact the case for a majority
of database simulations in Ref. [4]. According to (32), V
must then point into the y > 0 half plane, as it in fact does
in simulations, a result of clockwise rotation and the positivity
of d = ∂v�. In short, theoretical predictions limit V to the
second quadrant.

The result of simulations is compared with theory in Fig. 1.
The two leftmost points are quite close to the 90◦ limit
of validity of (30) and should not be expected to satisfy
that equation. The other points are reasonably close to the
theory; the worst case, with coordinates (133.0, 0.509), when
compared to the closest curve point, is 5.2◦ off in angle, and
13% off in terms of the unit speed amplitude.

Our particlelike treatment of the rotation center is what
ultimately yields a formula as compact and general as Eq. (30).
The particle approximation, however, does produce a chain of
consequences that can influence the fit to some simulations.
First, Eqs. (5) and (6), must break down at some distance from
the center. Therefore, as the data indicate, large-size spiral
cores are affected more than small ones. Second, the effect
becomes more visible close to the 90◦ validity cutoff. The
reason lies in the fact, observed years ago [5], that sparse spirals
(large cores) tend to drift against the gradient G, oppositely
to dense spirals (small cores). The rule is confirmed in the
database.

The remaining points’ comparison to the theoretical curve
ranges from good to fair. The reasonable conclusion appears
to be that formula (30) and the wave simulations themselves
are mutual quality tests. Higher-resolution work should decide
the question one way or the other.

Future improvements of the validity limits might conceiv-
ably be achieved with the help of eikonal results, involving
wave speed as related to wave front curvature [6–9].
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An alternative treatment of drifting spirals, due to Biktashev
and collaborators [10], needs mentioning. That work considers
a nonzero area around the rotation center and makes use of
a numerically precalculated response function. The result is
a very accurate determination of drift parameters. In that
method, a gradient that causes the drift can be applied to a
reaction parameter. In contrast, the present treatment applies
specifically to the diffusion term, the situation that prevails in
many electrocardiographic cases. Very little overlap is found
between Ref. [10] and the present method. In the present case,
no response function is calculated. Thus the result is in some

sense universal. It is also unexpectedly simple—formula (30)
is readily memorized. However, as discussed earlier in the
section, some data points are only in rough agreement with the
theoretical curve. The method and data may converge better
after some future work.
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