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Uniform asymptotic approximation of diffusion to a small target: Generalized reaction models
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The diffusion of a reactant to a binding target plays a key role in many biological processes. The reaction radius
at which the reactant and target may interact is often a small parameter relative to the diameter of the domain
in which the reactant diffuses. We develop uniform in time asymptotic expansions in the reaction radius of the
full solution to the corresponding diffusion equations for two separate reactant-target interaction mechanisms:
the Doi or volume reactivity model and the Smoluchowski-Collins-Kimball partial-absorption surface reactivity
model. In the former, the reactant and target react with a fixed probability per unit time when within a specified
separation. In the latter, upon reaching a fixed separation, they probabilistically react or the reactant reflects away
from the target. Expansions of the solution to each model are constructed by projecting out the contribution
of the first eigenvalue and eigenfunction to the solution of the diffusion equation and then developing matched
asymptotic expansions in Laplace-transform space. Our approach offers an equivalent, but alternative, method to
the pseudopotential approach we previously employed [Isaacson and Newby, Phys. Rev. E 88, 012820 (2013)] for
the simpler Smoluchowski pure-absorption reaction mechanism. We find that the resulting asymptotic expansions
of the diffusion equation solutions are identical with the exception of one parameter: the diffusion-limited reaction
rates of the Doi and partial-absorption models. This demonstrates that for biological systems in which the reaction
radius is a small parameter, properly calibrated Doi and partial-absorption models may be functionally equivalent.
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I. INTRODUCTION

Various bimolecular reaction mechanisms have been
used in particle-based stochastic reaction-diffusion models
of biological systems. The Doi model assumes that two
molecules may react with a fixed probability per unit
time when their separation is less than some reaction
radius [1–3]. In the Smoluchowski model molecules either
react instantly when their separation equals the reaction
radius (pure-absorption reaction) [4] or have a probability
of reflection upon collision (Smoluchowski-Collins-Kimball
partial-absorption reaction) [5].

For each of these reaction models, analytic solutions have
been derived and investigated in free space (see the many
references in Ref. [6]). Inside cells, reactions occur within
closed subdomains with complex boundaries. In many such
domains the reaction radius is a small parameter relative to the
diameter of the cellular domain. We previously developed a
method for calculating uniform in time asymptotic expansions
of the solution to the pure-absorption Smoluchowski model
for diffusion to a fixed target within closed three-dimensional
domains [7]. In this work we extend our previous study
to develop uniform in time asymptotic expansions of the
solution to the diffusion equation for targets with both Doi
and Smoluchowski partial-absorption reaction models. Our
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results are constructed using matched asymptotic expansions
in Laplace-transform space, which offers an equivalent,
but alternative, method to the pseudopotential approach we
previously employed. The matched-asymptotics approach has
been widely used for related problems that calculate various
statistics of first-passage times [8–12]. It is well suited for
handling different reaction models because the solution is
constructed from two parts: an inner solution that accounts
for behavior near the partially absorbing target while ignoring
the detailed shape of the domain boundary and an outer
solution that accounts for the reflecting domain boundary
while ignoring the fine-scale details of the target reaction
mechanism and surface. As we illustrate in Sec. III, one benefit
to our approach is that the uniform in time expansion of the
full diffusion equation we derive can be used to calculate
corresponding asymptotic expansions in the reaction radius
of both the first-passage-time density and moments of the
first-passage time.

While we focus on the case of a single spherical target in
this work, it has been demonstrated that similar expansions of
the mean first-passage time for a reaction to occur with a target
can be extended to problems with multiple competing reactive
targets [9]. We while we do not study the case of multiple
targets, we expect that our uniform in time expansions of the
diffusion equation could be generalized to such problems.

The mathematical problem we consider is diffusion of
a molecule within a bounded domain � ⊂ R3, containing
a small spherical target �ε ⊂ �, with radius ε centered at
rb ∈ �. We denote by ∂� the exterior boundary surface to �

and by ∂�ε the exterior boundary to �ε. The nontarget portion
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of � is denoted by �free = � \ {�ε ∪ ∂�ε}. We assume that
the molecule moves by Brownian motion within �free, with
position given by R(t). Denote by p(r,t) the probability
density that R(t) = r ∈ �free and the molecule has not yet
bound to the target. Finally, let D label the diffusion constant
of the molecule. In this work we consider three distinct models
for the binding of the molecule to the target.

The first model is the (pure-absorption) Smoluchowski
diffusion-limited-reaction model [4], where the molecule
instantaneously reacts with probability one the moment it
reaches the target boundary. In this case p(r,t) satisfies the
diffusion equation with a Neumann boundary condition on the
domain boundary

∂p

∂t
= D�p(r,t), r ∈ �free, t > 0 (1.1a)

∂ηp(r,t) = 0, r ∈ ∂�, t > 0, (1.1b)

with the initial condition p(r,0) = δ(r − r0) for r0 ∈ �free and
the binding reaction modeled by the pure-absorption Dirichlet
boundary condition

p(r,t) = 0, r ∈ ∂�ε, t > 0. (1.2)

In the preceding equations ∂η denotes the directional derivative
in the inward normal direction η(r) to the boundary at r .

A uniform (in time) asymptotic asymptotic expansion of
the solution to (1.1) as ε → 0 has recently been developed by
the present authors [7]. However, it is often desirable in a given
model to include the possibility that the Brownian walker does
not instantaneously bind with probability one upon reaching
the target, i.e., there is a possibility the walker fails to bind
to the target. For example, proteins may have specific binding
sites and complex three-dimensional shapes that must come
together in precise orientations for a reaction to occur. Only
a fraction of encounters may then result in a binding event,
which is often approximated as a probabilistic event. In this
paper we consider two models that allow for the possibility of
nonreactive encounters.

The first model replaces the pure-absorption Dirichlet
boundary condition (1.2) with a Smoluchowski-Collins-
Kimball partial-absorption Robin boundary condition [5],

−D∂ηp(r,t) = γp(r,t), r ∈ ∂�ε, t > 0. (1.3)

Here the Robin constant γ determines the intrinsic rate of the
reaction [13] when the diffusing molecule is at the surface
of the binding region. It typically has units of distance per
time. The reactive Robin boundary condition model arises in
many ways. For example, it can be interpreted as the limit
of a steep potential barrier with small support, which must
be surmounted before reaching a pure-absorption reactive
boundary [10,14]. To give an asymptotic expansion of p(r,t)
as ε → 0 comparable to that of the pure-absorption boundary
condition, we assume that

γ = Dγ̂

ε
, (1.4)

where the nondimensional constant γ̂ is independent of ε. We
may then rewrite the Robin boundary condition as

−∂ηp(r,t) = γ̂

ε
p(r,t). (1.5)

In the Doi model [1,2,15] the reactive boundary conditions
of the previous two models are replaced by an effective sink
term. That is, (1.1a) is coupled to the partial differential
equation (PDE)

∂p

∂t
= D�p(r,t) − μp, r ∈ �ε, t > 0, (1.6)

within �ε through the assumption that p and ∂ηp are
continuous across ∂�ε. To give an asymptotic limit of p(r,t) as
ε → 0 comparable to those of the reactive boundary condition
models [assuming r and r0 are an O(1) distance from the
target], we assume that

μ = Dμ̂

ε2
, (1.7)

where the nondimensional constant μ̂ is independent of ε.
We note that both scalings (1.4) and (1.7) are necessary for
each reaction mechanism to be partially absorbing as ε → 0.
Different scaling choices lead to either no absorption [e.g., if
the rates are O(1)] or perfect absorption, which is equivalent
to the pure-absorption Smoluchowski model. Using (1.7), we
may rewrite (1.6) as

∂p

∂t
= D�p(r,t) − Dμ̂

ε2
p, r ∈ �ε, t > 0. (1.8)

The paper is organized as follows. First, we develop the
uniform asymptotic approximation in Sec. II. A different
feature of this work is the use of matched asymptotic
expansions in Laplace-transform space to develop the short-
time component of the asymptotic expansion. This component
corresponds to the solution of (1.1) with one of the reactive
mechanisms (1.2), (1.5), or (1.8), but with the first eigen-
function contribution to the initial condition projected out. In
Ref. [7] we developed this expansion for the pure-absorption
boundary condition (1.2) by replacing the boundary condition
with an appropriately calibrated pseudopotential operator and
a subsequent perturbation expansion of the resulting PDE. In
this paper we develop expansions that establish the equivalence
of the pseudopotential approach to matched asymptotic ex-
pansions in Laplace-transform space through terms of O(ε2).
We find that when the diffusion-limited reaction rates of the
partial-absorption (1.5) and Doi (1.8) reaction models are
calibrated to be the same, the resulting outer expansions of the
solutions to the corresponding diffusion equations, and hence
also outer expansions of any first-passage-time statistics, are
identical.

Finally, in Sec. III we show results for a spherical domain.
We compare the asymptotic approximation of p(r,t) to the
exact solution of the spherically symmetric problem (i.e.,
when the target is at the center and the initial position is
uniformly distributed over the sphere of radius r0), and to
Monte Carlo simulations when the target is not centered.
These results demonstrate that our asymptotic expansions are
able to capture short-time effects, including multimodality
in the first-passage-time density, which are not present in
long-time expansions (where the first-passage-time density is
approximated as exponential).
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II. UNIFORM ASYMPTOTIC APPROXIMATION

Let −λ denote the principal, e.g., smallest magnitude,
eigenvalue of the generator for the diffusion problem (1.1a)
with reaction mechanism (1.2), (1.5), or (1.8). That is, λ

is the principal eigenvalue of the Laplacian operator −�

with the boundary condition (1.1b) and the reactive boundary
condition (1.2) for the pure-absorption Smoluchowski model
or the reactive boundary condition (1.5) for the partial-
absorption Smoluchowski-Collins-Kimball model. In the Doi
model the generator is the operator

−� + μ̂

ε2
1[0,ε](r)

with the boundary condition (1.1b). Here 1�ε
(r) denotes the

indicator function of �ε.
Our basic approach is to first split p(r,t) into two

components: a large-time approximation that will accurately
describe the behavior of p(r,t) for λDt � 1 and a short-time
correction to this approximation when λDt �� 1. Note that
both are defined for all times, but the latter approaches zero
as t → ∞ and so only provides a significant contribution for
λDt �� 1. It should be stressed that the short-time correction
is not an asymptotic approximation of p(r,t) as t → 0, but
instead serves as a correction to the long-time expansion for
λDt �� 1. We write p(r,t) as

p(r,t) = pLT(r,t) + pST(r,t), (2.1)

where pLT is the large-time approximation and pST is the short-
time correction.

We define the large-time approximation and short-time cor-
rection through an eigenfunction expansion of p(r,t). Assume
the existence of an orthonormal L2 basis of eigenfunctions
for the generator. Let ψj label the eigenfunctions and λj the
eigenvalues and consider the eigenfunction expansion

p(r,t) =
∞∑

j=0

cjψj (r)e−λj Dt ,

where

cj =
∫

�′
p(r,0)ψj (r)d r.

Here �′ denotes the portion of � in which the free reactant can
diffuse. For the pure and partial-absorption models �′ = �free,
while in the Doi model �′ = �. With p(r,0) = δ(r − r0), we
obtain

p(r,t) =
∞∑

j=0

ψj (r0)ψj (r)e−λj Dt .

For simplicity, in the remainder of the paper we denote
the principal eigenfunction and corresponding eigenvalue as
ψ(r) := ψ0(r) and λ := λ0, respectively.

We will choose the long-time approximation to correspond
to the first mode of the eigenfunction expansion of p(r,t), that
is,

pLT(r,t) := ψ(r)ψ(r0)e−λDt . (2.2)

With this choice, pLT and pST satisfy the projected initial
conditions

pLT(r,0) = 〈ψ(r),δ(r − r0)〉ψ(r), (2.3)

pST(r,0) = δ(r − r0) − ψ(r)ψ(r0), (2.4)

where 〈·,·〉 denotes the L2 inner product

〈u(r),w(r)〉 =
∫

�′
u(r)w(r)d r.

By adding the two solutions, we see that the original initial
condition is satisfied.

In Ref. [7] we used this splitting to aid in determining
uniform in time asymptotic expansions of the solution to
the pure-absorption Dirichlet problem. One benefit to this
approach is that the long-time approximation of the Dirichlet,
Robin, and Doi problems can be obtained by adapting the
matched asymptotics method developed in Refs. [8,9].

In the remainder of this section, we show using the method
of matched asymptotics that the short- and long-time parts of
the uniform outer expansions as ε → 0 of the Dirichlet, Robin,
and Doi problems are identical in form. We find that they differ
by only a single parameter: the diffusion-limited reaction rate.

In some applications, the detailed spatial dynamics within
each of the preceding models can be ignored and the reactive
process can be characterized as a well-mixed bimolecular
reaction with rate constant given by this diffusion-limited
rate. For the pure-absorption reactive boundary condition,
Smoluchowski developed a popular method for deriving
the diffusion-limited rate (for reactions in an unbounded
domain) as a function of the microscopic parameters of the
preceding models [4]. Denote by kS the diffusion-limited rate.
Smoluchowski obtained that kS = k̂Sε, where

k̂S = 4πD. (2.5)

Similar expressions have been derived for the Robin boundary
condition reaction model [13], where kR = k̂Rε with

k̂R = 4πDγ̂

1 + γ̂
. (2.6)

A diffusion-limited reaction rate for the Doi reaction mecha-
nism (1.8) was derived in Ref. [16], kD = k̂Dε, with

k̂D = 4πD

(
1 − tanh(

√
μ̂)√

μ̂

)
. (2.7)

Note that in the limit as γ̂ → ∞, kR → kS [13]. Similarly, as
μ̂ → ∞, kD → kS [15]. The pure-absorption reaction model
may therefore be interpreted as a limiting case of the partial-
absorption and Doi reaction models.

A. The ε = 0 solutions

We will find it convenient to represent the desired asymp-
totic expansions in terms of solutions to both time-dependent
and stationary ε = 0 problems. We denote by G(r,r ′,t) the
solution of the ε = 0 limit of (1.1), i.e., the Green’s function
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satisfying

∂G

∂t
(r,r ′,t) = D�G, r ∈ �, t > 0

∂ηG(r,r ′,t) = 0, r ∈ ∂�, t > 0 (2.8)

G(r,r ′,0) = δ(r − r ′).

In later calculations we will often write G in terms of a part that is regular (bounded) as t → 0 for all r and r ′, R(r,r ′,t), and a
corresponding singular part (the free-space Green’s function with δ-function initial condition)

G(r,r ′,t) = R(r,r ′,t) + 1

(4πDt)3/2
e−|r−r ′|2/4Dt .

We will also make use of the unique Neumann function, or pseudo-Green’s function, denoted by U (r,r ′) and satisfying

−D�rU (r,r ′) = − 1

|�| + δ(r − r ′), r ∈ �

∂ηU (r,r ′) = 0, r ∈ ∂� (2.9)∫
�

U (r,r ′)d r = 0.

We similarly split U (r,r ′) into a part that is regular for all r and r ′, R0(r,r ′), and a singular part as r → r ′,

U (r,r ′) = R0(r,r ′) + 1

k̂S|r − r ′| (2.10)

(see [11]).
We subsequently denote the Laplace transform of a function f (t) by

L[f ](s) = f̃ (s) :=
∫ ∞

0
f (t)e−st dt

so that

G̃(r,r ′,s) = R̃(r,r ′,s) + e−|r−r ′|√s/D

k̂S|r − r ′| .

In what follows we will make use of the basic identities

lim
s→0

L
[
G(r,r ′,t) − 1

|�|
]

=
∫ ∞

0

(
G(r,r ′,t) − 1

|�|
)

dt = U (r,r ′),

lim
s→0

L
[
R(r,r ′,t) − 1

|�|
]

=
∫ ∞

0

(
R(r,r ′,t) − 1

|�|
)

dt = R0(r,r ′), (2.11)

∫ ∞

0

1

(4πDt)3/2
e−|r−r ′|2/4Dtdt = 1

k̂S|r − r ′| .

The first identity follows by replacing G(r,r ′,t) by G(r,r ′,t) − |�|−1 in Eq. (2.8) and integrating in time. The second follows
by applying the first and third identities to the representations of G(r,r ′,t) and U (r,r ′) in terms of smooth and singular parts.
For readers interested in more detailed derivations of the first two identities see [7,11].

B. Large-time component asymptotic expansion

From the eigenfunction expansion of p(r,t), in each model
we expect for long times that the solution p(r,t) to (1.1a)
should be well approximated by the corresponding first term
in the eigenfunction expansion

p(r,t) ∼ pLT(r,t) = ψ(r)ψ(r0)e−λDt , t → ∞.

In this section we apply the matched asymptotics approach
developed in Refs. [8,11] for calculating asymptotic ex-
pansions as ε → 0 of ψ(r) and λ in the pure-absorption
Smoluchowski model to the Robin boundary condition and
Doi reactive sink models. We derive expansions for the latter
two models analogous to those presented in Refs. [7,11] for the

pure-absorption Smoluchowski model. Note that a number of
results regarding the leading-order term for the Robin problem
were previously derived in Ref. [8] and can be extended to give
the inner solution we obtain, (2.20), using the capacitance for
the Robin problem derived in Ref. [8] within the expansions
of [11].

The principal eigenfunction and eigenvalue satisfy

−�ψ(r) = λψ(r), r ∈ �free

∂ηψ(r) = 0, r ∈ ∂�∫
�free

|ψ(r)|2d r = 1,
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with the reactive boundary condition

−∂ηψ(r) = γ̂

ε
ψ(r), r ∈ ∂�ε (2.12)

in the Robin model and the reactive sink term

−�ψ(r) + μ̂

ε2
ψ(r) = λψ(r), r ∈ �ε (2.13)

in the Doi model [coupled with continuity of ψ(r) and ∂ηψ(r)
across ∂�ε]. We assume that the eigenfunction is normalized
in L2(�free) [resp. L2(�)] for the Smoluchowski and Robin
(resp. Doi) models.

For each model we seek an expansion

ψ(r) ∼ 1√|�| + εψ (1)(r) + ε2ψ (2)(r), ε → 0 (2.14)

where the leading-order term is given by the principal eigen-
function of the ε = 0 problem (i.e., the principal eigenfunction
of −� on � with zero Neumann boundary conditions on ∂�).
Similarly, we seek a corresponding expansion of the principal
eigenvalue

λ ∼ ελ(1) + ε2λ(2), ε → 0. (2.15)

Since the principal eigenvalue of −� with zero Neumann
boundary conditions on ∂�ε is zero, the leading-order expan-
sion of λ will be O(ε) [7,11].

Following [11], we construct an outer expansion of the prin-
cipal eigenfunction with the form (2.14) and a corresponding
inner expansion of ψ(r) near the target, denoted by φ. We
assume that ψ (0)(r) = |�|−1/2, consistent with the limit of
ψ(r) as ε → 0. To derive an expansion of φ, we change to a
coordinate system near the reactive region

y = r − rb

ε
,

giving the inner problem

−� yφ( y) = ε2λφ( y), | y| > 1, (2.16)

with φ( y) satisfying either the reactive Robin boundary
condition

−∂ηφ( y) = γ̂ φ( y), | y| = 1 (2.17)

on the unit sphere or satisfying the eigenvalue equation with a
reactive sink inside the unit sphere,

−� yφ( y) + μ̂φ( y) = ε2λφ( y), | y| < 1

[with continuity of φ( y) and ∂ηφ( y) across the unit sphere].
We then consider the expansion

φ( y) ∼ φ(0)( y) + εφ(1)( y) + ε2φ(2)( y), ε → 0.

Substitution into (2.16) gives

−� yφ
(i)( y) = 0, | y| > 1, (2.18)

with the reactive boundary condition (2.17) for each φ(i), or
the reactive sink equation within the unit sphere

−� yφ
(i)( y) + μ̂φ(i)( y) = 0, | y| < 1. (2.19)

Let φ
(i)
∞ = lim| y|→∞ φ(i)( y). The solution to (2.18) with the

reactive boundary condition (2.17) is then

φ
(i)
R ( y) = φ

(i)
R,∞

[
1 − k̂R

4πD

1

| y|
]
, | y| > 1, (2.20)

where k̂R is given by (2.6). The corresponding solution
to (2.18) with the Doi reaction model (2.19) is then

φ
(i)
D ( y) =

{
φ

(i)
D,∞

(
1 − k̂D

4πD

) sinh(
√

μ̂| y|)
sinh(

√
μ̂)| y| , | y| < 1

φ
(i)
D,∞

[
1 − k̂D

4πD
1

| y|
]
, | y| > 1,

(2.21)

where k̂D is given by (2.7).
Notice that, for | y| > 1, the terms of the inner expansion

for each of the two models differ only in the diffusion-limited
rate that appears. This also holds for the pure-absorption
Smoluchowski model [7,11] and as such we subsequently
consider

φ(i)( y) = φ(i)
∞

[
1 − k̂

4πD

1

| y|
]
, | y| > 1,

where k̂ ∈ {k̂S,k̂R,k̂D} and φ
(i)
∞ ∈ {φ(i)

S,∞,φ
(i)
R,∞,φ

(i)
D,∞} as appro-

priate for each model.
We now develop the asymptotic expansion of the outer

solution. From the perspective of the outer solution, the
reactive surface or region simply corresponds to the point rb.
As such, we find upon substitution of the expansions (2.15)
and (2.14) that

−�ψ (i)(r) =
i∑

j=1

λ(j )ψ (i−j )(r), r ∈ � \ {rb}, i � 1,

with ∂ηψ
(i)(r) = 0 on ∂�. The assumption that ψ(r) is

normalized in the two-norm implies that

∫
�

ψ (1)(r)d r = 0, (2.22)∫
�

ψ (2)(r)d r = −
√|�|

2

∫
�

|ψ (1)(r)|2d r. (2.23)

To determine the unknown constants φ
(i)
∞ , the expansion

of λ, and the outer expansion of the principal eigenfunction
ψ(r), we match the behavior of the expansion of φ( y) as
| y| → ∞ to the behavior of the expansion ψ(r) as r → rb.
We note the determination of these expansions is identical to
the pure-absorption Dirichlet boundary condition considered
in Ref. [11], with the only change in the final expansions a
modified k̂ for the Robin and Doi models. For completeness
we now summarize this procedure, but refer the interested
reader to [11] for complete details of the derivation and our
previous work [7] for a summary of the final expansions for
the pure-absorption reaction mechanism.

At zeroth order we first match φ(0)( y) as | y| → ∞ to ψ (0)(r)
as r → 0. In the original coordinates we find

φ(0)(r) = 1√|�|
[

1 − k̂

4πD

ε

|r − rb|
]
, |r − rb| > ε.
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Then φ(0)(r) determines the singular behavior of ψ (1)(r) as
r → rb,

ψ (1)(r) ∼ − 1√|�|
k̂

4πD

1

|r − rb| , r → rb.

We therefore find that

− �ψ (1)(r) = λ(1)

√|�| − k̂

D
√|�|δ(r − rb), r ∈ �

∂ηψ
(1)(r) = 0, r ∈ ∂�, (2.24)

with the normalization condition (2.22). Integrating this
equation over � and applying the divergence theorem on the
left-hand side then gives

λ(1) = k̂

D|�| .

Using the Neumann function U (r,rb), we may solve (2.24) to
find

ψ (1)(r) = − k̂√|�|U (r,rb).

Matching the regular part of ψ (1)(r) as r → rb with the
behavior of φ(1)( y) as y → ∞, we find

φ(1)(r)= −k̂√|�|R0(rb,rb)

[
1− k̂

4πD

ε

|r − rb|
]
, |r − rb| > ε.

Then ψ (2)(r) has the singular behavior

ψ (2)(r) ∼ k̂2

4πD
√|�|

R0(rb,rb)

|r − rb|
so that

−�ψ (2)(r) = λ(2)

√|�| + λ(1)ψ (1)(r)

+ k̂2

D
√|�|R0(rb,rb)δ(r − rb), r ∈ �

∂ηψ
(2)(r) = 0, r ∈ ∂�,

with the normalization condition (2.23). Integrating over �

and applying the divergence theorem gives

λ(2) = − k̂2

D|�|R0(rb,rb)

so that

ψ (2)(r) = k̂2

√|�|
[
R0(rb,rb)U (r,rb)

− 1

|�|
∫

�

U (r,r ′)U (r ′,rb)d r ′
]

+ �̄.

Here �̄ denotes the average of ψ (2) over � and using (2.23) is
given by

�̄ = − k̂2

2|�|3/2

∫
�

|U (r,rb)|2d r.

In summary, we find the following result.

Principal result 1. The asymptotic outer expansions of the
principal eigenfunction and eigenvalue are

ψ(r) ∼ 1√|�|
[

1 − εk̂U (r,rb) − ε2k̂2

(
−R0(rb,rb)U (r,rb)

+ 1

|�|
∫

�

U (r,r ′)U (r ′,rb)d r ′
)]

+ ε2�̄, (2.25)

λ ∼ λLT := k̂

D|�| [1 − k̂R0(rb,rb)ε]ε, (2.26)

with k̂ ∈ {k̂S,k̂R,k̂D} as appropriate. Substitution into (2.2)
gives the uniform in time asymptotic expansion of pLT(r,t),
as given by Eqs. (2.14)–(2.16) of [7]. Defining

p
(1)
LT(r,r0,0) = − k̂

|�| [U (r,rb) + U (r0,rb)], (2.27)

p
(2)
LT(r,r0,0) = k̂2

|�|U (r,rb)U (r0,rb) + 2�̄√|�|

+ k̂2R(rb,rb)

|�| [U (r,rb) + U (r0,rb)]

− k̂2

|�|2
∫

�

[U (r,r ′) + U (r0,r ′)]U (r ′,rb)d r ′,

(2.28)

we find that the small ε expansion of pLT(r,t) is then

pLT(r,t) ∼
[

1

|�| + p
(1)
LT(r,r0,0)ε + p

(2)
LT(r,r0,0)ε2

]
e−λLTDt .

(2.29)

C. Short-time component asymptotic expansion

We now develop an asymptotic expansion as ε → 0 of
pST(r,t), satisfying (1.1) with the projected initial condi-
tion (2.4) and one of the reactive models (1.2), (1.5), or (1.8).
Our approach differs from the methods we developed for the
pure-absorption Dirichlet problem (1.2) in Ref. [7]. There we
replaced the reactive boundary condition with a pseudopoten-
tial operator in the underlying diffusion equation (1.1), corre-
sponding to a singular perturbation of the Laplacian at the cen-
ter of the reactive target. In contrast, we now develop matched
asymptotic expansions of pST(r,t) in Laplace-transform space,
working directly with the appropriate reaction model. To avoid
the evaluation of a number of integrals we previously calcu-
lated in Ref. [7], we do not calculate the expansions through
term by term matching. Instead, we define one inner solution
and one outer solution that encompass all terms needed to
calculate the expansion of pST(r,t) through O(ε2). We then
match these two solutions and show that the outer solution
satisfies the same integral equation we found in Ref. [7],
but with k̂S replaced by the appropriate k̂ for each reactive
model. The analysis of [7] then gives the corresponding regular
perturbation expansions of this integral equation, which in turn
provides the expansion of pST(r,t) through O(ε2). Note that,
while we take this approach to avoid repeating much of the
analysis of [7], we expect one could alternatively match inner
and outer solutions in Laplace-transform space term by term
and obtain the same final expansion [through O(ε2)].
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We begin by applying the Laplace transform to the
governing equation (1.1), giving

(D� − s)p̃ST(r,s) = −pST(r,0), r ∈ �free, s > 0

∂ηp̃ST(r,s) = 0, r ∈ ∂�, s > 0, (2.30)

where the projected initial condition pST(r,0) is given by (2.4).
Note that pST(r,0) will depend on ε through the principal
eigenfunction contribution ψ(r)ψ(r0). Equation (2.30) is
coupled to the corresponding Laplace-transformed versions
of the reactive models (1.2), (1.5), or (1.8).

To construct an inner solution we change variables as in
the previous section, taking y = |r−rb|

ε
. Denote by σ ( y,s) the

corresponding inner expansion of p̃ST(r,s) near the reactive
target. To determine an expansion of pST(r,t) through O(ε2),
we will require the first two terms in the expansion of σ ( y,s)
(similar to how we only required φ(0) and φ(1) in the previous
section). Let

σ ( y,s) ∼ w( y,s) := w(0)( y,s) + εw(1)( y,s).

Assume s = O(1). Substituting into (2.30) and changing to
the y coordinate, we find that w( y,s) satisfies

�w = 0, | y| > 1, (2.31)

with the pure-absorption Dirichlet boundary condition

w( y,s) = 0, | y| = 1,

the partial-absorption Robin boundary condition

−∂ηw( y,s) = γ̂ w( y,s), | y| = 1,

or the Doi reaction mechanism

−�w( y,s) + μ̂w( y,s) = 0, | y| < 1.

In what follows we will assume that (2.31) is the correct
asymptotic order equation for w( y,s) for all s > 0. That is, we
assume that any additional terms arising when s is large, i.e.,
s = O(ε−β) for β > 0, can be ignored. One might expect this
assumption to ultimately lead to an incorrect final expansion
of p(r,t) for short times. In Sec. II E we demonstrate that for
short times, i.e., t = O(εβ) with β > 0, the error introduced
by this approximation does not change the asymptotic order
of our final expansion of p(r,t).

For each reaction model w satisfies the same equation as the
inner eigenfunction expansions φ(i)( y) studied in the previous
section. We therefore conclude that

w( y,s) = w∞(s; ε)

(
1 − k̂

k̂S

1

| y|
)

, | y| > 1, (2.32)

where k̂S = 4πD and the constant w∞ is determined by
matching to the outer solution and can be written

w∞(s; ε) = w(0)
∞ (s) + εw(1)

∞ (s).

We abuse notation and subsequently denote by p̃ST(r,s)
the expansion of the outer problem solution through terms of
second order, i.e.,

p̃ST(r,s) := p̃
(0)
ST(r,s) + εp̃

(1)
ST(r,s) + ε2p̃

(2)
ST(r,s),

where

p̃
(0)
ST(r,s) = L

[
G(r,r0,t) − 1

|�|
]

= G̃(r,r0,s) − 1

|�|s

corresponds to the ε = 0 solution. The outer solution expan-
sion then satisfies

(D� − s)p̃ST(r,s) = −p0(r), r ∈ � \ {rb}
∂ηp̃ST(r,s) = 0, r ∈ ∂�,

where p0(r) denotes the truncated asymptotic expansion of
pST(r,0) as ε → 0 through terms of O(ε2), that is,

pST(r,0) ∼ p0(r) := p
(0)
ST(r,0) + εp

(1)
ST(r,0) + ε2p

(2)
ST(r,0),

= δ(r − r0) −
[

1

|�| + p
(1)
LT(r,r0,0)ε

+p
(2)
LT(r,r0,0)ε2

]
.

As in the previous section, the singular behavior of w( y,s)
as | y| → ∞ determines the singular behavior of p̃ST(r,s) as
r → rb. We find that

p̃ST(r,s) ∼ −εk̂w∞(s; ε)

k̂S|r − rb|
, r → rb (2.33)

or, equivalently, that p̃ST(r,s) satisfies

(D� − s)p̃ST(r,s) = −p0(r) − f̃ (s)δ(r − rb) (2.34)

for some unknown source term f̃ (s) that enforces the desired
singular behavior. The solution is

p̃ST(r,s) =
∫

�

G̃(r,r ′,s)p0(r ′)d r ′ + f̃ (s)G̃(r,rb,s). (2.35)

We rewrite p̃ST by explicitly removing the singular behavior
as r → rb,

p̃ST(r,s) = ϕ̃(r,s) + h̃(s)U (r,rb), (2.36)

where h̃(s) is also an unknown function. The formal justifi-
cation of this representation was shown in Appendix A of [7]
for the pure-absorption Dirichlet boundary condition reactive
model.

We now derive a well-defined integral equation for ϕ(r,t),
to which regular perturbation theory can be applied to calculate
the asymptotic expansions of ϕ̃, h̃, and hence p̃ST. As part of
our analysis we verify that ϕ̃(r,s) is indeed bounded as r → rb

for each s > 0.
The unknown function h̃ is determined by the matching

condition (2.33). We find

w∞(s; ε) = −h̃(s)

εk̂
. (2.37)

To match the inner and outer solutions, we require

lim
r→rb

[
p̃ST(r,s) − h̃(s)

k̂S|r − rb|

]
= lim

| y|→∞
w( y,s),

which can be rewritten as

ϕ̃(rb,s) + h̃(s)R0(rb,rb) = w∞(s; ε). (2.38)

Combining (2.37) and (2.38) we obtain

h̃(s) = −εk̂ϕ̃(rb,s)

1 + εk̂R0(rb,rb)
. (2.39)
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Hence,

p̃ST(r,s) = ϕ̃(r,s) − εk̂ϕ̃(rb,s)

1 + εk̂R0(rb,rb)
U (r,rb) (2.40)

is an asymptotic approximation to the solution of (2.30). Substituting (2.36) into (2.35) yields

ϕ̃(r,s) + h̃(s)U (r,rb) =
∫

�

G̃(r,r ′,s)p0(r ′)d r ′ + f̃ (s)G̃(r,rb,s). (2.41)

In Appendix A we show that

lim
r→rb

∣∣∣∣
∫

�

G̃(r,r ′,s)p0(r ′)d r ′
∣∣∣∣ < ∞ ∀s > 0, (2.42)

so the unknown function f̃ can be determined by requiring the singular terms to cancel in the limit r → rb. That is, as r → rb

we require

h̃(s)U (r,rb) = h̃(s)

(
R0(r,rb) + 1

k̂S|r − rb|

)
∼ f̃ (s)G̃(r,rb,s) ∼ f̃ (s)

k̂S|r − rb|
,

implying that f̃ (s) = h̃(s). We then find that ϕ̃ satisfies

ϕ̃(r,s) =
∫

�

G̃(r,r ′,s)p0(r ′)d r ′ − εk̂ϕ̃(rb,s)

1 + εk̂R0(rb,rb)
[G̃(r,rb,s) − U (r,rb)]. (2.43)

For each s > 0 this corresponds to the Laplace transform of the time-domain integral equation we derived in Ref. [7] when
k̂ = k̂S,

ϕ(r,t) =
∫

�

G(r,r ′,t)p0(r ′)d r ′ + εk̂

1 + εk̂R0(rb,rb)

(
U (r,rb)ϕ(rb,t) −

∫ t

0
G(r,rb,t − s)ϕ(rb,s)ds

)
(2.44)

[see Eq. (2.33) in Ref. [7]]. Recalling (2.40), we conclude that the perturbation expansion as ε → 0 of this integral equation
developed in Ref. [7] determines the corresponding expansion of pST(r,t) by simply replacing k̂S with k̂. For completeness we
now summarize that expansion.

Principal result 2. The asymptotic expansion of pST(r,t) as ε → 0 is given by

p
(0)
ST(r,t) = G(r,r0,t) − 1

|�| ,

p
(1)
ST(r,t) = −k̂

∫ t

0
G(r,rb,t − s)p(0)

ST(rb,s)ds + k̂

|�|U (r0,rb) + k̂

|�|
∫

�

G(r,r ′,t)U (r ′,rb)d r ′,

with p
(2)
ST(r,t) given by (2.39c) of [7].

Remark 1. In the limit r → rb (2.43) becomes

ϕ̃(rb,s) =
∫

�

G̃(rb,r ′,s)p0(r ′)d r ′ − εk̂ϕ̃(rb,s)

1 + εk̂R0(rb,rb)

(
R̃(rb,rb,s) − R0(rb,rb) −

√
s

Dk̂2

)
.

Solving for ϕ̃(rb,s) yields

ϕ̃(rb,s) = 1 + εk̂R0(rb,rb)

1 + εk̂R̃(rb,rb,s) − ε
√

s
D

∫
�

G̃(rb,r ′,s)p0(r ′)d r ′. (2.46)

Substituting (2.46) into (2.43), we obtain an explicit formula for ϕ̃(r,s) and hence p̃ST(r,s). However, inverting (2.46) seems
less practical than developing regular perturbation expansions of (2.44) as in Ref. [7].

D. Summary of complete expansions

Combining (2.29) with Principal result 2, we obtain a complete expansion of p(r,t) through terms of O(ε2) for each reactive
model. The expansion is identical to that obtained in Ref. [7] for the pure-absorption Smoluchowski reaction where k̂ = k̂S.
To obtain expansions for either the partial-absorption or Doi reaction mechanisms, one need only substitute the appropriate
diffusion-limited rate k̂R or k̂D, given by (2.6) and (2.7). In the remainder of the paper we only utilize the expansion through terms
of O(ε). We therefore omit higher-order terms here and direct the interested reader to [7] for the complete expansion formulas
through O(ε2).
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Principal result 3. The asymptotic expansion of p(r,t) as ε → 0 through terms of O(ε) is

p(r,t) ∼ G(r,r0,t) − 1

|�| (1 − e−λLTDt ) − εk̂

∫ t

0
G(r,rb,t − s)

(
G(rb,r0,s) − 1

|�|
)

ds

+ εk̂

|�|
[∫

�

G(r,r ′,t)U (r ′,rb)d r ′ − U (r,rb)e−λLTDt + (1 − e−λLTDt )U (r0,rb)

]
. (2.47)

In many biological problems, statistics of the first-passage
time for a reaction to occur are of particular interest. Denote
by f (t) the corresponding probability density function for the
first-passage time. It is related to p(r,t) by

f (t) = − d

dt

∫
�

p(r,t)d r. (2.48)

Using Principal result 3, the expansion of f (t) can be derived
as in Ref. [7]. We find the following.

Principal result 4. The asymptotic expansion of f (t) as
ε → 0 through terms of O(ε) is

f (t) ∼ [1 − εk̂U (r0,rb)]λLTDe−λLTDt

+ εk̂

(
G(rb,r0,t) − 1

|�|
)

, (2.49)

where λLT is the asymptotic expansion of the principal
eigenvalue given by (2.26).

With substitution of the appropriate k̂ for k̂S, the complete
expansion through terms of O(ε2) is given by (2.49) of [7].

Remark 2. Suppose that γ̂ or μ̂ is chosen so that the
diffusion-limited rates in the partial-absorption and Doi mod-
els are the same, k̂R = k̂D. The final expansion formulas for
p(r,t) and f (t) are then identical. For irreversible bimolecular
reactions, this demonstrates that when ε is a small parameter
the two models are practically equivalent.

E. Short-time correctness of (2.47)

In deriving the asymptotic expansion of the short-time cor-
rection given in Principal result 2 we made the approximation
that the large s contribution in Eq. (2.31) could be ignored [i.e.,
when s = O(ε−β ) for β > 0]. This might lead to the suspicion
that the expansion of p(r,t) given by (2.47) may be incorrect
for sufficiently small times [i.e., t = O(εβ) for β > 0]. In this
section we demonstrate that on such short-time scales, the error
between p(r,t) and the expansion (2.47) is at most O(ε2+β).
For simplicity, we will restrict attention to the error introduced
in the asymptotic expansion of the solution to the Doi problem,
p(r,t) satisfying (1.1) with the reactive term (1.6) and the
initial condition p(r,0) = δ(r − r0). To make explicit the ε

dependence of p(r,t), we will subsequently write pε(r,t).
With this notation, p0(r,t) = G(r,r0,t) will then denote the
solution to the corresponding ε = 0 pure-diffusion problem
in which there is no reactive target. Finally, in what follows
we denote by ρε(r,t) the corresponding truncated first-order
expansion given by the right-hand side of (2.47). To examine
the short-time behavior of ρε(r,t), we will find it convenient

to rewrite (2.47). Using (2.11), Fubini’s theorem, and the
semigroup property of G(r,r ′,t) we have the identity∫

�

G(r,r ′,t)U (r ′,rb)d r ′

=
∫ ∞

0

∫
�

G(r,r ′,t)
[
G(r ′,rb,s) − 1

|�|
]
d r ′ds

=
∫ ∞

t

[
G(r,rb,s) − 1

|�|
]
ds

= U (r,rb) −
∫ t

0

[
G(r,rb,s) − 1

|�|
]
ds

= U (r,rb) −
∫ t

0
G(r,rb,s)ds + t

|�| .

Using this identity we can simplify (2.47) to

ρε(r,t) = G(r,r0,t) + 1

|�| (1 − e−λLTDt )

×{−1 + εk̂[U (r,rb) + U (r0,rb)]} + εk̂t

|�|2

− εk̂

∫ t

0
G(r,rb,t − s)G(rb,r0,s)ds. (2.50)

Let

d(r,�ε) = inf
r ′∈�ε

|r − r ′|

denote the distance of r from the target �ε. Our goal is to
demonstrate the following.

Theorem 1. For all ε > 0 sufficiently small, when t =
O(εβ) with β > 0, then

pε(r,t) = ρε(r,t) + O(ε2+β ) (2.51)

for all r and r0 in � such that

min{d(r,�ε),d(r0,�ε)} > C > 0 (2.52)

for any positive constant C independent of ε. That is, provided
we start the particle O(1) from the target and examine the
solution O(1) from the target, for short times we expect the
error between the asymptotic expansion and the true solution
to the Doi problem to be higher than second order in ε.

In establishing this result we will make use of the following
lemma, which is proven in Appendix B.

Lemma 1. pε(r,t) and G(r,r ′,t) have the following basic
properties.

(a) The Doi solutions monotonically increase as ε de-
creases. That is, assuming pε1 (r,0) = pε2 (r,0) = p0(r,0),

pε2 (r,t) � pε1 (r,t) � p0(r,t), 0 � ε1 � ε2. (2.53)
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(b) Assume that the domain � is sufficiently regular (at least Lipschitz; see [17]). For t ∈ [0,1] there are constants c1 > 0 and
c2 > 0 such that the ε = 0 diffusion equation Green’s function G(r,r ′,t) satisfies the bound

G(r,r ′,t) � c1

t3/2
e−|r−r ′|2/c2t . (2.54)

�
With the preceding lemma we are ready to establish our main result.

Proof of Theorem 1. As

|pε(r,t) − ρε(r,t)| � |G(r,r0,t) − ρε(r,t)| + |G(r,r0,t) − pε(r,t)|,
it is sufficient to show that both

G(r,r0,t) − ρε(r,t) = O(ε2+β) (2.55)

and

G(r,r0,t) − pε(r,t) = O(ε2+β). (2.56)

We begin with (2.55). Recalling the definition of λLT [(2.26)] for t = O(εβ), we have that

1 − e−λLTDt = k̂εt

|�| + O(ε2+β )

so that

G(r,r0,t) − ρε(r,t) = −εk̂

[
εk̂t

|�|2 + O(ε2+β )

]
[U (r,rb) + U (r0,rb)] + O(ε2+β ) + εk̂

∫ t

0
G(r,rb,t − s)G(rb,r0,s)ds.

The assumption that d(r,�ε) > C and d(r0,�ε) > C, for some C > 0 independent of ε, implies that |r − rb| > C and |r0 − rb| >

C. By (2.10), this assumption implies that U (r,rb) and U (r0,rb) are both uniformly bounded by constants independent of ε. As
such, all terms on the right-hand side of the preceding equation before the integral are O(ε2+β ). We claim that this integral is
exponentially small in ε, which immediately implies (2.55). By (2.54),∫ t

0
G(r,rb,t − s)G(rb,r0,s)ds � c2

1

∫ t

0

1

(t − s)3/2s3/2
e−|r−rb|2/c2(t−s)e−|rb−r0|2/c2sds

= c2
1
√

c2π (|r − rb| + |rb − r0|)
|r − rb||rb − r0|

1

t3/2
e−(|r−rb|+|rb−r0|)2/c2t .

Here the last line follows by Laplace transforming the time convolution, combining terms, and then inverse transforming.
Using (2.52) and the boundedness of �, we find∫ t

0
G(r,rb,t − s)G(rb,r0,s)ds � M

t3/2
e−2C2/c2t

for a positive constant M independent of t and ε. The inequality demonstrates that for all ε sufficiently small, the integral is
exponentially small in ε when t = O(εβ), establishing (2.55). Finally we establish (2.56). Let

v(r,t) = G(r,r0,t) − pε(r,t),

which satisfies the diffusion equation

∂v

∂t
= D�V + μ1�ε

(r)pε(r,t), r ∈ �, t > 0

∂ηv(r,t) = 0, r ∈ ∂�, t > 0

v(r,0) = 0, r ∈ �,

where 1�ε
(r) denotes the indicator function of the set �ε. Using Duhamel’s principle we have

v(r,t) = μ

∫ t

0

∫
�ε

G(r,r ′,t − s)pε(r ′,s)d r ′ds.

Clearly v(r,t) � 0. Recalling that p0(r,t) = G(r,r0,t), the monotonicity condition (2.53) then implies that

|v(r,t)| � μ

∫ t

0

∫
�ε

G(r,r ′,t − s)G(r ′,r0,s)d r ′ds.
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(a)

(b)

Doi

Doi

Rob

Rob

FIG. 1. (a) Spherically symmetric first-passage-time density (ε = 0.01) and (b) max norm difference between the first-passage-time
densities (r0 = 0.3). We set D = 1 and γ̂ = √

μ̂/ tanh(
√

μ̂) − 1. With these choices, k̂R = k̂D, so solutions to the Robin and Doi models have
identical asymptotic expansions through O(ε2).

We now apply the bound (2.54) to each Green’s function within
the integrand and use that d(r,�ε) > C and d(r0,�ε) > C for
some C > 0 independent of ε. Assuming that ε and hence t

are sufficiently small, we find

G(r,r ′,t − s) � c1

(t − s)3/2
e−C2/c2(t−s)

� c1

t3/2
e−C2/c2t for all s ∈ [0,t],

G(r ′,r0,s) � c1

s3/2
e−C2/c2s

� c1

t3/2
e−C2/c2t for all s ∈ [0,t].

Here we have used that for t sufficiently small, the Gaussian
bounds are maximized in time at s = 0 and s = t , respectively.
Using these bounds we see that

|v(r,t)| � μ|�ε|t
(

c1

t3/2
e−C2/c2t

)2

,

which is exponentially small in ε for t = O(εβ). We therefore
find that (2.56) holds. �

Remark 3. One could modify the proof to allow for general
bounded initial conditions. While we do not show it here, we
expect that these modifications would not require the initial
condition to be zero near �ε, as was necessary for the δ source
initial conditions we studied above. Instead, we expect that
only the condition d(r,�ε) > C > 0 should carry over.

III. RESULTS: SPHERICAL DOMAIN

A. Comparison of accuracy in the spherically
symmetric problem

We illustrate the approximation for a spherical domain, with
standard spherical coordinates (r,θ,ϕ) and the assumption that
D = 1. Choosing � to be the unit sphere, we have that

G(r,r ′,t) = 1

|�| + 1

π2

∞∑
n=1

∞∑
m=1

(2n + 1)α3
m

1/4 + α2
m − (n + 1/2)2

×Pn(cos θ )jn(αmr)jn(αmr ′)e−α2
mt , (3.1)
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where Pn(·) are the Legendre polynomials and jn(·) are spherical Bessel functions [18,19]. The Neumann Green’s function is [19]

U (r,r ′) = 1

4π

[
1√

r2 − 2rr ′ cos θ + r ′2
+ 1√

1 − 2rr ′ cos θ + r2r ′2

]

+ 1

4π
ln

(
2

1 − rr ′ cos θ +
√

1 − 2rr ′ cos θ + r2r ′2

)
+ r2 + r ′2

6|�| − 7

10π
. (3.2)

We first explore the simplest case where the solution is radially
symmetric. Here we can check the accuracy of our asymptotic
expansions by direct comparison to exact solutions of the
Robin and Doi problems. We use the explicit solution formulas
from [18,19] and [15], respectively. The target is placed at
the center of the sphere and the diffusing molecule’s initial
position is uniformly distributed over the sphere of radius r0.
In this special case G(r,r ′,t) can be simplified (see Ref. [7]).

To compare each of the reaction mechanisms, we choose γ̂

(the Robin constant) and μ̂ (the Doi absorption rate) so that
the diffusion-limited rates k̂R [Eq. (2.6)] and k̂D [Eq. (2.7)]
are equal. With this choice the asymptotic expansions of the
solutions for each reaction model are identical in the outer
region (see the previous section).

In Fig. 1 we examine the difference between three first-
passage-time densities: the exact Doi solution fDoi(t), the
exact Robin solution fRob(t), and the two-term asymptotic
approximation fasy(t) [i.e., truncated after terms of O(ε)].
The max norm error between the two exact solutions and the
approximation illustrates the accuracy of the asymptotic result,
which converges like O(ε) as expected. Since γ̂ and μ̂ are
chosen so that the two reaction mechanisms are comparable,
we also show the max norm difference between the two exact
solutions. When μ̂ = 1 the effective reaction rate is low and
the pairwise differences between the three solutions are similar
in magnitude. When μ̂ = 100 the reaction rate is increased and
the exact solutions are closer to each other than they are to the
approximation. Moreover, as ε → 0, the difference between
the exact solutions appears to approach zero faster than the
difference between each exact solution and corresponding
asymptotic expansion.

B. Comparison of accuracy in the nonspherically
symmetric problem

In Fig. 2 we break the radial symmetry by setting the
target position to rb = (θb,φb,rb) = (0,0,0.5) and examine the
effect of changing the location of the initial position r0 on
the first-passage-time density. Notice that in this example, the
molecule starts at a specific point r0, whereas in the previous
section, the molecule started at a uniformly distributed point
over the sphere of radius r0. Without radial symmetry, we
no longer have exact solutions to validate the accuracy of
the approximation, so we use Monte Carlo simulations. The
implementation of the Monte Carlo simulations is described
in Appendix C. We see that the asymptotic approximations,
which only include terms through O(ε), become somewhat
less accurate when the initial position approaches within a
distance 0.5 of the target.

In Fig. 3 we look at more choices of initial position and
target location with |rb − r0| = 0.7 fixed. As expected, there is
little to no loss of accuracy when r0 approaches the boundary.

In contrast, we see that the approximation loses some accuracy
when rb approaches the boundary. To improve accuracy in
this case, when the target is O(ε) from the boundary one could
consider a more refined inner problem in which the target lives
in a half-space above a plane (corresponding to the flattened
boundary). If the target merges with the boundary, becoming a
small hole, one would need to solve the related narrow escape
problem [9,20].

FIG. 2. First-passage-time density, with the target center fixed at
rb = (θb,φb,rb) = (0,0,0.5). The initial position is r0 = (0,0,r0). The
approximations (solid lines) are compared to normalized histograms
obtained from Monte Carlo simulations, which are plotted as
rectangles centered at the histogram value. The height of each
rectangle represents a 95% confidence interval. Thick white lines
(gray rectangles) show the approximation of the pure-absorption
problem. Thin white lines correspond to the approximation of the
Robin (red rectangles) and Doi (black rectangles) partial reaction
mechanisms. The parameter values are ε = 0.05, D = 1, μ̂ = 5, and
γ̂ = √

μ̂/ tanh(
√

μ̂) − 1.
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FIG. 3. Same as Fig. 2 with different choices of the target location rb and initial position r0 such that |rb − r0| = 0.7.

C. Multiple time scales

Our analysis reveals three important time scales for the
first-passage-time problem. The mean first-passage time τm ∼
1/λ (see Sec. II B) is the longest-time scale and is independent
of the initial condition; it is characterized by trajectories that
explore a large fraction of the domain before reaching the
target. Two other time scales, corresponding to the peaks seen
in Fig. 2, are revealed by the short-time contribution of our
asymptotic approximation. We call these τg and τs , where
τg � τs � τm.

When |rb − r0| < 0.7, the first-passage-time density has
a single peak at τg < 0.1. For larger initial separations
|rb − r0| > 0.7, there is again a single peak, but it occurs later,
on the time scale of τs , with its maximum closer to t = 1. When
|rb − r0| ≈ 0.7, both peaks are present and distinguishable
from each other.

In Fig. 3 we examine different target positions with
|rb − r0| = 0.7 fixed. When the center of the sphere is between
the starting position and the target, we see two peaks in the
first-passage-time density. In contrast, when the target and the
starting position are within the same hemisphere, there is a
single broad peak encompassing both time scales. Note that
in the top left pane the target is within 2ε of the boundary,
where our expansion is no longer valid. When the target is
on the boundary, this situation is known as a narrow escape
problem [9,21,22].

To understand what gives rise to the τg and τs time scales,
we examine the approximation to the joint distribution p(r,t),
which tells us what parts of the domain the molecule is likely to
explore during the search. In Fig. 4 we set r0 = (θ0,φ0,r0) =
(π,0,0.35) and rb = (0,0,0.35). For reference, the resulting
first-passage-time density is shown in Fig. 4(a), which has two
peaks corresponding to τg and τs . In Fig. 4(b) we show p(r,t)
on the bottom half of the spherical domain at several different
times. The top three snapshots show how probability arrives
at the target as t → τg and the bottom three snapshots show
how probability arrives at the target as t → τs . At t = 0.05
we see the initial Gaussian spread is relatively unaffected by
the boundary, indicating that τg is characterized by trajectories
that reach the target before encountering the boundary.

The bottom three snapshots, starting at t = 0.25, show how
probability spreads out as t → τs . Recall that for a Brownian
walker in three dimensions, there is an effective outward radial
drift induced by the dimension of the walk. As a result, at t =
0.15 we see most of the probability move to the boundary, away
from the target. Hence, τs is characterized by trajectories that
initially travel away from the target and encounter the bound-
ary, which directs the molecule around the domain to the target.

While this example is idealized, it illustrates how our
asymptotic expansions can help understand the role of do-
main geometry in reaction-diffusion systems. One potential
application is to cellular systems, where the shape of a cell
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(a) 

(b)

FIG. 4. Approximation for the (a) first-passage-time density f (t) and (b) joint distribution function p(r,t), where Prob[R(t) ∈ Bd r (r),t <

T ] = p(r,t)d r . The target radius is ε = 0.03. The target and initial position are placed along the centerline (θb = π,θ0 = 0) at a distance of
rb = r0 = 0.35.

or a membrane-enclosed region may influence the dynamics
of cellular processes. The topic of how confinement effects
first-passage-time properties has been explored in several
recent studies [23–26].

IV. DISCUSSION

Including the occurrence of nonreactive encounters in
bimolecular reaction models is a common and useful modeling
tool for many complex biochemical reactions and cellular
processes. Building upon our work on the pure-absorption

reaction mechanism [7], we have developed comparable
expansions for two partially absorbing reaction mechanisms.
Our approach extends the method of matched asymptotics as
developed in Ref. [11] for estimating long-time asymptotic
expansions, developing full uniform in time expansions of the
solution to the underlying diffusion equation. This provides
a versatile method that is complementary to the pseudopo-
tential approach we previously used for the pure-absorption
problem [7]. The approximations of the two partial reaction
mechanisms differ by a single constant: the diffusion-limited
reaction rates given by (2.7) and (2.6).
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The results presented here apply to general three-
dimensional domains provided that the solution to the un-
perturbed problem is known. That is, to obtain the asymptotic
approximation for a specific domain geometry, the primary
necessary ingredient is the solution to (1.1) with no absorbing
target (i.e., ε = 0). It is also of interest to obtain similar
results for a Brownian search in two dimensions, since
many biochemical reactions occur between membrane bound
molecules [20,27]. Unfortunately, in two dimensions the
asymptotic series contains 1

ln ε
terms that converge slowly as

ε → 0. It may be possible to sum all of the logarithmic terms
in the expansion and obtain an accurate approximation using
methods similar to those in Ref. [28].

Another possible extension arises from observing that the
matched asymptotic expansion method of [8,11], which we
used to derive the expansion of the large-time component,
does not require a spherical target. For nonspherical targets
the inner problem is generally no longer exactly solvable;
however, as described in Ref. [11] one can develop far-field
expansions that are sufficient for matching inner and outer
expansions. The inner solution behavior for different shapes,
when far from the target, is accounted for by one parameter
in the far-field expansions: the effective capacitance of the
target object. It is an open problem to develop such expansions
for the Doi reaction model with nonspherical targets and
it would be interesting to understand what differences the
resulting Doi model expansions have from corresponding ex-
pansions of the solution to the Smoluchowski-Collins-Kimball
model.

Many other extensions are possible given the breath of
previous work on the large-time approximation over the past
few decades. If the domain contains multiple targets, splitting
probabilities and conditional first-passage times have been
studied within the long-time framework [9,12]. The molecular
motor mediated transport of viruses toward the cell nucleus
is another example of a random target search problem, with
added complexity that molecular motors move randomly with
a directed bias toward the cell center [29]. We anticipate that as
long as the probability flux around the target is approximately
constant, our approximation framework should hold for search
problems with drift. Three-dimensional search processes
may also have active interactions with the domain boundary.
The walker may be allowed to randomly stick to the domain
boundary and diffuse along the two-dimensional surface [30],
as in a recent model of a T cell searching for lymph nodes [31].
It is also common for reactions to occur between molecules in
the cytosol and membrane-bound proteins. In mathematical
models these processes give rise to narrow escape prob-
lems [9,21,22]. The approximation obtained here breaks down
as the target approaches the boundary, however, it is likely
that a similar matched asymptotics procedure could be used to

obtain uniform in time asymptotic expansions of solutions to
the underlying diffusion equation for narrow escape problems.
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APPENDIX A: FINITENESS OF (2.42)

In this section we show

lim
r→rb

∣∣∣∣
∫

�

G̃(r,r ′,s)p0(r ′)d r ′
∣∣∣∣ < ∞ ∀s > 0, (A1)

where

p0(r) = δ(r − r0) − 1

|�| − εw(1)(r,r0) − ε2w(2)(r,r0).

We show this identity holds for each order term in ε separately.
At O(1) we have∫

�

G̃(r,r ′,s)

[
δ(r − r0) − 1

|�|
]
d r ′ = G̃(r,r0,s) − 1

s|�| ,

where we have used that∫
�

G̃(r,r ′,s)d r ′ =
∫ ∞

0
e−st

[∫
�

G(r,r ′,t)d r ′
]
ds

=
∫ ∞

0
e−st ds

= 1

s
.

Here the first line follows by the non-negativity of G and
Fubini’s theorem. As s → 0 we have [7]

lim
s→0

(
G̃(r,r0,s) − 1

s|�|
)

= U (r,r0).

We therefore conclude that for rb �= r0, the O(1) contribution
to (A1) is bounded for each s � 0.

Recalling (2.27), at O(ε) the behavior is determined by two
integrals. The first is

U (r0,rb)
∫

�

G̃(r,r ′,s)d r ′ = U (r0,rb)

s
,

which is clearly bounded for each s > 0. The second is

∫
�

G̃(r,r ′,s)U (r ′,rb)d r ′ = L
[∫ ∞

t

(
G(r,r ′,z) − 1

|�|
)

dz

]
= 1

s

[
U (r,rb) − G̃(r,rb,s) + 1

s|�|
]

(A2)

= 1

s

[
R0(r,rb) −

(
R̃(r,rb,s) − 1

s|�|
)

+ 1 − e−|r−rb|
√

s/D

k̂S|r − rb|

]
, (A3)

where the identity in the first line is from [7]. For each fixed s > 0, we see that the term in square brackets is finite as r → rb.
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Finally, examining (2.28), at O(ε2) the only new term that appears is proportional to∫
�

G̃(r,r ′,s)

[∫
�

U (r ′,r ′′)U (r ′′,rb)d r ′′
]
d r ′ = 1

s

[∫
�

U (r,r ′′)U (r ′′,rb)d r ′′ −
∫

�

G̃(r,r ′′,s)U (r ′′,rb)d r ′′
]
,

where we have switched the order of integration and used (A2) (with rb replaced by r ′′). Here, changing the order of integration
can be justified by expanding each term into their regular and singular parts to verify that the integrand is absolutely integrable
on the product space and then applying Fubini’s theorem. The second integral on the right-hand side is finite as r → rb by (A3).
Moreover, ∫

�

U (r,r ′)U (r ′,rb)d r ′ =
∫

�

[(
R0(r,r ′) + 1

k̂S|r − r ′|

)(
R0(r ′,rb) + 1

k̂S|r ′ − rb|

)]
d r ′

can be seen to be finite as r → rb by changing to spherical
coordinates about rb and noting that the effective singularity
within the integral is integrable (like |r − rb|−2 as r → rb).

APPENDIX B: PROOF OF LEMMA 1

Proof. For 0 � ε1 � ε2 let

v(r,t) = pε1 (r,t) − pε2 (r,t)

and denote by 1�ε
(r) the indicator function on �ε. Then

∂v

∂t
= D�v − μ1�ε1

(r)v + μ
[
1�ε2

(r) − 1�ε1
(r)

]
pε2 (r,t).

(B1)
Let Gε(r,r ′,t) denote the Green’s function solving

∂Gε

∂t
= D�Gε − μ1�ε

(r)Gε(r,r ′,t), r ∈ �, t > 0

∂ηGε(r,r ′,t) = 0, r ∈ ∂�, t > 0

Gε(r,r ′,0) = δ(r − r ′), r ∈ �, r ′ ∈ �.

By Duhamel’s principle we may write

v(r,t) =
∫ t

0

∫
�

Gε1 (r,r ′,t − s)f (r ′,s)d r ′ds,

where f (r ′,s) is given by

f (r ′,s) := μ
[
1�ε2

(r ′) − 1�ε1
(r ′)

]
pε2 (r ′,s)

and f (r ′,s) � 0 as �ε1 ⊂ �ε2 . Since Gε1 (r,r ′,t) � 0 we may
conclude that

v(r,t) � 0,

giving (2.53). Finally, the inequality (2.54) is just a version
of Theorem 2.3 of [17] adapted for Lipschitz domains (see
Remark 3.11 of [17]). �

APPENDIX C: MONTE CARLO DYNAMIC-LATTICE
SIMULATIONS

For comparison with the asymptotic expansions, we per-
form Monte Carlo simulations of the diffusion of a molecule
to a spherical target at various locations within a spherical
domain. The continuous motion of the diffusing molecule is
approximated as a continuous-time random walk on lattice
points. As will be described in more detail below, we allow
the lattice to change dynamically to conform with the domain

boundary or with the reactive boundary of the target. [The
method used here is similar to the dynamic lattice version
of the first-passage kinetic Monte Carlo (FPKMC) method in
Refs. [32,33]. However, here we do not use protective domains
as are used in the FPKMC method, since there is only one
diffusing molecule.]

The jump rate from a lattice point xi to a neighboring
lattice point xj is given by D/h2, where D is the diffusion
coefficient and h = |xi − xj | is the lattice spacing. This
jump rate agrees with the standard second-order-accurate
discretization of the Laplacian and has commonly been used
in reaction-diffusion master equation simulations as the jump
rate between neighboring voxels [34–36].

Throughout the course of each simulation, the lattice is
only defined locally. When the diffusing molecule is not near
the target or the outer boundary of the domain, we set the
lattice spacing equal to a specified value hmax

1 . Near the outer
boundary of the domain, the local lattice spacing h will take
on values less than or equal to hmax

1 and is chosen in such a
way as to enforce the reflecting boundary condition (described
in more detail below). When the molecule is near the target,
a finer lattice spacing is used. Specifically, when the distance
from the diffusing molecule to the target is less than 2hmax

1 , then
the lattice spacing is chosen to be less than or equal to another
specified value hmax

2 � hmax
1 . In Figs. 2 and 3, hmax

1 = 0.02 and
hmax

2 = 0.005.
Pure-absorption and Doi reaction mechanisms. First, we

consider the cases of the Smoluchowski model with the
pure-absorption Dirichlet reactive boundary or the Doi model.
When the diffusing molecule is close enough to the target that
a single hop of length hmax

2 could take the molecule to within
the target radius, then the local lattice spacing is chosen to be a
value h < hmax

2 . This h is chosen so that a single hop may take
the diffusing molecule exactly onto the target boundary, but
not within the target (similar to Fig. 3.3 and the left panel of
Fig. 3.4 in Ref. [33]). In the Dirichlet case, the simulation ends
immediately when the diffusing molecule reaches the target
boundary. In the Doi case, upon reaching the target boundary,
a new local lattice of spacing hmax

2 is defined. The molecule
may then hop within the target or away from the target. When
the distance from the diffusing molecule to the target center is
less than or equal to the target radius, then the molecule may
react with some probability per unit time given by the Doi
reaction rate parameter. When the diffusing molecule is within
the target, but has not yet reacted, and its distance to the target
boundary is small enough that a single hop of length hmax

2
could take the molecule outside the target, then the local lattice
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spacing is chosen to be a value h < hmax
2 such that a single

hop may take the diffusing molecule exactly onto the target
boundary, but not outside the target. If the molecule hops to
the target boundary, then the lattice spacing returns to hmax

2
and the molecule may again hop either away from or into the
target.

Partial-absorption reaction mechanism. In the case of
the Smoluchowski-Collins-Kimball model with the partial-
absorption Robin reactive boundary, a modified jump rate is
used when the diffusing molecule is near the target. When
the diffusing molecule is within a distance hmax

2 /2 from the
target boundary, the lattice rotates to be perpendicular to
the target boundary. The local lattice is defined so that the
target boundary is exactly centered between two lattice points
(similar to Fig. 3.4, right panel, of Ref. [33]). The jump rate
at the Robin boundary is 2Dγ

h(2D+γ h) , where γ is the Robin
constant. We derived this jump rate following the approach
in Appendix C of Ref. [37], but with their Dirichlet boundary
condition replaced by a Robin boundary condition.

Outer domain boundary. The lattice also changes dynam-
ically if the diffusing molecule is near the outer reflecting
boundary of the overall simulation domain. Since the jump
rate of D/h2 gives a coordinatewise discretization, a different
value of h can be used in each coordinate direction. The h in
each coordinate will have a value less than or equal to hmax

1
and is chosen so that the domain boundary lies exactly halfway
between two lattice points (similar to Fig. 3.5, right panel, of
Ref. [33]). Then the no-flux boundary condition is enforced
by having a jump rate of zero across the boundary.

In Figs. 2 and 3, each subplot is based on N = 105

simulations for each of the three models. The histograms
are obtained by binning the first-passage-time data from
the simulations into intervals that are evenly spaced on a
logarithmic scale. The error bars represent approximate 95%
confidence intervals. Let �ti be the width of the ith bin, Ni the
number of observations in the ith bin, and pi = Ni/N . The
error bars plotted at the center (on the logarithmic scale) of
each bin are given by pi/�ti ± 1.96

√
pi(1 − pi)/

√
N�ti .
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