
PHYSICAL REVIEW E 94, 042406 (2016)

Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins
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Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many
cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the
axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required
mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure,
and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered
flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is
able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading
to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting
of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules
is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite
directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual
sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal
beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins.
These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly
open new research directions in the field of flagellar motility.
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I. INTRODUCTION

Motor proteins are powered by the hydrolysis of ATP
(adenosine triphosphate) molecules and convert chemical
energy into mechanical work, responsible for many cellular
functions. For instance, axonemal dyneins [Fig. 1(a)]—found
in flagella and cilia—are crucial for cell motility and fluid
transport (e.g., propulsion of spermatozoa and transport of
mucus in trachea, respectively). Cilia and flagella are motile
hair-like projections from the surface of (eukaryotic) cells,
and have an identical microstructure called the axoneme [1];
see Fig. 1(b).1 The axoneme consists of an array of nine
doublet microtubules surrounding a pair of single microtubules
(often referred to as the 9 × 2 + 2 configuration).2 Each of the
outer doublets is linked to its neighbors by protein filaments,
called nexin links. The microtubules are filamentous proteins
of α- and β-tubulin dimers that contain the binding sites for
the dyneins [3–6]. The dyneins are anchored at one doublet
microtubule [“A” in Figs. 1(a) and 1(b)] and interact with
the neighboring microtubule [“B” in Figs. 1(a) and 1(b)].
It is commonly accepted that the force-transduction of the
axonemal dyneins and their coordinated operation—along the
length of the axoneme and in time—leads to repetitive episodes

*P.R.Onck@rug.nl
1Although cilia and flagella have an identical microstructure, they

were given different names before their structures were studied.
Typically, cells possess one or two long flagella, whereas ciliated cells
have many short cilia. For example, the mammalian spermatozoon
has a single flagellum, the unicellular green alga chlamydomonas has
two flagella, and the unicellular protozoan paramecium is covered
with a few thousand cilia, which are used both to move and to bring
in food particles [2].

2Although variations in axoneme morphology are discovered, the
structural aspects remain similar [1].

of bending (and bend propagation) responsible for the ciliary
and flagellar waveforms [7–17]; e.g., see Fig. 1(c).

Axonemal dyneins generate force by coupling ATP hydrol-
ysis to conformational changes, which causes sliding of the
attached microtubules [3–7,21]; see Fig. 2. Each dynein com-
prises three basic units: a head, stalk, and stem; see Fig. 1(a).
The head contains the ATP hydrolysis site, the stem anchors
the dynein to the microtubule doublet, and the stalk contains
(at its tip) an ATP-sensitive microtubule-binding domain [4].
The conformational change driven by ATP hydrolysis alters
the angle between the stem and stalk, which causes (relative)
sliding of the microtubules [4]. Binding of an ATP molecule
causes a weak detachment of the stalk from the microtubule
(denoted by [MT,Dyn] in Fig. 2), while hydrolysis of the
ATP molecule leads to a rigor stalk-microtubule attachment
([MT.Dyn] in Fig. 2). The subsequent release of ADP and Pi

is then responsible for a large conformational “power stroke”
leading to the relative sliding of the microtubules [3–7,21,22].
The working cycle of a dynein can thus be interpreted as a
cyclic execution of power and recovery strokes, see Fig. 2,
making the dyneins periodic force generators [23], where the
time period of the force generation is governed by the ATP
hydrolysis cycle and depends on the concentration of ATP in
the solution [23,24].

Although consensus has been reached on the three separate
ingredients of flagellar beating (i.e., dynein cycle, axonemal
microstructure, and flagellar kinematics), shown in Fig. 1,
the integration of these ingredients into a coherent picture
is still lacking. The challenge remains in understanding how
the forces generated by thousands of individual dyneins at the
nanoscale [Fig. 1(a)] can lead to smooth and regular beating
at the micron scale [Fig. 1(c)], and how this is mediated by the
structure of the axoneme [Fig. 1(b)]. The force-transduction of
individual dynein molecules has been studied experimentally
via optical-trap nanometry [23,25–28] and their collective be-
havior has been analyzed through microtubule-motility assays
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FIG. 1. (a) Structure of an axonemal dynein comprising three basic units: a head, stem, and stalk [3]. Presence of the dyneins (outer arms)
at a regular spacing along the microtubules; see the lower panel [18]. (b) An electron micrograph of an axoneme cross-section showing the
9 × 2 + 2 configuration [19]. (c) Flagellar beating of a typical spermatozoon. The three video-fields (A-C) are 200 ms apart and the scale bar
is 10 μm [20]. Figures are reproduced with permission of the copyright owner(s).

[25,29–34]. It has been generally accepted that the dyneins
apply a sliding force during their working cycle leading to
the generation of bending of the microtubules [8,10,35–37].
Large deflections can be generated by the accumulation of
successive sliding events, while the microtubules remain of
fixed length [1]. One aspect that has received considerable
attention is the fact that the microstructure of the axoneme is
inherently three-dimensional, while flagellar beating is planar.
During a planar bend development not all the dynein motors
found at a cross-section can generate active sliding at the
same time [7,13], because axonemal dyneins are unidirectional
motors, directed toward the minus-end of the microtubule
polarity (basal end) [15]; see Fig. 3. The axoneme’s geometry
dictates that one group of dyneins is in an active state and
produce sliding toward the basal end, while a second group
of dyneins—positioned diametrically opposite to the first
group—is in an inactive state (see Fig. 3). With time, the
bending curvature at a specific location changes sign when

the first group becomes inactive and the second group active
(also known as the “switch-point” hypothesis) [8,15]. An
important aspect that has remained elusive is the mechanism of
coordination of the dyneins. How do thousands of individual
dyneins coordinate their working cycle in order to produce
traveling waves?

Observation of the flagellar kinematics (waveform and
beating frequencies) indicates that there is a train of bends
(of opposite curvature) along the axonemal length, which
is traveling in time causing wave propagation and flagellar
motility. The magnitude of the curvature can be linked to
the amount of sliding displacement at a specific location
relative to a reference value. Experimental observations point
to the switching incidents during flagellar beating when
the bending curvature changes sign caused by reversal of
the sliding displacements [15]. Obviously, these switching
points should move in a very controlled fashion along the
length of the axoneme to cause wave propagation. These

FIG. 2. ATP hydrolysis cycle, ATP � ADP + Pi, governing the power (and recovery) stroke of a dynein molecule leading to a
conformational change and sliding of the attached microtubule.
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FIG. 3. During planar flagellar beating the dyneins are able to
coordinate their operation along the axoneme length as well as at the
three-dimensional axoneme cross-section. The unidirectional motion
of the dyneins (denoted by the dots) are directed toward the basal
end (minus end) of the microtubule, which is indicated by the small
arrows. However, this action leads to sliding of the neighboring
(attached) microtubule toward the distal end of the axoneme, which
is indicated by the bigger arrows [13]. The figure is adopted from
Ref. [13] and is reproduced with permission of the copyright
owner.

observations have led to the “curvature control” hypothesis
suggested by Brokaw [36,37], which implies that activation
and deactivation of the dyneins are governed by a threshold
curvature [8,9,15,38,39]. Computational studies based on the
curvature control hypothesis—given preexisting curvatures
along the axoneme length—predict steady oscillations and
wave propagation only when there is a delay in the feed-
back loop from curvature to (de)-activation of the dyneins
[8,9,15,35–37,39–41]. Another hypothesis was later suggested
by Lindemann [42,43], known as the “geometric clutch”
hypothesis in which the interdoublet spacing is linked to the
binding probability (thus activation and deactivation) of the
dyneins at a given cross-section of the axoneme. The geometric
clutch hypothesis is closely related to the curvature control
hypothesis since the development of curvature affects the
interdoublet spacing [8]. Recently, a load-dependent response
of the motor proteins was suggested to obtain flagellar beating
in a mathematical study (also known as the “sliding control”
hypothesis) [14]. In this work, it is hypothesized that elastic
energy will accumulate due to the action of the dyneins, which
causes deactivation of the dyneins once a threshold value is
reached [8].

Clearly, many different hypotheses have been proposed in
the literature, but no consensus has been reached so far. Ex-
isting theoretical models [8,9,14,15,35–37,39–43] are mostly
based on geometry-controlled activation and deactivation of
dynein forces, in which the inherent physical parameters of
the dynein ATP-cycle are not accounted for. The goal of
this article is therefore to take the independent ATP-driven
force cycle of the dyneins as a starting point and explore
how the overall beating pattern emerges from their collective
behavior. We will explore how individual dyneins are able
to cooperate temporally and spatially, leading to a stable
flagellar waveform and swimming velocity, using a minimal
representative computational model. Each dynein is subject
to a periodic cycle along with a dynein-based switching
mechanism, which is key to achieving dynein cooperation from
any random initiation of dynein activity. We will show that an
overall regular beating pattern emerges with time from an

initially planar configuration due to the coordinated operation
of the individual dyneins.

II. COMPUTATIONAL MODEL
AND DIMENSIONAL ANALYSIS

A minimal representative model is used to study planar
beating of natural flagella due to the coordinated operation of
ATP-powered dyneins. The axoneme structure is modeled by
two representative (doublet) microtubules that are connected
via nexin links; see Fig. 4(a). A similar two-filament approach
has been taken by Fauci and coworkers [35,40,41]. We
analyze this system using a two-dimensional computational
model in which an integral formulation for Stokes flow is
implemented using the boundary element method to represent
the fluid environment, while the microtubules and nexin links
are represented by an assemblage of elastic beam elements.
Each microtubule is discretized using 100 equal-sized beam
elements and the analysis was carried out with a time-step of
0.1 μs, which assure numerical convergence of the results.
The whole structure is embedded in an infinite fluid and
the associated drag forces are computed using the Stokeslets
approach. The solid mechanics and fluid dynamics equations
are implicitly coupled using a finite element framework, details
of which can be found in Appendix A [47]. We account for
two groups of dyneins (groups A and B), each responsible
for sliding (of the neighboring microtubules) in opposite
directions; see Fig. 4(a). The dynein activity is shown in
Fig. 4(a) by the vertical arrows, where the length of an arrow
indicates the magnitude of the applied dynein force. Dyneins
are found in many isoforms in an axoneme, which have distinct
functions to facilitate flagellar motility [26,44]. Moreover,
the spacing of these dyneins varies for outer- and inner-arm
dyneins, while they retain a specific arrangement within the
96-nm repeat length of the outer doublet [45]. Here, we assume
that all the dyneins are the same and are placed with a constant
spacing; see Fig. 4(a). In the finite element implementation the
sliding force of the dyneins F is transferred to the neutral axis
of the beam, and equilibrium moments M = 0.5F (d + lnexin)
are introduced such that the loading system imposed by the
dynein satisfies force and moment equilibrium; see Fig. 4(b).
The dyneins are modeled as periodic force generators with
an inherent duty ratio governed by the ATP hydrolysis cycle
[23,24]. We assume that the dyneins will linearly increase the
sliding force during their active phase (governed by ta) until
the stall force Fstall is reached, after which the dynein detaches
and the force drops to zero during the recovery stroke (waiting
phase) of the dyneins (governed by tw); see Figs. 2 and 4(b).
We link the ATP hydrolysis cycle to the dynein forcing cycle,
represented by ta , tw, and Fstall, with Fstall being the maximum
force a dynein molecule can apply, as obtained experimentally
via optical-trap nanometry [23,25–28]. It should be noted
that for computational efficiency we adopt a course-grained
approach in which the number of dyneins present along the
microtubules are captured in an average, smeared-out, manner.
In Appendix B we have carried out discrete calculations
with our ATP hydrolysis model and show that the collective
behavior of multiple individual dyneins is in agreement with
the experimentally observed sliding velocities observed in
microtubule-motility assays.
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FIG. 4. (a) A representative computational model of the axoneme structure where two microtubules are connected via nexin links. Two
groups (A and B) of dyneins are present at a regular spacing along the microtubules, each responsible for sliding in opposite directions. The
dynein activity is shown by the vertical arrows, where the length of an arrow indicates the magnitude of the respective dynein force. Note that
the actual dynein force is tangential to the axoneme. (b) The dynein force (F )—responsible for the relative sliding of the microtubules—is
transferred to the neutral axis of the beam (representing the microtubules in the finite element model) and equilibrium moments are introduced,
given by M = 0.5F (d + lnexin), such that the loading system imposed by the dynein satisfies force and moment equilibrium. The dyneins are
periodic force generators by linearly increasing the applied force (until the stall force Fstall is reached) during the power stroke (i.e., active period
ta) followed by a recovery (“waiting”) period tw in which the applied force remains zero. The dynein has an input duty ratio, finput = ta/tcycle,
where tcycle = ta + tw, with the time periods depending on the ATP hydrolysis cycle [23,24].

We will study the flagellar beating pattern and swimming
velocity as a function of the ATP-driven dynein cycle, the
properties and structure of the axoneme, and finally, the
viscosity of the fluid (μ). The dynein cycle is governed by
ta , tw, and Fstall, and the axoneme structure is governed by
the stiffness E of the microtubules, their vertical spacing H

(= d + lnexin), thickness d, and length L, and the stiffness EN

(= E), thickness dN, and horizontal spacing W of the nexin
links; see Fig. 4(b). To efficiently explore the parametric space
of the system, we will use the following set of dimensionless
numbers. The dynein number,

Dn = mstallL
2/Ed3 = MtotalL/Ed3 = NdyneinsMstallL/Ed3,

(1)

the fluid number,

Fn = μL3/taEd3, (2)

the input duty ratio of the dyneins (governed by the ATP
hydrolysis cycle),

finput = ta/tcycle, (3)

and the normalized length parameters,

d/dN,H/L,and,W/L. (4)

Here, mstall = Mtotal/L is the dynein moment-density (i.e., the
total moment per unit length of the microtubule), Mtotal =
NdyneinsMstall with Ndyneins being the total number of dyneins
present along the length of a microtubule, and Mstall =
0.5FstallH is the maximum moment (due to the stall force
Fstall) of the dyneins per unit out-of-plane thickness, dN is the
thickness of the nexin links, and tcycle = ta + tw. Note that we
have two force parameters: (i) Dn, the ratio of applied dynein

forces to elastic forces, and (ii) Fn, the ratio of viscous forces to
elastic forces [46–49]. The input duty ratio finput represents the
intrinsically cyclic nature of the dyneins, the hydrodynamic
interaction of two neighboring microtubules is governed by
H/L, and W/L represents the number of nexin links.

The bending stiffness of the axonemal structure is quoted
to be 4.2 × 10−22 Nm2 [50], which is only one or two orders
of magnitude higher than the reported bending stiffness of
a microtubule (e.g., 1.9 × 10−24 Nm2 [51,52] and 21.5 ×
10−24 Nm2 [53,54]), suggesting that the contribution of the
nexin links to the effective bending stiffness of the axoneme
is small, as also postulated in Ref. [14]. On the other hand,
studies have also shown that nexin links can have an important
contribution to the axoneme stiffness (see Refs. [55,56]).
In the current paper, however, we neglect this effect by
assuming that the nexin links are rather floppy relative to the
microtubules by specifying d/dN = 100, such that the bending
stiffness of the system is dominated by the microtubule flexural
stiffness. We assume the following dimensionless parameters
in our simulations, unless specified otherwise: Dn = 40, Fn =
53, finput = 0.5, W/L = 0.01, H/L = 8.59 × 10−3, d/dN =
100.3 We will refer to this case as the “reference” case.

III. RESULTS AND DISCUSSION

We start our computational analysis by exploring how the
individual dyneins are able to generate an overall beat response

3This set of dimensionless numbers is on the same order of
magnitude as that of realistic biological systems. For instance, Dn =
NdyneinsMstallL/EI = 15 and Fn = μL4/taEI = 32 for L = 40 μm,
μ = 1 × 10−3 Pa.s, EI = 4 × 10−22 Nm2, ta = 200 ms, Fstall = 2
pN, H = 90 nm, Ndyneins = 1666 (assuming a 24-nm spacing).
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FIG. 5. Steady-state response in the absence of a switching mechanism for the reference case. (a) Two groups of dyneins contribute to the
axoneme deformation, where the normalized tip deflection, δ/L (left vertical axis), is indicated by the sold line, and the net number of active
dyneins working at a time, �N = NA − NB (right vertical axis), is denoted by the symbols. Representative steady-state cycles are shown as
a function of normalized time, �t/tcycle, with �t representing the time elapsed during steady-state beating. (b) The dynein activity along the
axonemal length with time is shown by the vertical arrows, where the length of an arrow indicates the magnitude of the respective dynein force
(that is actually oriented tangential to the axoneme). Upward and downward arrows refer to the forces generated by the dyneins of group-A
and group-B, respectively. The deflection amplitude remains low as the dyneins of the two different groups are competing with each other at a
given cross-section.

for the situation depicted in Fig. 4(a) with clamped boundary
conditions at the left end (i.e., both rotations and displacements
are zero). At the start of the simulations a random time is
assigned to each dynein from both groups, chosen from the
ATP-driven working cycle between 0 and tcycle, which places
the dyneins either in an active state or in a waiting state.
During the active state the dyneins cause relative sliding of
the microtubules due to application of the sliding forces on
the attached microtubules. Given that all the dyneins from
both groups are the same, the overall deflection is governed by
the effective number of dyneins, �N = NA − NB , working
along the length at a given time instance, leading to very small
deflections δ of the right tip of the axoneme; see Fig. 5(a).
Note that NA and NB are the total number of dyneins from
group A and B, respectively, that are in the active phase,
so that �N > 0 corresponds to a tendency of the axoneme
to deflect upward and �N < 0 to deflect downwards [see
Fig. 4(a)]. As the input duty ratio is an indication of the active
number of dyneins at a given time instance, the average number
of active dyneins for finput = 0.5 will be 50%. However, in
the absence of a switching mechanism the group A and B
dyneins at each location can be operative at the same time [see
Fig. 4(a)], so that the net number of active dyneins (�N ) will
be relatively low, as indicted by the symbols in Fig. 5(a). The
dynein activity with time is shown in Fig. 5(b) by the vertical
arrows, where the length of an arrow indicates the magnitude
of the respective dynein force. Upward and downward arrows
indicate dyneins in the active state of group-A and group-B,
respectively. The deflection amplitude remains small due to the
independent operation of both dynein groups A and B at each
time instance and cross-section. We have also analyzed the
case for finput = 0.9 such that on average 90% of the dyneins

are active. However, �N remains to be around 10 (10%), so
that also for finput = 0.9 the deflections remain small.

A. Dynein coordination and flagellar beating

Dyneins are minus-end directed motors, i.e., their power
stroke is directed toward the minus-end of the microtubules
[15], so that the natural sliding direction of groups A and B,
are opposite to each other; see Fig. 4(a). In the absence of a
switching mechanism, as studied in the previous subsection,
the dyneins continue to apply force, even when sliding is
opposite to their natural sliding direction. However, it has
been postulated that during axonemal bending at a given cross-
section one group of dyneins will experience positive sliding,
while the second group, positioned diametrically opposite,
will experience sliding in the opposite direction, which might
trigger these second group of dyneins to switch-off [7,13];
see Fig. 3. We can look at this as a “negative-work-based
deactivation” of the dyneins, which prompts an active dynein
to go into the inactive state at the occurrence of sliding in the
negative direction (i.e., opposite to its “natural” sliding direc-
tion). In addition, a persistent observation in theoretical and
computational models is the fact that the applied forces and the
development of curvature are out-of-phase [9,15,16,35–41],
suggesting a time delay in the physical switching mechanism
[8,9,15]. Indeed, theoretical studies on assemblies of motor
proteins [57,58] have identified a time-delay between the
action of the motor proteins and the response of the system. In
addition, by studying the collective behavior of dyneins with
load-dependent unbinding, a time-delay has been observed
as well. In our work, we incorporate these observations
by postulating a time-delay τ in our negative-work-based
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FIG. 6. Axoneme deflection and dynein activity with time for the reference case with switching for τ = 0, i.e., instantaneous deactivation
of the dyneins at the occurrence of negative-work. (a) The normalized tip deflection, δ/L (left vertical axis), is indicated by the sold line, and
the net number of active dyneins working at a time, �N = NA − NB (right vertical axis), is denoted by the symbols. (b) The dynein activity
along the axonemal length with time is shown by the vertical arrows. Note, however, that the actual dynein force is oriented tangential to the
axoneme. The large deflection of the axoneme is due to temporal regulation of the dynein activity, i.e., at any given cross-section only one
group of dynein (either A or B) can be active at a given time instance.

deactivation mechanism. We will investigate the range of time
delays between τ = 0 (instantaneous switching) and τ = ta
(no switching, corresponding to Fig. 5).

We will first analyze the case of instantaneous switching
(τ = 0), the results of which are presented in Fig. 6. We
observe that this negative-work-based deactivation of the
dyneins facilitates a temporal regulation between group A
and B, because this switching mechanism implicitly imposes
the constraint that at any given cross-section of the axoneme
only one dynein (either from group A or B) can be active
at a given time instant, as shown in Fig. 6(b). A natural
consequence is a significant increase in the effective number
of dyneins (�N ), which eventually leads to large deflection
amplitudes, see Fig. 6(a), compared to the amplitudes in the
absence of switching [see Fig. 5(a)]. However, as shown in
Figs. 6(a) and 6(b), a steady-state behavior is not observed
even after many cycles of ATP hydrolysis. The resulting
motion appears to be primarily reciprocal, so that no directional
swimming can be expected. Obviously, although the dyneins
show temporal coordination, they are not able to spatially
regulate their operation, which is key to break symmetry and
to obtain nonreciprocal motion (wave propagation), leading to
directional swimming.

Next, we investigate the effect of the time delay τ . For a time
delay of τ/ta = 0.2, the axoneme deformation and dynein ac-
tivity are shown in Fig. 7. We observe an emergence of dynein
coordination (temporal as well as spatial) causing an evolution
of local bend regimes in the axoneme and their propagation
with time; see Fig. 7(b). The regular beating spontaneously
emerges as a result of the switching mechanism (a time
delayed deactivation of the dyneins based on negative work),
imposed on an initially planar configuration of the axoneme
with a spatially random distribution of (initial) dynein activity.
Comparison of Figs. 7(a) and 5(a) shows that the effective

number of dyneins (�N ) now oscillates smoothly over a
cycle time and that larger tip deflections are observed. The
elastic deformation [indicated by δ in Fig. 7(a)] lags behind
the actuation forces (the net force of the dyneins, proportional
to �N ) partly due to the delay and partly due to viscous drag,
and the beat frequency is directly related to tcycle; see Fig. 7(a).

The results so far have been obtained using clamped
boundary conditions at the left end of the axoneme [see
Fig. 4(a)]. Next, we release the swimmer and study the
swimming response in the absence of constraining boundary
conditions. The swimming displacement as a function of time
is shown in Fig. 8(a) for six different realizations (i.e., these
cases only differ by the random distribution of the initial
dynein activity). For all the cases analyzed, the system requires
approximately five ATP cycles before a steady state is settled
in, leading to a constant swimming velocity. In addition, the
results show that the swimming direction is not known a
priori in our simulations and depends on the initial random
placement of the dyneins in their respective working cycle.
As the system evolves from an initial planar configuration to
a flagellar waveform, the wave propagation can be toward the
left or right with equal probability, since the flagellar beating
patterns are the result of the emerging dynein coordination
and is not enforced in the model. This is due to fact that
the system is completely symmetric; there is no distinction
between the basal and distal end of the axoneme, once the
axoneme is unconstrained on both sides. Comparison of the
clamped and free configuration shows that the dynein activity
and wave characteristics remain mostly the same [see Figs. 7(a)
and 8(b)]. We have also performed simulations on an interme-
diate case in which only the displacements were constrained,
but the rotations were free. It was found that the boundary con-
ditions do not significantly influence the emergent waveform,
possibly due to the floppiness of the microtubules.
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FIG. 7. Steady-state response for the reference case with switching for τ/ta = 0.2. (a) The effective number of active dyneins working at
a time, �N = NA − NB , is shown in comparison with the number of active dyneins of group A (NA) and group B (NB ). The normalized tip
deflection (δ/L) indicates the period of oscillations to be tcycle, where representative steady-state cycles are shown as a function of �t/tcycle.
(b) The dynein activity along the axonemal length with time is shown by the vertical arrows indicating the dynein coordination (temporal as
well as spatial) causing an evolution of local bend regimes in the microtubules and their propagation with time. Note that the dynein force is
oriented tangential to the axoneme.

The influence of the time delay, τ/ta , on the swimming
velocity and wave characteristics is shown in Fig. 9(a), where
the absolute value of the swimming velocity U is normalized
with L/tcycle. Each data point corresponds to the average
of ten different realizations. It is clear that a time-delayed
deactivation of the dyneins based on negative work is necessary
for emergence of dynein coordination leading to nonreciprocal
motion and directional swimming. The swimming velocity
increases sharply for low τ until it reaches a maximum around
τ = 0.2ta . Since we allow the dyneins to do negative work
for a period governed by τ/ta , the dyneins are not working
effectively for larger τ/ta values, resulting in a decreasing
velocity, which becomes zero for τ/ta > 0.65; see Fig. 9(a).

The value τ/ta = 1 corresponds to the case in which the
switching mechanism is absent, resulting in simultaneous
operation of both dynein groups, leading to small deflections
and zero velocity as shown in Fig. 5. On the other hand,
τ/ta = 0 causes instantaneous deactivation, which will lead to
temporal coordination and large deflections, which however,
do not result in spatial coordination nor make a transition
to steady-state beating (see Fig. 6). Snapshots of steady-state
swimming motion for τ/ta = 0.2 are shown in Fig. 9(b), where
the curvature remains nearly constant as it propagates along the
length of the axoneme, which is consistent with earlier findings
[38,39]. Also, it is known that a nearly constant-curvature
beating is characteristic for nonhyperactivated spermatozoa
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FIG. 8. Swimming response with switching for the reference case with τ/ta = 0.2. (a) The swimming displacement (x) with time indicating
transient and steady-state swimming for six different realizations. (b) Axoneme deflection and dynein activity with time for a representative
realization, which indicates that the steady-state beating emerges with time once the dynein activity stabilizes due to interference of the
switching mechanism.
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FIG. 9. Steady-state swimming response with a time-delayed deactivation of the dyneins (based on negative work) for the reference case.
(a) Normalized swimming velocity as a function of the normalized time delay for 0 � τ � 1. The swimming velocity increases sharply at
the onset of wave propagation due to the emergence of dynein coordination. The value of τ/ta = 0 corresponds to instantaneous deactivation
leading to reciprocal beating with large deflections, while τ/ta = 1 corresponds to the case in the absence of a switching mechanism. The
error bars indicate the standard deviation of the results obtained by choosing ten different realizations. The filled symbol for τ/ta = 0.2 is for a
partially uniform distribution of the dynein initiation time discussed in the text. (b) Snapshots of steady-state swimming motion for τ/ta = 0.2
with each snapshot (denoted by the numbers) separated by tcycle/5. The curvature remains nearly constant as it propagates along the axoneme.

[59]. In Fig. 9(a) we show the general trend of the system
using the data of ten different random distributions of the
dynein initiation time. The computational cost of the analysis
can be reduced by using a partially uniform distribution of
the dynein initiation time, where we start our simulations by
activating only a few dyneins of group A near the left end. The
obtained results are within the statistical range, see the filled
symbol for τ/ta = 0.2 in Fig. 9(a), and the axoneme deflection
and dynein activity with time and space along the axoneme are
similar to the cases obtained with a random initiation. We will
use this partially uniform distribution for the dynein initiation
in our further analysis.

B. The effect of stall force, viscosity, duty ratio, and
deactivation time delay

In the following subsection we investigate the effect of the
dimensionless numbers on the swimming velocity. We start
our analysis by simulating the effect of Dn and Fn. There has
been much debate on the specific value of the stall force for
the axonemal dyneins and the presumably large difference in
the force exerted by inner and outer dyneins [23,25–27]. The
stall force enters in our analysis through the dimensionless
“dynein” number Dn. In addition, the effect of viscosity on
the flagellar beating characteristics has been often studied,
showing that an increase of viscosity leads to a decrease
in wavelength, deflection amplitude, and swimming velocity
[35,39–41,60,61]. The viscosity enters in our analysis through
the fluid number Fn. We study the influence of Fn for a given
value of Dn (see Fig. 10). It can be seen from the insets of
the right panel of Fig. 10 that an increasing Fn leads to a
decrease in the wave length as well as the wave amplitude,
which results in a decrease in the swimming velocity. This can

be understood by referring to the well-known scaling relations
for an infinitely long swimmer propagating a sinusoidal wave
along its length [11,47,62–64]. Then, the swimming velocity is
proportional to the square of the wave amplitude and inversely
proportional to the wave length for small wave amplitudes.
This indicates that the decreasing velocity with increasing Fn

in Fig. 10 (right panel) is primarily due to the decrease in
amplitude (despite the decrease in the wave length). In the left
panel of Fig. 10, four flagellar waveforms are depicted (insets)
for increasing values of both Dn and Fn. In that case, the
wavelength decreases due to the increase in the fluid number
Fn, while the decreasing amplitude due to Fn is compensated
by the increase in Dn.

The influence of Dn on the swimming velocity is shown
in Fig. 11 for various values of Fn. The results show that a
considerable increase in the dynein force (Dn) is required to
overcome the viscous drag forces represented by Fn. It can
be seen that for a constant Fn value the wave amplitude is
controlled by Dn; see the insets of Fig. 11. As Dn represents
the ratio of the applied dynein forces to the elastic forces, an
increasing Dn increases the wave amplitude, which causes
a corresponding increase in the swimming velocity. The
swimming velocity shows a quadratic dependence on Dn (for a
given value of Fn), which can be seen from Fig. 11, where the
solid lines are quadratic fits to the data. We have also studied
the effect of the structural parameters H/L and W/L on the
normalized swimming velocity. Their influence, however, was
found to be negligible and will not be further discussed here.
The interested readers are referred to Ref. [65].

We proceed to explore the influence of the input duty ratio
finput on the swimming velocity. The input duty ratio finput

is governed by the variation of ATP/ADP concentration in the
aqueous environment. Experiments have shown that a decrease
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FIG. 10. Influence of Fn on the flagellar waveform and swimming velocity for τ/ta = 0.2 and finput = 0.5 for different values of Dn (left
panel). For a constant Dn value, Fn is observed to control the wave amplitude and the wave length (see the insets in the right panel), which
results in a decrease in the swimming velocity. The insets in the left panel indicate the waveforms for four cases for increasing values of Dn

and Fn. The thick solid lines are drawn only as a guide to the eye.

in the ATP concentration increases the total hydrolysis time,
tcycle as well as finput [3]. Similarly, the ADP concentration
might affect the release of ADP and thus the time scales of the
power stroke (see Fig. 2). Indeed, observations on the reaction
kinetics indicate that the product release (Pi and ADP) is the
rate-limiting reaction during the ATP hydrolysis cycle [24].
To explore the effect of finput we vary the activation time ta at
constant cycle time tcycle; see Fig. 12. As a result, also τ/ta will
change for a constant value of τ , which has been shown to have
an important effect on the swimming velocity [see Fig. 9(a)].
The results indicate that the swimming velocity depends on the
value of τ/ta and is maximum for finput = 0.5 (see Fig. 12) as
shown earlier in Fig. 9(a). The swimming velocity is maximal
for finput = 0.5 and for finput > 0.5 a decrease in the swimming
velocity is observed. For finput < 0.5 the dyneins will have less
time to be active (additionally, there will be an increase in the
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FIG. 11. Influence of Dn on the flagellar waveform and swim-
ming velocity for τ/ta = 0.2 and finput = 0.5 for different values
of Fn. For a constant Fn value, Dn is observed to control the wave
amplitude (see the insets), which leads to a corresponding increase in
the swimming velocity. The thick solid lines are quadratic fits to the
data.

τ/ta value when τ is constant), which causes the swimming
velocity to decrease.

Interestingly, the beat frequency is found to depend on the
maximum value of tcycle and 2ta , so that tbeat = tcycle for finput �
0.5 and tbeat = 2ta for finput > 0.5. Once we normalize the
swimming velocity with the time period of the flagellar beat
(tbeat) instead of tcycle, the swimming velocity appears to be
independent of finput for values greater than 0.5 [65].

The beating frequency of the flagellum (tbeat) intrinsically
depends on the period associated with the ATP hydrolysis
cycle. In our model, ta and tcycle do not depend on the viscosity,
leading to tbeat = 2ta = tcycle for finput = 0.5. However, as
discussed in the first paragraph of this section, the model
captures the influence of the fluid viscosity on the wave
amplitude, wave length, and resulting swimming velocity,
which are in qualitative agreement with earlier observations
[35,39–41,60,61]. Interestingly, in an experimental study by
Ishijima and Hiramoto [50] the beating frequency remains
unchanged with increasing viscous forces imposed by an
additional fluid flow in the direction of bend propagation [15].
Furthermore, it is known that the ATP concentration will affect
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FIG. 12. Influence of finput on the swimming velocity for a
constant cycle time tcycle.
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the flagellar beating frequency [60] and dynein stall force [28].
In our model, the input duty ratio finput and associated time
periods ta and tcycle are governed by the ATP concentration.
For instance, decreasing tcycle in our model to incorporate an
increase in the ATP concentration [23,24] will increase the
resulting beat frequency (see, e.g., Figs. 7 and 8), as also
observed in flagellar studies [66].

IV. SUMMARY AND CONCLUSIONS

We have computationally analyzed the planar beating
of natural flagella powered by ATP-driven dyneins using
a two-dimensional finite element framework in which the
solid mechanics and fluid dynamics equations are solved
simultaneously. We consider a minimal representative model
in which the axoneme structure is represented by two micro-
tubules that are connected via nexin links. Flagellar beating
emerges due to the interaction of two groups of dyneins, each
responsible for sliding in opposite directions, in the presence of
a switching mechanism. The dyneins are modeled as periodic
force generators represented by the stall force, duty ratio, and
cycle time, which are related to the power and recovery stroke
of a dynein molecule during its ATP-driven hydrolysis cycle.
The dyneins are deactivated at the end of the (active) cycle
or when negative work is done during the cycle. Our results
show that a time delay between the occurrence of negative
work and deactivation is key in generating nonreciprocal
motion leading to swimming. A stable flagellar waveform and
beating pattern emerges from an initially planar microtubule
configuration starting from a random distribution of dynein
activity in their ATP hydrolysis cycle. We have identified
the key dimensionless parameters responsible for flagellar
beating and have explored the associated system response.
The influence of the stall force of the dyneins is captured by
the dynein number, which is responsible for the magnitude
of the wave amplitude. The influence of the fluid viscosity is
captured by the fluid number, which controls the wave length
as well as the wave amplitude. The influence of the ATP/ADP
concentration is captured by the ATP hydrolysis cycle time
and input duty ratio, which control the beating frequency.
The simulation results are in qualitative agreement with
the experimental observations. These findings might provide
insights on the fundamental working mechanism of axonemal
dyneins, and possibly will open new research directions in the
field of flagellar motility.
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APPENDIX A: A COMPUTATIONAL FRAMEWORK FOR
FLAGELLAR PROPULSION4

To solve the coupled fluid-structure interaction (FSI)
problem, we utilize the principle of virtual work containing

4Reproduced from Namdeo et al., Biomicrofluidics 5, 034108
(2011) with the permission of AIP Publishing.

all the relevant energies and adopt an updated Lagrangian
framework to arrive at the final set of equations. By implicitly
coupling the solid mechanics and fluid dynamics equations,
we incorporate the equivalent drag matrix due to the fluid into
the stiffness matrix while solving the equations of motion for
the FSI problem [47].

1. Finite element formulation of the solid dynamics equations

The principle of virtual work for the system under con-
sideration can be written on the undeformed configuration as

∫
V0

σδεdV −
∫

S0

(δu)T T ddS = 0, (A1)

where σ is the stress at point (x,y) and T d = {Tu,Tv}T is the
traction vector due to viscous forces of the fluid (see Fig. 13).
The deformation of a 2D beam structure can be described
in terms of the axial and transverse displacements of its axis,
u = {u,v}T . The characteristic strains, given by the axial strain
ε and the curvature κ , contribute to the Lagrange strain ε as

ε = du

dx
+ 1

2

(
dv

dx

)2

− y
d2v

dx2
= ε − yκ. (A2)

For a beam of uniform cross-section with thickness h and
out-of-plane thickness of unity, we can write∫

x

(Pδε + Mδκ)dx −
∫

x

(δu)T T ddx = 0, (A3)

where P = ∫
y
σdy and M = − ∫

y
σydy [67]. The virtual

work equation at time t + �t can be written as∫
x

(P t+�tδεt+�t + Mt+�tδκt+�t )dx

−
∫

x

(δut+�t )T T t+�t
d dx = 0, (A4)

which can be expanded linearly in time by assuming Qt+�t =
Qt + �Q and can be simplified by neglecting the higher-order
terms, leading to∫

x

(
P tδεt + Mtδκt + �Pδεt + �Mδκt + P t�δε

)
dx

−
∫

x

(δut+�t )T T t+�t
d dx = 0. (A5)

We use the finite element formulation to discretize the
system in terms of the nodal displacements and rotations de

FIG. 13. A representative finite element with the corresponding
nodal degrees of freedom (u,v,φ) subjected to the external traction
forces (Tu,Tv) due to the surrounding fluid.
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of the Euler-Bernoulli beam elements (see Fig. 13) with de =
{u1,v1,φ1lr ,u2,v2,φ2lr}T , where ui,vi,φi,i = 1,2, denote the
nodal displacements and rotation of the element in nodes 1 and
2, respectively, and lr is a reference length chosen to be the
total length of the microswimmer (L) in the present analysis.
The axial displacements are linearly interpolated while the
transverse displacements are cubically interpolated,

u = Nude, v = Nvde, (A6)

where Nu and Nv being the standard interpolation matri-
ces [68]. Now, using the standard finite element notations
du/dx = Bude, dv/dx = Bvde, d2u/dx2 = Cvde, and con-
stitutive relations �P = Eh�ε, �M = EI�κ , with E being
the elastic modulus and I being the second moment of inertia
given as I = h3/12, the discretized virtual work equation can
be written as

K t
e�de + f t

int − f t+�t
ext = 0, (A7)

where K e is the elemental stiffness matrix, f int is the internal
nodal force vector, and f ext is the external nodal force vector
due to the drag forces of the fluid, which can be written as

K t
e =

∫
x

(
EhBT

u Bu + EI CT
v Cv + P t BT

v Bv

)
dx,

f t
int =

∫
x

(
P t BT

u + Mt CT
v

)
dx, and

f t+�t
ext =

∫
x

NT T t+�t
d dx,

in which N consists of the shape functions Nu and Nv and
the domain of integration was chosen to be the deformed con-
figuration (updated Lagrangian framework, de = 0). Finally,
the equations of motion can be written after the finite element
assembly as

K t�d + Ft
int − Ft+�t

ext = 0. (A8)

The external forces Fext consist of tractions imposed by
the fluid and are calculated using a 2D Stokeslet approach as
described in the following sections.

2. Boundary element formulation
of the fluid dynamics equations

For the fluid we make use of the Stokeslet approach in which
the force exerted on the fluid at the surface of the solid structure
is approximated by the distribution of Stokeslets along the
length of the structure. The velocity and force fields are related
by a Green’s function that has a singularity proportional to
1/r in three dimensions and ln(r) in two dimensions [69]. The
expression of Green’s function (G) for the Stokeslets relates
the velocity at location r , u̇, to the forces at location r′, f ,
through

u̇ = G f and Gij = 1

4πμ

{
− ln(R)δij + RiRj

R2

}

for (i,j = 1,2), (A9)

where R = r − r′, R = |R| is the distance between the two
locations r and r′ and δij is the Kronecker δ. By assuming
the point force f to be represented by the traction f = TdS

over the solid surface, the boundary-integral equation can be
written as

u̇ =
∫

boundary
GTdS =

∑
nelm

∫
Le

GTdS

=
∑
nelm

∫
Le

GNdS t, (A10)

where T are the tractions imposed on the fluid and T =
−T d . In Eq. (A10), the boundary-integral equation has been
discretized using boundary elements of length Le, and the
tractions are linearly interpolated using T = N t with t being
the tractions at the nodes. When Eq. (A10) is used to evaluate
the velocity in all nodes of the flagellum, we obtain a system
of equations U̇ = Gf t that relates the traction t exerted by
the flagellum on the fluid to it’s velocity U̇ . The integration
procedure is adopted from the literature [69]. Once the velocity
of the solid surface is known, this relation can be inverted to
obtain the nodal tractions: t = G−1

f U̇ .

3. Fluid-solid interaction and implicit coupling

Coupling of the solid mechanics and fluid dynamics
equations will be done in an implicit manner by incorporating
the equivalent drag matrix due to the fluid into the stiffness
matrix [70]. The external nodal force vector due to the fluid’s
drag forces [see Eq. (A7)] can be given as

f t+�t
ext =

∫
x

NT T t+�t
d dx = −

∫
x

NT Ndx t t+�t

= −Me t t+�t , (A11)

where Me = ∫
x

NT Ndx in which we only consider the linear
shape functions for N . Note that the minus sign appears due
to the change of reference (from fluid to the structure, T d =
−T ). After performing the standard finite element assembly
procedure we get

Ft+�t
ext = −Mt t+�t = −MG−1

f U̇
t+�t

, (A12)

where the matrix Gf relates the velocity of the solid structure
to the traction, see Appendix A.2. Now, using the no-slip
boundary condition U̇ = A�d/�t , it follows that

Ft+�t
ext = −MG−1

f A�d/�t = −K t
D�d, (A13)

where KD = MG−1
f A/�t is an equivalent drag matrix and is

the stiffness contribution due to the presence of the fluid. A
is a matrix that eliminates the rotational degrees of freedom
from the global displacement vector �d. After incorporating
the appropriate boundary conditions, we will be solving the
following equation of motion for the FSI problem to obtain
the incremental displacements (�d):

{
K t + K t

D

}
�d = −Ft

int. (A14)

This appendix has been reproduced from Ref. [47], with
the permission of AIP Publishing.
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APPENDIX B: MOLECULAR STUDIES ASSOCIATED
WITH AXONEMAL DYNEINS

To study the flagellar beating we have used a representative
and coarse-grained model, where the number of dyneins
present along the microtubules are captured in an average
sense. Experimental molecular studies point to the stepping
behavior of the dynein molecules, where a limited step size
of 8–24 nm is usually observed for axonemal dyneins per
ATP hydrolysis cycle [23,25–28]. In the following we will
confront our dynein model to the molecular studies associated
with axonemal dyneins based on optical-trap nanometry and
microtubules-motility assay by properly accounting for the
step size of a dynein molecule. We account for the step size
for every dynein in our model by monitoring the net sliding
displacement during the active phase of a dynein. Once the
sliding displacement exceeds the maximum step size, the
dynein in question is deactivated.

In experimental studies researchers have analyzed the force-
transduction of individual dynein molecules with optical-trap
nanometry [23,25–28]. Optical-trap nanometry utilizes the
gradient force of a highly focused laser beam (optical-trap)
to monitor the forces exerted by a dynein-coated bead on a
substrate coated with microtubules [27]. The experimental
conditions are optimized and controlled in such a way
that only one dynein molecule (along the bead surface) is
interacting with a microtubule at a given time instant [27].
This dynein-microtubule interaction and cyclic conformational
change of the dynein molecule—associated with the ATP
hydrolysis—leads to the guided translocation of the bead
over the microtubule. In the absence of any resistance from
the optical-trap the unloaded translocation velocity of the
bead due to the dynein activity can be obtained. More-
over, once the bead motion is influenced by the optical-
trap, the step-wise motion of the bead with time can be

observed, which gives information on the step size of the
dynein molecule during a binding and power stroke, and
the maximum force at which the dynein motion is stalled
(the stall force) [23,25–27].

To relate our dynein model to the optical-trap nanometry
experiments, we use a representative model where a dynein
is periodically interacting with a neighboring microtubule
leading to sliding, while the motion of the microtubule is
restrained via a soft spring, as shown in the inset of Fig. 14(a).
The length of the microtubule is selected to approximate the
drag forces of the micron-sized bead used during the optical-
trap experiments. We assume that one dynein is constantly
interacting with the neighboring microtubule to replicate the
experimental conditions. The resulting stepping behavior of
the dyneins is shown in Fig. 14(a). It can be noted that due
to the periodic dynein-to-microtubule interaction the sliding
displacement increases until the point where the restoring
force of the spring is in equilibrium with the dynein’s applied
sliding force. This gives the maximum sliding displacement
(δmax) possible for a given stall force of the dynein (Fstall) and
stiffness of the spring (Ktrap), Fstall = Ktrapδmax. The stepping
behavior of a dynein per hydrolysis cycle is visible as the
dynein gets deactivated once it exceeds the step size (δstep)
during the early stage of the analysis; see Fig. 14(a). After
deactivation, the applied dynein force resets to zero, so that the
restoring force of the spring pulls the microtubule backwards
(indicated by the periodic decrease in the displacement), which
is limited by the viscous drag. Followed by this brief event, the
dynein again attaches itself to the microtubule (i.e., another
dynein in the dynein-coated bead in the experiments) and
again starts applying the sliding force, which overcomes the
spring force and slides the microtubule forward; see Fig. 14(b).
The time history of the applied force by the dynein and
the resulting stepping behavior is shown in Fig. 14(b). The
stepping behavior of the dynein also depends on the magnitude
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FIG. 14. (a) Influence of the fluid viscosity and the step size on the stepping behavior of the dyneins subjected to the restraining action
of the attached spring representing the experimental conditions for optical-trap nanometry (see the inset). Note that the motion of the bead is
stalled when the applied force of the dynein is in an equilibrium with the restoring force of the spring, which appears to be independent of the
step-size and fluid viscosity. (b) The time history of the resulting applied force by the dynein and resulting stepping behavior for δstep = 8 nm
and μ = μ0 = 0.48 mPa.s with the assumption that one dynein is constantly interacting with the neighboring microtubule, where the thin line
represents the dynein force.
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the microtubules. The sliding velocities are normalized such that the maximum sliding velocity is U ∗

MT = 1 for μ = μ0. The data points are
obtained via simulations, where dyneins have a low duty ratio fdynein = 0.15 and a step size of 8 nm is used. The solid lines are the fitted trend
that is in agreement with the statistical expression relating the number of dyneins and their duty ratio to an expected sliding velocity of the
microtubule (see the main text).

of the restoring force and it can be seen from Fig. 14(a) that
the step size becomes smaller as the magnitude of the restoring
force approaches the stall force.

To understand the collective behavior of the dyneins and
their interaction with the neighboring microtubules, various
microtubule-motility and gliding assay experiments were
carried out [25,29–34]. In these gliding assay experiments,
many dyneins coated on the substrate are interacting with
(isolated) microtubules of various lengths [29,32]. The dynein-
microtubule interaction and the cyclic conformational change
of the dynein molecule leads to guided translocation of
the microtubules over the substrate. The sliding velocity of
the microtubules has been found to increase with the length
of the microtubules until a saturation velocity (Umax) is
reached for large microtubule lengths [29,32]. As the number
of dyneins that can interact with a microtubule is limited
by the length of the microtubule itself (due to the regular
spacing of the dyneins), the sliding velocity increases due
to the increasing number of interacting dyneins [29–32]. A
step-size at the nanometer scale during the time period of a few
milliseconds (typical for the ATP hydrolysis cycle) will lead
to a microtubule velocity on the order of a few micrometers
per second, as observed experimentally [27].

To explore the microtubule sliding velocity due to the op-
eration of many dyneins, we use a representative model where
dyneins are interacting with a free or isolated microtubule;
see the inset of Fig. 15(a). The number of dyneins interacting
with the microtubule is altered by changing the length of the
microtubule, as dyneins are present with a constant spacing.
In the simulations, we alter the microtubule length (which
can be correlated with the number of dyneins, N0) to study

the resulting sliding velocity. Only one group of the dyneins
is considered to replicate the experimental situation, where
only one family attaches to the microtubule as dyneins are
unidirectional motors. We assume here that the dyneins have
a low duty ratio (fdynein = 0.15) and we account for the
step size per hydrolysis cycle (δstep = 8 nm) of a dynein
molecule. Due to the dynein activity, the microtubule moves
forward and once the dynein is deactivated (either due to
the end of the active phase or due to reaching the maximum
step size), the microtubule remains in the same position until
the next dynein becomes active; see Fig. 15(a). A saturation
in the resulting sliding velocity is observed with the length of
the microtubule, see Fig. 15(b), which is in accordance with
the experimental observations [29–32]. The sliding velocity
due to just one dynein can be theoretically approximated
(without accounting for the viscosity) by δstep/tcycle, while the
maximum sliding velocity Umax = δstep/ta , which represents
the condition that the maximum sliding velocity is limited
by the rate of conformation change responsible for the dynein
power stroke. However, in order to attain the maximum sliding
velocity at least one dynein should be active at all times,
as can be clearly seen from the microtubule displacement
caused by the dynein activity in Fig. 15(a). Obviously, as
we increase the number of dyneins the probability of at least
one dynein to be active at all times increases, and can be
quantified with 1 − (1 − fdynein)N for N number of dyneins
with a duty ratio, fdynein. Moreover, a statistical expression
can be obtained relating the number of dyneins and their
duty ratio to an expected sliding velocity of the microtubule,
UMT = Umax[1 − (1 − fdynein)N ], where Umax is the maximum
sliding velocity observed at the saturation [29].
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