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Analytical calculation of the lipid bilayer bending modulus
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Bending and Gaussian moduli of a homogenious single-component lipid bilayer are calculated analytically
using microscopic model of the lipid hydrocarbon chains. The approach allows for thermodynamic averaging
over different chains conformations. Each chain is modeled as a flexible string with finite bending rigidity and an
incompressible cross-section area. The interchain steric repulsion is accounted for self-consistently determined
single-chain confining parabolic potential. The model provides a simple analytical expression for the membrane
bending modulus, which falls within a range of experimental values. An observed dependence of the modulus on
hydrocarbon chain length is also reproduced. Correspondence between our microscopic model and the membrane
theory of elasticity is established.
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I. INTRODUCTION

Biological membranes play the crucial role in functioning
of living cells [1–3]. Apart from the barrier function they
are involved as platforms for a large amount of cell proteins
and determine the energetic barrier for cell fusion and
fission processes. Membrane’s basic structural element is
lipid bilayer, which motivates vast studies of its mechanical
and thermodynamical properties. The presented theoretical
study fills a gap between phenomenological liquid crystal and
polymer brush models of lipid membrane elasticity.

On the length scales much larger than the membrane
thickness, membrane deformations can be described using the
elasticity theory of continuum elastic media, which was used,
for instance, to explain the red blood cell’s shape [4,5]. This
theory is based on the Helfrich free-energy density [6]:

FH = κH 2

2
− κHsH + κK, (1)

where H is a mean curvature, Hs = c1 + c2, Hs is a sponta-
neous curvature, and K is a Gaussian curvature K = c1c2, both
expressed in terms of local principal curvatures c1 and c2. The
two constants that control the membrane shape are bending
modulus κ and saddle-splay modulus κ . However, if neither
boundary conditions nor topology of the membrane change,
the integral contribution of Gaussian term to the elastic energy
is constant due to Gauss-Bonnet theorem [7]. In this case the
exact value of κ is insignificant and the whole term may be
omitted.

On smaller length scales elasticity theory can be expanded
to take into account the average direction of the lipid molecule,
director, by introducing its tilt value [8]. The tilt describes
deviation of director from the normal to the membrane
surface. This allows us to describe membranes fusion [9,10],
fission [3], short wave-length undulations [11], and even lipid
domain structure [12–15], to name just a few. Corresponding
functional is an extension of the Helfrich model [6] and has
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been derived by Hamm and Kozlov [8]:

FHK = κH̃ 2

2
− κHsH̃ + κK̃ + κθ �t 2

2
, (2)

where elastic constants κ and κ are the same as in Helfrich
functional Eq. (1), �t and κθ are tilt vector and tilt modulus,
respectively, and H̃ and K̃ are renormalized with the local
tilt variation. Value of the tilt modulus is assumed to be
independent of the lipid type, and approximately equals the
surface tension at the oil-water interface [8,16]. Simultane-
ously, bending modulus strongly depends on the lipid type and
lacks analytical description.

As it was shown in the work by Hamm and Kozlov [8]
uniform tilt and bending deformations enter additively the
deformation energy, hence, being independent. This means
that tilt degree of freedom does not contribute to the bending
modulus and we might consider pure bending case for our
purposes without losing generality of the model.

For a pure bending (K̃ ≡ 0, �t ≡ 0) we are left with a
single elastic constant and a Helfrich curvature H̃ ≡ H (see
Ref. [8]):

Fbend = κH 2

2
− κHsH. (3)

In this work we have calculated bending modulus analyti-
cally from a simple microscopic model.

Various experimental methods are used for bending mod-
ulus measurement. In Ref. [17] bending modulus is found by
fitting nanotube radii at different values of voltage applied
along the lipid nanotube in electrolyte solution. Bending
modulus has been also measured using optical [18], neutron
spin echo [19], and sensitive micropipet [20] methods, as
well as with the help of molecular dynamics simulations
by analysis of the undulation [11,21] and tilt and bending
fluctuations [22,23].

Several theoretical approaches for bending modulus cal-
culation have been also proposed. In the early work by
Szleifer et al. [24] a mean-field theory approach was used to
find probability distribution function of chain conformations,
which minimizes free energy of the membrane. This was the
first work when it has been argued that the main contribution
to bending energy comes from the hydrophobic chains. Two
drawbacks of the work were absence of direct self-assembly
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of lipids in membrane and absence of microscopic expression
for bending modulus.

Another theoretical approach [25] starts from an Ising-
type model, which is then turned into Landau-Ginzburg
free-energy functional. Within this consideration membrane
self-assembles due to entropy reduction, and the analytical
expression for bending modulus is found. However, lipid
conformations are not taken into account, which might be
desirable for a microscopic model. Indeed, as we found in this
work, lipid conformations might account for 50% of bending
modulus.

In another analytical effort [26] bending modulus is split
in two contributions: one of an entropic nature, related to the
area per head, and the other one is attributed to the lipid-lipid
interaction. Both contributions were found numerically using
a model of lipid in which rigid beads are connected to each
other by a Lenard-Jones potential.

Despite energy functional Eq. (2) having so many applica-
tions, there is still no generally accepted microscopic theory
of bending modulus and clear analytical estimate for its value.
Hence, it is still unclear how the molecular properties of
a membrane determine its bending rigidity. In the present
work we analytically calculate bending modulus of uniform
lipid bilayer membrane using a microscopic model. The lipid
molecules are represented with flexible strings. This model
previously has been used for calculation of lipid membrane
lateral pressure profile [27,28], pore formation phase diagram,
and lateral stretching modulus [29].

The flexible strings model has been successful in analytical
description of lateral pressure profile in hydrophobic region
of lipid [27] and bolalipid [28] membranes, as well as
membranes with finite curvature [30]. The calculated profiles
were among the first known to us in the literature, giving
theoretical explanation to the corresponding MD simulations
results of Refs. [31–33]. The profiles are in good agreement
with experimental data. Our analytically solvable microscopic
model provides correct theoretical estimates for parame-
ters characterizing collective properties of lipid membrane.
Those parameters include lipid bilayer area expansion co-
efficient [27] and bending modulus of the membrane (see
current manuscript). They are derived using as an input a single
hydrocarbon tail’s bending rigidity, incompressible area, and
hydrophobic tension.

In the following section we briefly describe flexible strings
model, then we describe bending modulus calculation, which
is followed by a discussion.

II. CALCULATION

A. Flexible strings model

The flexible strings model considers lipid as an effective
flexible string with a given incompressible area, An, and finite
bending rigidity, Kf (see Fig. 1), subjected to the confining
parabolic self-consistently determined potential. The latter
allows for a repulsive entropic force induced between the
neighboring lipid molecules, forming a bilayer, due to ex-
cluded volume effect (see Fig. 2). Interaction between heads is
effectively included into surface tension in the hydrophobic
region. Energy functional of the string consists of kinetic

FIG. 1. Hydrocarbon tails of lipid are modeled as a flexible string.
Schematic representations.

energy and bending energy of a given string conformation,
as well as potential energy in the confining potential induced
by collisions with the neighboring chains:

Et =
∫ L

0

[
ρṘ2

2
+ Kf

2

(
∂2R
∂z2

)2

+ BR2

2

]
dz, (4)

where ρ is a linear density, R(z) = {Rx(z),Ry(z)} is a vector in
the plane of the membrane giving deviation of chain’s center
from the straight line as a function of coordinate z along
the “vertical” axis (see Fig. 1), and B is a parameter of the
confining potential determined self-consistently (see Fig. 2).
Monolayer thickness L depends on membrane curvature J .
Self-consistent parabolic potential has been used previously to
model a polymer chain in confined geometry [34]. In our case
a single chain confinement is due to excluded volume effect of
surrounding lipids in a monolayer. Inclusion of kinetic energy
term into expression Eq. (4) has pure normalization goal
and gives no contribution to observable characteristics [35],
since kinetic and potential energies are separable in classical
statistical mechanics. Nevertheless, this term leads to correct
expression for the eigenfrequencies of transverse vibrations
of the Euler beams modeled by the first two terms in
Eq. (4).

FIG. 2. Collisions with neighboring lipids are modeled by
self-consistent confining potential. Potential is quadratic in the
string deviation from axis z (arrows size mimics local force
strength).
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Boundary conditions for the model flexible string take into
account the following physical assumptions [36]:

R′
x(0) = 0, a chain terminates perpendicularly to the

membrane surface;

R′′′
x (0) = 0, net force acting on a head is zero;

R′′
x (L) = 0, net torque acting at a chain’s free end is zero;

R′′′
x (L) = 0, net force acting at a chain free end is zero.

(5)

The same boundary conditions hold for the Ry(z) compo-
nent. As it is seen from the data on order parameter [21,37],
the chains in the vicinity of head groups are not permanently
perpendicular to the membrane surface. Yet, the chains in that
region are not in a complete disorder: they are constrained by
the hydrophobic tension. Lipid monolayer has strongly asym-
metric structure. The first boundary condition (orthogonality
of the string to the membrane surface) reflects the above-
mentioned asymmetry of the monolayer by differing from
the boundary condition at the chain’s end. Our approximation
seems more suitable for corresponding boundary conditions
rather than setting lipid chains orientation free in the region of
head groups.

Assuming membrane to be locally isotropic in lateral
direction, partition function can be split in the product of two
equal components, Z = ZxZy = Z2

x , and thus free energy of
the lateral oscillations of the chain equals to

Ft = −2kBT log Zx. (6)

Partition function Zx could be written as a path integral
over all chain conformations:

Zx =
∫∫

e
− E{Rx (z),Ṙx (z)}

kB T DRxDṘx. (7)

Under the boundary conditions Eq. (5) potential part of the
energy functional Eq. (4) can be equivalently rewritten in terms
of linear Hermitian operator Ĥ = B + Kf

∂
∂z4 in the form

Et(pot) =
∑

α=x,y

Eα, Eα ≡
∫ L

0
[Rα(z)ĤRα(z)]dz. (8)

Then, an arbitrary conformation of the chain is expressed as
the deviation from the straight line of the centers of the string,
Rx,y(z), and parameterized by an infinite set of coefficients Cn

of the linear expansion of the function Rx,y(z) over the eigen
functions Rn(z) of the operator Ĥ :

Rα=x,y(z) =
∑

n

Cn,αRn(z),

ĤRn(z) = EnRn(z). (9)

Substituting Eq. (9) into Eq. (4) and using the standard
orthogonality property of the eigenfunctions of Hermitian
operator Ĥ allows for simple decomposition of the energy
functional into the series:

Et =
∑

n

1

2

{
ρĊ2

n + EnC
2
n

}
. (10)

We thus see that energy of a fluctuating string in a parabolic
potential maps on the sum of energies of fictitious “harmonic
oscillators” with “rigidities” En. Hence, the Boltzmann’s
probability of the state of a string in an arbitrary conformation
Rx,y(z), P ({Rx,y(z)}), is proportional to the infinite product of
the Boltzmann’s probabilities of the states of these oscillators
due to obvious relation:

P ({Rx,y(z)}) ∝ exp

{
− Et

kBT

}
∼
∏
n

exp

{
− εn

kBT

}
,

εn ≡ 1

2

{
ρĊ2

n + EnC
2
n

}
. (11)

Therefore, distribution of the coefficients Cn prove to be
just Gaussian Boltzmann’s distribution functions. This makes
the whole thermodynamic theory of the lipid membrane
analytically tractable. The corresponding eigen values En and
eigenfunctions Rn(z) of the operator Ĥ = B + Kf

∂
∂z4 are [27]

n = 0 ⇒
{
E0 = B

R0(z) = √
1/L

,

n ∈ N ⇒

⎧⎪⎨
⎪⎩

cn = πn − π
4

En = B + c4
n

Kf

L4

Rn(z) =
√

2
L

[
cos

(
cn

z
L

) + cos(cn)
cosh(cn) cosh

(
cn

z
L

)].
(12)

Hence, summation over the infinite number of confor-
mations Rx,y(z) in the path integral Eq. (7) is reduced to
integration over the infinite-dimensional space of real numbers
Cn. This gives the following product of the Gaussian integrals
for the partition function:

Zx =
∫ +∞

−∞

∏
n

e
− (ρĊn )2

2ρkbT
− C2

nEn
2kB T

d(ρĊn)dCn

2π�
=
∏
n

kBT

�

√
ρ

En

.

(13)

Next, using Eq. (4) and definitions of the free energy
and partition function in Eqs. (6) and (7), respectively, we
differentiate both parts of Eq. (6) with respect to, so far
unknown, parameter B and readily obtain the following
self-consistency condition for parameter B:

∂Ft

∂B
= L

〈
R2

x

〉
, (14)

where brackets denote thermodynamic (Boltzmann) average
over chain conformations. The right-hand side of Eq. (14) is
directly expressed via the thermodynamic average area per
lipid A in the membrane plane and effective incompressible
area of lipid chain An:

π
〈
R2

x + R2
y

〉 = 2π
〈
R2

x

〉 = (
√

A −
√

An)2, (15)

and an isotropic in x-y plane membrane is considered for
simplicity. Using this relation one can rewrite Eq. (14) in the
explicit form using Eqs. (9) and (13):

∑
n=0

1

b + c4
n

= ν(
√

a − 1)2, (16)
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where we introduced dimensionless parameters,

a = A

An

, b = B
L4

Kf

, ν = Kf An

πkBT L3
. (17)

For the reference we consider DPPC lipid at T =
323 K and estimate thickness of its hydrophobic region
to be L = 13 Å [38], effective incompressible area of lipid

chain An = 10 Å
2
, and effective bending rigidity of the string

as Kf = 4.5kBT L at room temperature T [39]. With these
values, the dimensionless parameter of our analytical theory,
ν, can be estimated as ν ∼ 0.08, which allows us to solve
Eq. (16) iteratively, approximating the answer by iterations
over two lowest inverse powers of the large parameter b:

3

4b
+ 1

2
√

2b3/4
= ν(

√
a − 1)2. (18)

The approximate solution of Eq. (18) is given by the
following expression:

B ≡ Kf

L4
b = Kf

L4

[
1

4ν4/3(
√

a − 1)8/3
+ 1

ν(
√

a − 1)2

]
. (19)

Free energy of the string is equal to the sum of lipid tail
free energy Eq. (6) and hydrophobic tension energy γA:

FT = Ft + γA. (20)

Equilibrium area per lipid can be found by minimizing
Eq. (20) over the area per lipid A in the membrane plane,
which leads to the following balance equation for a membrane
with zero external lateral pressure applied at the membrane
perimeter (self-assembly condition):

∂FT

∂A
= ∂Ft

∂A
+ γ = 0 ⇒ γ = −∂Ft

∂A
≡ Pt . (21)

Condition Eq. (21) simply means that in equilibrium
repulsion of the chains, Pt , should be balanced by hydrophobic
tension, i.e., the attraction of the heads.

Solving self-assembly condition Eq. (21) with respect to the
substitution of the relation Eq. (19) into expression Eq. (13)
and Eq. (12) using Eq. (6), one computes area per lipid in
a membrane. This model gives results close to experimental
ones: for the values of parameters mentioned after Eq. (17),
and using γ = 17 erg/cm2 [11,40,41], we reproduce just the
experimental value [42] for DPPC area per chain (at T =
323 K), A = 64 Å

2
.

B. Bending modulus

At first we consider pure bending of flat single-component
bilayer. In that case one can expand free energy of the lipid in
series by infinitesimally small value of curvature H :

Fbend = F0 + ∂Ft

∂H

∣∣∣∣
H=0

H + 1

2

∂2Ft

∂H 2

∣∣∣∣
H=0

H 2. (22)

Comparing Eq. (22) with the first term of the pure
bending energy functional of phenomenological elasticity
theory, Eq. (3), one finds that

κ = 1

A0

∂2Ft

∂H 2

∣∣∣∣
H=0

, (23)

FIG. 3. Schematic representation of the lipid bilayer connected
to a lipid reservoir. Area per lipid at the head group neutral surfaces
of each monolayer is unchanged under bending provided there is a
lipid reservoir. Condition Eqs. (26) and (27) for the monolayers are
sketched in the figure.

where A0 is the area per chain in the flat bilayer calculated
above. We do not consider twisting or tilting deformations
since we consider isotropic membrane. Twisting deformation
of the string and tilting deformation of membrane does not
couple to membrane curvature deformation and membrane
monolayer transversal heterogeneity, so that kind of degrees
of freedom are simply integrated out and give only constant
contribution into the system’s free energy.

Next, equating the second term in Eq. (22) with the second
term in Eq. (3) and using already derived relation for κ in
Eq. (23), we find

Hs = −
∂Ft

∂H

∣∣
H=0

∂2Ft

∂H 2

∣∣
H=0

. (24)

Bilayer elastic modulus is shown to be twice that of one
of the monolayers if the two monolayers are completely
decoupled [43–48]. Hence,

κbilayer = 2κmonolayer = 2

A0

∂2Ft

∂H 2

∣∣∣∣
H=0

. (25)

Henceforth, our aim is to find bending modulus of the
membrane by calculating first and second derivatives of the
membrane’s free energy in our microscopic flexible strings
model, and substituting the result into Eqs. (23)–(25).

As a first step, let us introduce bending in the flexible
strings model. This is done by considering area per lipid being
dependent, i.e., on the distance (depth) from head-group region
inside lipid monolayer, together with the assumptions of lipid
volume conservation and fixed area per head group on both
sides of bilayer. Following standard formula of differential
geometry for parallel bent surfaces, see, e.g., Ref. [8], we
write

A(z) = A0[1 − zH + z2K] ⇒ δA(z)

A0
= −zH + z2K,

(26)

where z axis is directed from neutral surface toward the
opposite side of monolayer (see Fig. 3), and δA(z) is an
area change of the flat surface due to small mean and
Gaussian curvatures H and K , respectively. The neutral
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surface is defined as surface of zero lateral expansion under
bending deformation of the membrane, which is taken at the
hydrophilic-hydrophobic interface [8]. Further, using equation
of volume per lipid conservation under the bending [8], and
solving it for the thickness L of the curved monolayer up to a
second order in curvature, one can obtain

δL ≡ L − L0 = L2
0H

2
+ L3

0H
2

2
− L3

0K

3

⇒ δL

L0
= L0H

2
+ L2

0H
2

2
− L2

0K

3
. (27)

Relation Eqs. (26) and (27) hold for both monolayers pro-
vided that opposite signs are assigned to the mean curvatures
of the opposite monolayers of the curved bilayer. Figure 3
illustrates bending of a bilayer described by equations Eqs. (26)
and (27).

As the next step, we find self-consistent coefficient B(z) as
z-dependent function of membrane depth. For this, we add to
the area A the z-dependent area change δA(z) caused by the
curvature, Eq. (26), and find corresponding change of the self-
consistent parameter B0 by expanding around its flat bilayer
area dependence, B(z) = B0 + δB(z):

B(z) = B0 + ∂B0

∂A

∣∣∣∣
A=A0

δA + ∂B0

∂L

∣∣∣∣
L=L0

δL

+ 1

2

∂2B0

∂A2

∣∣∣∣
A=A0

(δA)2 + 1

2

∂2B0

∂L2

∣∣∣∣
L=L0

(δL)2

+ ∂2B0

∂A∂L

∣∣∣∣A = A0
L = L0

δAδL, (28)

where δA and δL are defined by Eqs. (26) and (27),
respectively. Hence, coefficient B(z) becomes function of the
mean and Gaussian curvatures, H and K , due to Eqs. (26)
and (27). Thus, the curvatures H and K enter the free energy
of lipid tails Ft via dependence of B on δA and δL. In turn,
dependencies of B0 on A0 and L0, implied in Eq. (28) above,
follow directly from Eqs. (17) and (19).

Let us now proceed with the calculation of bending modulus
[see Eq. (25)]. The general expression for ∂2Ft

∂H 2 can be obtained
from Eq. (6):

∂2Ft

∂H 2
= 2kBT

Z2
x

(
∂Zx

∂H

)2

− 2kBT

Zx

∂2Zx

∂H 2
. (29)

Substituting here expression for Zx in Eq. (7) and evaluating
its derivatives, we find from Eq. (29)

∂2Ft

∂H 2

∣∣∣∣
H=0

= 2

kBT

[〈
∂Etx

∂H

∣∣∣∣
H=0

〉2

−
〈(

∂Etx

∂H

∣∣∣∣
H=0

)2
〉

+ kBT

〈
∂2Etx

∂H 2

∣∣∣∣
H=0

〉]
, (30)

where 〈〉 denotes thermodynamic average over chain confor-
mations with distribution Eq. (11) properly normalized by
division with partition sum Eq. (13). Taking into account the
boundary conditions for a string and assuming that kinetic
energy of the string does not change under bending, we obtain
explicit expression for the first derivative of the functional Etx

Eq. (4) with respect to curvature:

∂Etx

∂H
=
∫ L

0

∂B

∂H

R2
x

2
dz + ∂L

∂H

B(L)R2
x(L)

2
. (31)

Note that one should not differentiate Rx with respect to H ,
since the whole expression ∂Etx

∂H
enters the functional integral

over Rx in Eq. (30). Derivative of B with respect to curvature
H is found from the corresponding derivatives:

∂B

∂H
= ∂B0

∂A

∣∣∣∣
H=0

∂A

∂H
+ ∂B0

∂L

∂L

∂H
, (32)

where B0 is self-consistent coefficient of lipid mean-field
potential of the flat membrane [see Eq. (19)]. We omit here
an explicit expression for ∂2Etx

∂H 2 , which we had derived via a
cumbersome but straightforward procedure. See Appendices B
and C for details on how to compute Eq. (30). The resulting
expression for bending modulus reads as

κbilayer = 2
kBT

A0

{∑
n

1

En

∫ L0

0

∂2B

∂H 2

∣∣∣∣
H=0

R2
n dz + ∂2L

∂H 2

∣∣∣∣
H=0

B0

∑
n

Rn(L0)2

En

+ 2
∂L

∂H

∣∣∣∣
H=0

∂B

∂H

∣∣∣∣
L=L0

∑
n

Rn(L0)2

En

+ 2

(
∂L

∂H

∣∣∣∣
H=0

)2

B0

∑
n

Rn(L0)
∂Rn

∂L

∣∣∣∣
L=L0

1

En

−
∑
nm

( ∫ L0

0
∂B
∂H

∣∣
H=0RnRm dz + ∂L

∂H

∣∣
H=0B0Rn(L0)Rm(L0)

)2

EnEm

}
(33)

(see Eq. (12) with expressions for Rn, and Eq. (28), which
provides dependence of B on H via Eq. (26), and Eq. (27) for
the H -dependent corrections δA(z,H ) and δL(H ) as explained
above).

Substituting typical values of the lipid bilayer parameters
mentioned above into Eq. (33) we evaluate bending modulus:
κbilayer ∼ 25kBT for DPPC bilayer (see Appendix C for
details), which is consistent with experimental measure-
ments [18,19].

All contributions to the bending modulus Eq. (33) turn out
to be of the same order and general expression for the bending

modulus is rather bulky. However, it could be simplified in the
limit of small parameter ν, which was defined in Eq. (17)
and was evaluated to be ∼ 0.08. In this case we find the
approximate expression

κbilayer = kBT
L2

0

An

2

(
√

a − 1)5/2ν1/4

∣∣∣∣
H=0

. (34)

This approximate expression equals numerically to the
exact expression Eq. (33) within a 15% error, assuming that the
values of all the parameters of the bilayer are in close vicinity
of the values listed in the paragraph after Eq. (17).
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TABLE I. Experimental data used to test Eq. (39) at 50◦C. Note that generally the dependence of elastic properties on temperature above
main phase transition can be considered weak [18,19,54] (within a given study). We used DMPC’s value for KA for DPPC for a lack of a better
source.

hpp κ KA

DPPC 38.3 Å at 50◦C [42] 12.5 × 10−20 J at 50◦C [18,19] ≈234 mN/m
DMPC 35.3 Å at 30◦C [55] 6.9 × 10−20 J at 30◦C [55] 234 mN/m at 30◦C [51]
DLPC 30.8 Å at 30◦C [55] 5.5 × 10−20 J at 30◦C [55] 239 mN/m at 30◦C [51]

III. DISCUSSION

A. Bending modulus dependence on the chain length

Although many different scaling exponents have been
reported in literature [49,50], recent experimental studies
assert that bending modulus is proportional to the square of
thickness of the membrane [51,52],

κ ∼ L2
0. (35)

Our simplified result Eq. (34), although it contains relation
Eq. (35) explicitly, does not allow us to check it, since the
dependence of area per lipid, a, on chain length, L0, cannot
be found analytically in the general case. However, the exact
relation can be obtained in a rigid rods approximation [29].

In this case probability of the bended string is zero and
we are left with the single eigenfunction, R0, being a constant
[see Eq. (12)]. This means that the rigid rod can oscillate in a
lateral direction only as a whole without changing its straight
shape, which leads to a simpler formula for a self-consistent
lipid-lipid interaction parameter,

B = kBT

AnL0

π

(
√

a − 1)2
(36)

(limit Kf → ∞ cannot be utilized explicitly in Eq. (19) since
it was derived in the limit of small ν � 0), and allows one to
find analytical expression for area per lipid:

a = 1

4

[
1 +

√
1 + 4

kBT

Anγ

]2

�∼ L0. (37)

Bending modulus for rigid rods membrane can be calcu-
lated using the general result Eq. (33):

κbilayer = kBT L2
0

An

8a − 2
√

a − 3

6a(
√

a − 1)2
∼ L2

0, (38)

in full agreement with Eq. (35).
Furthermore, in a polymer brush model, the exact relation

is found to be [51]

κ = KAL2
0

24
, (39)

where KA is a stretch modulus that has been shown to be
determined by a tension at the hydrophobic interface, γ , and
independent of the bilayer thickness [51,53]. It has also been
shown within flexible strings model for rigid rods and liquid-
disordered limits [29].

Relation Eq. (39) has been confirmed in experiment [51,52]
by relating L0 with an x-ray peak-to-peak head-group sep-
aration, hpp, as L0 = hpp − ho, with the offset h0 = 1 nm.
However, in these studies the lipids with different chain

saturation were used. Equation (39) has been derived [51]
within polymer brushes model, which does not take into
account chain unsaturation directly.

For the sake of transparency, to avoid unknown effect of
unsaturated bonds, we consider saturated lipids only. These
are DLPC (12:0), DMPC (14:0), DPPC (16:0) lipids. DPPC
undergoes lipid gel phase transition at 41◦ C. For this reason
we consider all these lipids at 50◦ C (see Table I) since elastic
properties of lipid membrane does not change significantly
above main transition temperature [18,19,54].

Calculation results are presented at Fig. 4. It is clear from
that figure, that our results at 50◦C match experimental data
for saturated lipids better than polymer brush model.

One can easily obtain from the data Fig. 4: m = κ

KAL2
0

= 1/6

in place of m = 1/24 of polymer brushes [see Eq. (39)]. There
is a common agreement that this coefficient in membranes
lies in the interval between 1/12 to 1/48 [53]. 1/12 is
derived for flexible film model, while 1/48 is obtained with
naive approach, in which each monolayer is considered as
elastic film [56]. The later approach doesn’t take into account
that lipid membrane’s essential asymmetry (see Fig. 3)—it’s
neutral surface is located near the head-group region. One
can easily show that in this case the coefficient is equal to
m = 1/12 (see Appendix D).

All these results are obtained using simple geometric
considerations (see Appendix D). Polymer brushes theory [51]
brings an idea to the table—it takes into account two
contributions into the elastic energy. Fist one stands for the
hydrophobic surface stretching energy and second one stands

FIG. 4. Dependence of membrane bending—to stretch modulus
ratio on the head-to-head thickness of fully saturated lipid bilayers at
T = 323 K. Stars are our model results; long dashes—polymer brush
model results [51].
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for the entropic repulsion of lipid tails:

Fpb = γA + B

A2
(40)

(see the equation on p. 337 in Ref. [51]). That model gives
coefficient m = 1/24.

However, this model does not incorporate the neutral
surface conception—membrane patch assumed to conserve
its geometry under the bending (see text after Eq. (A1) in
Ref. [51]), stretching transversely uniformly. Moreover, all of
these models, namely simple geometric and polymer brushes
model, omit the fact that lateral pressure profile in membranes
has a pressure peak in the midplane region [27,57], which
means higher value of entropic repulsion and consequently
higher lateral compression modulus in the region of lipid tail
ends.

Here we show the result of the expansion of polymer
brush model, which takes into account monolayer asymmetry
(see Fig. 3). We model the asymmetry by introducing the
transversal inhomogeneity of the entropic repulsion coeffi-
cient B(z) = B0 + B1z

n with arbitrary n, characterizing the
sharpness of the lateral pressure profile peak in the midplane
region. Equation (40) takes the following form:

F = γA +
∫ L

0

B0 + B1z
n

A2(z)
dz. (41)

Equilibrium area is given by the corresponding equation:

∂F

∂A
= 0 ⇒ A0 = 3

√
2
B0L + B1L1+n + B0Ln

γ (1 + n)
, (42)

which leads to the following value of the bilayer compression
and stretching modulus:

KA = 1

A0

∂2F

∂A2

∣∣∣∣
A=A0

= 6γ. (43)

Membrane bending leads to the deformation of the mem-
brane patch according to Eq. (26). This leads to the expression
of the free energy of bended membrane:

FJ = 2γA0 +
∫ L

0

B0 + B1z
n

A2
t

dz +
∫ L

0

B0 + B1z
n

A2
b

dz,

(44)

where At = A0(1 − Hz) and Ab = A0(1 + zH ) stand for
top and bottom monolayers area dependence. Expansion of
Eq. (44) in terms of curvature H , and using it in Eqs. (25)
and (43) leads to a general expression for m:

m = (n + 1)(B0(n + 3) + 3B1L
n)

12(n + 3)(B0(n + 1) + B1Ln)
. (45)

One can show that this result does not depend on the power
of A(z), which models entropic repulsion in Eq. (41). For
B1 = 0 one obtains m = 1/12 in agreement with a simple
homogenious model (see Appendix D). The opposite limit of
strong lateral pressure profile peak, B1L

n
0 � B0, leads to

m = n + 1

4(n + 3)
, (46)

FIG. 5. Dots: simulation data quoted from Ref. [32]—see lateral
region for DPPC lipids in Fig. 9 there. Line: fit of toy model, Eq. (41).
The fit leads to n = 1.6, which results [see Eq. (45)] in m = 1/8.6.
This value is close to the one obtained with flexible strings model.

which leads to m equal to 1/8, 3/20, and 1/6 for n = 1 . . . 3,
respectively, with a limit of m = 1/4 for n → ∞.

The fitting of the lipid tail region of the lateral pressure
profile data for DPPC lipid taken from Ref. [32] (see Fig. 5)
gives the following parameters (in arbitrary units): B0 = 44,
B1 = 146, n = 1.6, leading to m = 1/8.6 [see Eq. (45)] versus
m = 1/6 in our model. We consider it a good qualitative
agreement, giving simplicity of the toy model. Note that
m = 1/8.6 predicted by the toy model already exceeds the
previous theoretical limit of m = 1/12.

In essence, we show that the relation between κ and KA

for lipid bilayer might be underestimated due a peak in lateral
pressure profile in the midplane region. Our calculation (see
Fig. 4) suggests m = 1/6, so it is in the range of theoretically
possible values. Comparing with molecular dynamic data for
lateral pressure profile shows qualitative agreement with our
model, giving m = 1/6. Flexible strings model calculations,
however, are more rigor compared to free energy Eq. (41),
since it uses proper statistical averaging in calculation of
entropic repulsion. It also takes into account the change in
thickness of the membrane with the bending, L(H ).

B. Gaussian modulus

As already mentioned in the Introduction, the value of
Gaussian modulus is insignificant if the topology and boundary
conditions of the membrane are fixed. However, topology does
change in fusion and fission events, which are omnipresent in
cell biology. The associated energy changes are −4πκ for
fusion and 4πκ for fission [58]. Hence, the value of Gaus-
sian modulus is important in elucidating diverse biological
phenomena like intracellular protein trafficking, secretion,
fertilization, and viral infection. And indeed it has been shown
that Gaussian energy significantly influences early stage of the
fusion—stalk formation [59].

There are several experimental approaches to measure
Gaussian modulus [48,60] as well as few molecular dynamics
approaches [61,62]. To the best of our knowledge, there is no
microscopic theory of Gaussian modulus. However, method
applied in this paper to calculate bending modulus might also
be used to calculate Gaussian bending modulus.
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For this let us consider bilayer local deformations without
bending, H = 0. In this case monolayer Gaussian modulus is
simply

κ = 1

A0

∂Ft

∂K

∣∣∣∣
K=0

. (47)

The general expression for ∂Ft

∂K
might be obtained from

Eq. (6):

∂Ft

∂K
= −2kBT

1

Zx

∂Zx

∂K
. (48)

Substituting here the expression for Zx Eq. (7) and upon
evaluating the result at zero curvature, Eq. (48) becomes

∂Ft

∂K

∣∣∣∣
K=0

= 2

〈
∂Etx

∂K

∣∣∣∣
K=0

〉
. (49)

Modulo a substitution of H with K , the expression for
∂Etx

∂K
is the same as in Eq. (31). After averaging over lipid

conformations (see Appendix A), one obtains

κmonolayer = kBT

A0

{∑
n=0

1

En

∫ L0

0

∂B

∂K

∣∣∣∣
K=0

R2
n dz

+ ∂L

∂K

∣∣∣∣
K=0

B0

∑
n=0

R2
n(L)

En

}
. (50)

For the reference parameters one obtains κ = −2.9kBT

and κ/κ = −0.23 for the monolayer. This value of Gaussian
modulus falls within the range found in the literature (for
a survey of reported values see Ref. [62]). The discrepancy
might be due to the omission of van der Waals forces in the
free energy of the string Eq. (20).

C. Limitations of the model

The major limitations of our model follow from the effective
medium approximation, an approach which is well known in
physics of random alloys (see, e.g., Ref. [63]). Our approx-
imation is valid on the length and timescales large enough
with respect to the characteristic subatomic scales of the
constituent molecular structure of lipid membranes. Moreover,
flexible string approach can be viewed as an extreme case of
coarse-grained model. Flexible string approach can be viewed
as an extreme case of coarse-grained model. Coarse-grained
models are common in the study of lipid membranes [33,56].
Simulating lipids with a few beads has been successfully used
to explain a number of properties [62,64,65]. The advantage
of our model is that it permits calculation of the averages over
rather random subatomic configurations of lipid chains in a
membrane, nevertheless providing physical description of their
collective properties. Such collective properties include, e.g.,
lateral pressure profile in the membrane, orientational order
parameter of the lipid chain, elastic moduli of the membrane,
etc.

Another limitation is that we have rather rough estimation
of effective elastic string rigidity Kf . However, calculations
show that the value of the bending modulus is not too sensitive
to the value of string rigidity: it can be easily seen from the
rigid rods limit [Eqs. (36)–(38)], at which Kf is taken to be

infinite. At this limit the calculated values of bending rigidity
does not deviate strongly from finite Kf description.

Finally, there is a limitation due to the boundary conditions
at the head region. We assume lipid chains on the average are
perpendicular to the membrane surface. This approximation is
supported by data on the order parameter [21,37], which shows
that chains in that region are partially ordered in comparison
to the midplane region.

IV. SUMMARY

Bending modulus of lipid bilayer has been calculated
analytically from a microscopic model. A simple approximate
expression for the bending modulus as function of molecule’s
characteristic parameters has been obtained. The model allows
for self-assembly of the membrane lipids and provides explicit
averaging over lipid tails conformations. An effective lipid-
lipid interaction strength due to excluded volume effect is
found self-consistently. In our model the free-energy increase
is caused by membrane bending and arises due to suppres-
sion of the entropy of the chains accessible conformations.
Calculated bending modulus of liquid-crystalline bilayer lipid
membrane falls within the range of experimental values.

The theory has only two adjustable parameters (yet in
strongly limited intervals): bending rigidity, Kf , of the
effective string (that models hydrocarbon lipid tail), and
incompressible area of the string, An. A single adjustment
of solely these two parameters allows us to reproduce at once
the areas per lipid and bending moduli of DPPC, DLPC, and
DMPC lipid bilayers (see Fig. 4).

Calculated Gaussian modulus is in qualitative agreement
with the data found in literature. To the best of our knowledge
this is a first calculation of Gaussian modulus from a micro-
scopic model. Correspondence with the Helfrich free-energy
functional Eq. (3) of lipid membrane energy is established by
Eqs. (22)–(24) using our microscopic model calculation of the
free energy of the bent membrane.
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APPENDIX A: AVERAGING OVER CONFORMATIONS
OF THE STRING

In order to compute averages in the expression Eq. (30) one
should expand arbitrary chain conformation Rx in elementary
modes Eq. (12):

Rx =
∑
n=0

CnRn, Ṙx =
∑
n=0

ĊnRn. (A1)

In order to evaluate Eq. (30) one needs to compute 〈C2
n〉

and 〈C4
n〉 (see Appendix B). We begin with a simple result of
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average “coordinate” Cn:

〈Cn〉 =
∫ +∞
−∞ Cne

− C2
nEn

2kB T dCn∫ +∞
−∞ e

− C2
nEn

2kB T dCn

= 0, (A2)

which is due to the numerator containing an integral over all

axis of odd function Cn exp (−C2
nEn

2kBT
). The situation is changed

if we square Cn:

〈
C2

n

〉 = ∫ +∞
−∞ C2

ne
− C2

nEn
2kB T dCn∫ +∞

−∞ e
− C2

nEn
2kB T dCn

= kBT

En

, (A3)

where the denominator is a Gaussian integral, and the
numerator might be reduced to a Gaussian integral. The same
technique applies to C4

n:

〈
C4

n

〉 = ∫ +∞
−∞ C4

ne
− C2

nEn
2kB T dCn∫ +∞

−∞ e
− C2

nEn
2kB T dCn

= 3

(
kBT

En

)2

. (A4)

The average of the product is zero unless coordinates are
the same:

〈CnCm〉 =
∫ +∞
−∞

∫ +∞
−∞ CnCme

− C2
nEn+C2

mEn
2kB T dCndCm∫ +∞

−∞ e
− C2

nEn+C2
mEm

2kB T dCndCm

≡ 〈
C2

n

〉
δnm, (A5)

where δnm is Kronecker’s symbol. By analogy,

〈CiCjCnCm〉
= 〈CiCjCnCm〉(δij δnm + δinδjm + δimδjn + δijnm),

hence,∑
i,j,n,m

〈CiCjCnCm〉 = 3
∑
n,m

〈
C2

n

〉〈
C2

m

〉 + ∑
k

〈
C4

k

〉
. (A6)

APPENDIX B: GENERAL EXPRESSION
FOR THE BENDING MODULUS

At zero curvature, Eq. (31) becomes

∂Etx

∂H

∣∣∣∣
H=0

=
∫ L0

0

∂B

∂H

∣∣∣∣
H=0

R2
x

2
dz︸ ︷︷ ︸

f

+ ∂L

∂H

∣∣∣∣
H=0

B(L0)Rx(L0)2

2︸ ︷︷ ︸
g

. (B1)

Averaging over all conformations turns it into [see Eq. (18)]

∂Etx

∂H

∣∣∣∣
H=0

=
∑

n

〈
C2

n

〉1
2

∫ L0

0

∂B

∂H

∣∣∣∣
H=0

R2
n dz

︸ ︷︷ ︸
〈f 〉

+ ∂L

∂H

∣∣∣∣
H=0

B(L0)

2

∑
n

〈
C2

n

〉
Rn(L0)2

︸ ︷︷ ︸
〈g〉

. (B2)

Raising it to the second power gives〈
∂Etx

∂H

∣∣∣∣
H=0

〉2

= 〈f 〉2 + 2〈f 〉〈g〉 + 〈g〉2, (B3)

whereas the following relation holds:〈(
∂Etx

∂H

∣∣∣∣
H=0

)2
〉

= 〈f 2〉 + 2〈fg〉 + 〈g2〉. (B4)

In order to compute difference between Eqs. (B3) and (B4)
[see Eq. (30)], let us consider 〈f 〉2 − 〈f 2〉:

f = 1

2

∑
n,m

CnCm

∫ L0

0

∂B

∂H

∣∣∣∣
J=0

RnRm dz =
∑
n,m

CnCmFnm,

〈f 〉 =
∑

n

〈
C2

n

〉
Fnn,

〈f 〉2 =
∑
nm

〈
C2

n

〉〈
C2

m

〉
FnnFmm,

f 2 =
∑
nmkl

CnCmCkClFnmFkl,

〈f 2〉 =
∑
nmkl

〈CnCmCkCl〉FnmFkl

=
∑
n�=m

〈
C2

n

〉〈
C2

m

〉
FnnFmm + 2

∑
n�=m

〈
C2

n

〉〈
C2

m

〉
F 2

nm

+
∑

n

〈
C4

n

〉
F 2

nn

=
∑
nm

〈
C2

n

〉〈
C2

m

〉
FnnFmm −

∑
n

〈
C2

n

〉2
F 2

nn

+ 2
∑
n�=m

〈
C2

n

〉〈
C2

m

〉
F 2

nm +
∑

n

〈
C4

n

〉
F 2

nn

= 〈f 〉2 +
∑

n

(
〈C4

n〉 − 〈
C2

n

〉2)
F 2

nn + 2
∑
n�=m

〈
C2

n

〉〈
C2

m

〉
F 2

nm

[see Eq. (A6)]. And from the last equation above it follows
that

〈f 〉2 − 〈f 2〉 =
∑

n

(〈
C2

n

〉2 − 〈
C4

n

〉)
F 2

nn − 2
∑
n�=m

〈
C2

n

〉〈
C2

m

〉
F 2

nm

= −2(kBT )2
∑
n,m

F 2
nm

EnEm

. (B5)

Calculating 〈2fg〉 and 〈g2〉 analogously, one finds〈
∂Etx

∂H

∣∣∣∣
H=0

〉2

−
〈(

∂Etx

∂H

∣∣∣∣
H=0

)2
〉

=− (kBT )2

2

∑
nm

×
( ∫ L0

0
∂B
∂H

∣∣
H=0RnRm dz+ ∂L

∂H

∣∣
H=0B0Rn(L0)Rm(L0)

)2

EnEm

.

(B6)
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The last term in the right-hand side of Eq. (30) is computed
in the same way directly using Eq. (31).

APPENDIX C: ANALYTICAL EXPRESSIONS
FOR DERIVATIVES OF B

The basic approach is first to rewrite expressions in
dimensionless units and then to compute the dimen-
sionless derivative using self-consistency Eq. (18). For
example,

∂B

∂A

∣∣∣∣
H=0

= Kf

L4
0

1

An

∂b

∂a

∣∣∣∣
H=0

,

∂b

∂a

∣∣∣∣
H=0

= − 16(
√

a0 − 1)b2ν

3
√

a0(4 + √
2b1/4)

.

Here is an example of computing ∂B
∂L

:

∂B

∂L

∣∣∣∣
H=0

= ∂
(Kf

L4 b
)

∂L

∣∣∣∣∣
H=0

= Kf

L5
0

(
−4b + L0

∂b

∂L

∣∣∣∣
H=0

)
,

∂b

∂L

∣∣∣∣
H=0

= 1

L0

16(
√

a0 − 1)2b2ν

4 + √
2b1/4

.

Other expressions ∂2B
∂A2 |H=0

, ∂2B
∂L2 |H=0

, and ∂2B
∂A∂L

|
H=0

might
be calculated in the same way.

APPENDIX D: DERIVATION OF RELATION BETWEEN
BENDING MODULUS AND STRETCH MODULUS

FOR BILAYER WITH NEUTRAL SURFACE
FIXED IN THE HEADS

For simplicity we consider cylindrical bilayer at Fig. 3 and
neglect the change in membrane thickness. The bending energy

of a monolayer is equal to

�Fb = κmH 2

2
= κm

2R2
, (D1)

where κm is bending energy of monolayer, and H is a mean
curvature of cylindric membrane with radius R (R ends in the
membrane midplane). The same energy can be expressed in
terms of the mean-square strain on the monolayer:

�Fs = Km
A

〈
u2

xx

〉
2

. (D2)

Due to the fact that neutral surface of the monolayer is
located in the head-group region, the strain uxx varies linearly
with z from uxx = 0 at the neutral surface z = 0 to uxx = um

at midplane region: z = Lm. Its mean-square value is equal to
u2

m/3. Inserting this into Eq. (D4) and equating stretch energy
Eq. (D4) to Eq. (D3), we obtain the following relationship of
κm and KA moduli:

κm = Km
A (Lm)2

2
. (D3)

Switching to the values for bilayer,

κ = 2κm, KA = 2Km
A , L = 2Lm, (D4)

finally leads to

κ = KAL2

12
. (D5)
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[63] B. Velický, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175,

747 (1968).
[64] X. Wang and M. Deserno, J. Phys. Chem. B 120, 6061

(2016).
[65] S. J. Marrink and A. E. Mark, J. Am. Chem. Soc. 125, 11144

(2003).
[66] F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell Biol.

120, 923 (1993).

042415-11

https://doi.org/10.1103/PhysRevE.53.R41
https://doi.org/10.1103/PhysRevE.53.R41
https://doi.org/10.1103/PhysRevE.53.R41
https://doi.org/10.1103/PhysRevE.53.R41
https://doi.org/10.1103/PhysRevLett.85.337
https://doi.org/10.1103/PhysRevLett.85.337
https://doi.org/10.1103/PhysRevLett.85.337
https://doi.org/10.1103/PhysRevLett.85.337
https://doi.org/10.1103/PhysRevE.71.061918
https://doi.org/10.1103/PhysRevE.71.061918
https://doi.org/10.1103/PhysRevE.71.061918
https://doi.org/10.1103/PhysRevE.71.061918
https://doi.org/10.1103/PhysRevE.82.051901
https://doi.org/10.1103/PhysRevE.82.051901
https://doi.org/10.1103/PhysRevE.82.051901
https://doi.org/10.1103/PhysRevE.82.051901
https://doi.org/10.1134/S0021364014060095
https://doi.org/10.1134/S0021364014060095
https://doi.org/10.1134/S0021364014060095
https://doi.org/10.1134/S0021364014060095
https://doi.org/10.1016/j.bpj.2012.11.1377
https://doi.org/10.1016/j.bpj.2012.11.1377
https://doi.org/10.1016/j.bpj.2012.11.1377
https://doi.org/10.1016/j.bpj.2012.11.1377
https://doi.org/10.1016/S0006-3495(03)74637-2
https://doi.org/10.1016/S0006-3495(03)74637-2
https://doi.org/10.1016/S0006-3495(03)74637-2
https://doi.org/10.1016/S0006-3495(03)74637-2
https://doi.org/10.1021/bm201454j
https://doi.org/10.1021/bm201454j
https://doi.org/10.1021/bm201454j
https://doi.org/10.1021/bm201454j
https://doi.org/10.1103/PhysRevLett.102.078101
https://doi.org/10.1103/PhysRevLett.102.078101
https://doi.org/10.1103/PhysRevLett.102.078101
https://doi.org/10.1103/PhysRevLett.102.078101
https://doi.org/10.1088/0305-4470/28/24/001
https://doi.org/10.1088/0305-4470/28/24/001
https://doi.org/10.1088/0305-4470/28/24/001
https://doi.org/10.1088/0305-4470/28/24/001
https://doi.org/10.1007/s00249-007-0192-9
https://doi.org/10.1007/s00249-007-0192-9
https://doi.org/10.1007/s00249-007-0192-9
https://doi.org/10.1007/s00249-007-0192-9
https://doi.org/10.1016/S0304-4157(96)00009-3
https://doi.org/10.1016/S0304-4157(96)00009-3
https://doi.org/10.1016/S0304-4157(96)00009-3
https://doi.org/10.1016/S0304-4157(96)00009-3
https://doi.org/10.1016/0005-2736(95)00296-0
https://doi.org/10.1016/0005-2736(95)00296-0
https://doi.org/10.1016/0005-2736(95)00296-0
https://doi.org/10.1016/0005-2736(95)00296-0
https://doi.org/10.1016/S0304-4157(00)00016-2
https://doi.org/10.1016/S0304-4157(00)00016-2
https://doi.org/10.1016/S0304-4157(00)00016-2
https://doi.org/10.1016/S0304-4157(00)00016-2
https://doi.org/10.1051/jphyscol:1990719
https://doi.org/10.1051/jphyscol:1990719
https://doi.org/10.1051/jphyscol:1990719
https://doi.org/10.1051/jphyscol:1990719
https://doi.org/10.1021/la00041a011
https://doi.org/10.1021/la00041a011
https://doi.org/10.1021/la00041a011
https://doi.org/10.1021/la00041a011
https://doi.org/10.1016/0301-4622(93)E0076-H
https://doi.org/10.1016/0301-4622(93)E0076-H
https://doi.org/10.1016/0301-4622(93)E0076-H
https://doi.org/10.1016/0301-4622(93)E0076-H
https://doi.org/10.1063/1.470062
https://doi.org/10.1063/1.470062
https://doi.org/10.1063/1.470062
https://doi.org/10.1063/1.470062
https://doi.org/10.1021/la0013805
https://doi.org/10.1021/la0013805
https://doi.org/10.1021/la0013805
https://doi.org/10.1021/la0013805
https://doi.org/10.1529/biophysj.104.040782
https://doi.org/10.1529/biophysj.104.040782
https://doi.org/10.1529/biophysj.104.040782
https://doi.org/10.1529/biophysj.104.040782
https://doi.org/10.1103/PhysRevLett.60.1966
https://doi.org/10.1103/PhysRevLett.60.1966
https://doi.org/10.1103/PhysRevLett.60.1966
https://doi.org/10.1103/PhysRevLett.60.1966
https://doi.org/10.1080/000187399243428
https://doi.org/10.1080/000187399243428
https://doi.org/10.1080/000187399243428
https://doi.org/10.1080/000187399243428
https://doi.org/10.1016/S0006-3495(00)76295-3
https://doi.org/10.1016/S0006-3495(00)76295-3
https://doi.org/10.1016/S0006-3495(00)76295-3
https://doi.org/10.1016/S0006-3495(00)76295-3
https://doi.org/10.1021/la035497f
https://doi.org/10.1021/la035497f
https://doi.org/10.1021/la035497f
https://doi.org/10.1021/la035497f
https://doi.org/10.1209/0295-5075/28/3/005
https://doi.org/10.1209/0295-5075/28/3/005
https://doi.org/10.1209/0295-5075/28/3/005
https://doi.org/10.1209/0295-5075/28/3/005
https://doi.org/10.1529/biophysj.104.056606
https://doi.org/10.1529/biophysj.104.056606
https://doi.org/10.1529/biophysj.104.056606
https://doi.org/10.1529/biophysj.104.056606
https://doi.org/10.1002/marc.200900090
https://doi.org/10.1002/marc.200900090
https://doi.org/10.1002/marc.200900090
https://doi.org/10.1002/marc.200900090
https://doi.org/10.1529/biophysj.103.034322
https://doi.org/10.1529/biophysj.103.034322
https://doi.org/10.1529/biophysj.103.034322
https://doi.org/10.1529/biophysj.103.034322
https://doi.org/10.1016/j.tibs.2010.06.003
https://doi.org/10.1016/j.tibs.2010.06.003
https://doi.org/10.1016/j.tibs.2010.06.003
https://doi.org/10.1016/j.tibs.2010.06.003
https://doi.org/10.1529/biophysj.103.038075
https://doi.org/10.1529/biophysj.103.038075
https://doi.org/10.1529/biophysj.103.038075
https://doi.org/10.1529/biophysj.103.038075
https://doi.org/10.1016/S0006-3495(86)83496-8
https://doi.org/10.1016/S0006-3495(86)83496-8
https://doi.org/10.1016/S0006-3495(86)83496-8
https://doi.org/10.1016/S0006-3495(86)83496-8
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1529/biophysj.106.094953
https://doi.org/10.1016/j.bpj.2012.02.013
https://doi.org/10.1016/j.bpj.2012.02.013
https://doi.org/10.1016/j.bpj.2012.02.013
https://doi.org/10.1016/j.bpj.2012.02.013
https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1103/PhysRev.175.747
https://doi.org/10.1021/acs.jpcb.6b02016
https://doi.org/10.1021/acs.jpcb.6b02016
https://doi.org/10.1021/acs.jpcb.6b02016
https://doi.org/10.1021/acs.jpcb.6b02016
https://doi.org/10.1021/ja036138+
https://doi.org/10.1021/ja036138+
https://doi.org/10.1021/ja036138+
https://doi.org/10.1021/ja036138+
https://doi.org/10.1083/jcb.120.4.923
https://doi.org/10.1083/jcb.120.4.923
https://doi.org/10.1083/jcb.120.4.923
https://doi.org/10.1083/jcb.120.4.923



