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In this work we study the likelihood of survival of single-species in the context of hostile and disordered
environments. Population dynamics in this environment, as modeled by the Fisher equation, is characterized
by negative average growth rate, except in some random spatially distributed patches that may support life. In
particular, we are interested in the phase diagram of the survival probability and in the critical size problem,
i.e., the minimum patch size required for surviving in the long-time dynamics. We propose a measure for
the critical patch size as being proportional to the participation ratio of the eigenvector corresponding to the
largest eigenvalue of the linearized Fisher dynamics. We obtain the (extinction-survival) phase diagram and the
probability distribution function (PDF) of the critical patch sizes for two topologies, namely, the one-dimensional
system and the fractal Peano basin. We show that both topologies share the same qualitative features, but the
fractal topology requires higher spatial fluctuations to guarantee species survival. We perform a finite-size scaling
and we obtain the associated scaling exponents. In addition, we show that the PDF of the critical patch sizes has
an universal shape for the 1D case in terms of the model parameters (diffusion, growth rate, etc.). In contrast, the
diffusion coefficient has a drastic effect on the PDF of the critical patch sizes of the fractal Peano basin, and it
does not obey the same scaling law of the 1D case.
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I. INTRODUCTION

Finding the conditions for extinction or survival of a species
in a given environment is a very important challenge attracting
considerable attention of the natural science community [1–5].
In particular, many studies have highlighted the important
role that spatial connectivity [6–9] and environmental het-
erogeneity [10–12] play in deterring the species lifetime.
In this work we tackle two research questions related to
population dynamics in the context of hostile and disordered
environments. The first one is related to the conditions that
lead to extinction as well as survival of species, i.e., the
survival probability Ps . The second question is to find the
minimum critical patch size needed to ensure survival of
species in the long time dynamics, i.e., the critical patch
size Lc (see Refs. [13,14] for a review). Among many
important applications, these concepts have been applied to
design national parks, natural reserves [1,15], protection of
endangered species [2], etc.

In continuous deterministic (mean-field) population dy-
namics models, the spatiotemporal evolution of the population
density is typically described by a reaction-diffusion equation
with a logistic growth. The very successful Fisher equation is
a particular case [5,16], where the logistic growth assumes the
quadratic form:

∂ρ(x,t)

∂t
= D∇2ρ(x,t) + μρ(x,t) − bρ2(x,t), (1)

where ρ(x,t) is the population density, D is the diffusion
coefficient (which accounts for the effect of migration), μ

is the growth rate, and b is the death rate. Equation (1) has
been employed to study a wide variety of systems, including

*rodrigo.rocha@ufsc.br

dynamics of bacteria [17–19], epidemiology [5], chemical
kinetics [20], to name just a few of them.

The critical size problem related to Eq. (1) has a long
history [13,14,21,22]. In its simplest one-dimensional version,
population undergoes a logistic growth (μ > 0) along a
favorable patch of size L, while it is surrounded by a totally
hostile environment with infinite death rate, i.e., when the
population reach the habitat boundaries, it is absorbed, killed,
or removed instantaneously. This model is known as the KiSS
size model, and was independently introduced by Kierstead
and Slobodkin [21] and Skellam [22]. The critical patch,
Lc, may be obtained linearizing Eq. (1) around ρ = 0 and
assuming Dirichlet boundary conditions, i.e., ρ(L/2,t) =
ρ(−L/2,t) = 0. A straightforward calculation leads to

Lc = π
√

D/μ. (2)

The same functional dependence of Lc on D and μ holds for a
two-dimensional system up to a multiplicative factor [21,22].
Therefore, the likelihood of species extinction is certain for
L < Lc, while the species will survive with probability one if
L > Lc.

However, the assumptions of infinite death rate outside the
favorable patch as well as a uniform growth rate inside it
(i.e., a homogeneous environment) are idealizations and much
attention has been given to model more realistic settings.
Extensions of the KiSS model have evolved in two main
directions. On the one hand, many studies have focused on
modeling the hostile environment employing different kinds
of growth functions and boundary conditions, but still using the
mean-field dynamics given by Eq. (1). In this direction we may
mention, for example, heterogeneous growth functions with
gradual variation [23], finite mortality outside the favorable
patch [24], and many others [5,13,25,26].

On the other hand, the main motivation is to develop more
realistic population dynamics models, where the mean-field
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description fails, for instance, due to the discrete nature of the
population abundances (demographic fluctuations) [12,27].
Several efforts have been done in this direction. One can
also resort to different formalisms, like a master equation
approach [28], stochastic partial differential equations [29],
or employ a discrete particle model [30]. However, in many
cases, the corresponding growth rates are uniform (like in
Refs. [28,30]), or a completely hostile environment outside
the favorable patch is assumed (like in Ref. [29,30]).

In fact, in many experimental conditions and in most of
the real cases, the environment is neither static nor spatially
constrained (i.e., oasis-desert picture): rather, it may fluctuate
in space as, for example, captured by a random spatial disorder
in the species dynamics [31,32]. Since the critical patch is a
function of the spatial random configuration of disorder the
critical patch itself is a random variable whose probability
distribution function (PDF) has never been calculated in all
the extensions of the KiSS model mentioned above.

Our goal in this work is to determine the survival probability
and the PDF of the critical patch sizes in a disordered
environment. We shall employ the Fisher Eq. (1) and use
random growth rates as a null model for environmental
fluctuations.

More precisely, we shall address the following specific
issues regarding the (random) critical patch size problem:
(i) We start our analysis investigating the one-dimensional sys-
tem with periodic boundary conditions. Following Ref. [33],
we define a survival criterion based on the largest eigenvalue
of the matrix governing the linearized Fisher dynamics. We
will then obtain the phase diagram of the survival probability
and perform finite-size scaling to obtain scaling exponents. (ii)
In what concerns the random critical patch size, we show that
the participation ratio (PR) of the eigenvector corresponding
to the largest eigenvalue of the linearized dynamics may be
used to estimate the critical patch size. So far, this connection
has not been employed to calculate Lc in a systematic way,
and this is an original contribution of this work. First, we
apply this ansatz to show that the average value of the PR has
the same functional dependence on the critical patch as the
KiSS model. In addition, we will provide an explicit analytical
expression for the probability distribution function of the
critical patch sizes. We will show that such distribution has
a universal functional shape in terms of the model parameters,
and we will obtain its finite-size scaling properties. (iii) Once
we have validated our ansatz to estimate Lc, we employ the
same tool to study the random critical patch size problem in
a more complex topology than the 1D system. As a particular
example, we investigate the fractal Peano basin [34,35].
Important applications of this fractal topology arise mainly in
the context of river networks [36]. There are many studies of
the Fisher equation applied to this topology [36–38], but little
attention has been given to the phase diagram of the survival
probability and the critical patch size. We start by showing
that the phase diagram has the same qualitative features of the
one-dimensional case, although it is described by other scaling
exponents. On the other hand, we show that the average value
of the PR is no longer proportional to the square-root of the
diffusion coefficient. The distribution of the critical patch sizes
is more complex than in the linear case and does not obey the
same scaling properties.

Our work is organized as follows: in Sec. II we will present
the survival criterion used to study extinction and survival
of the species. This criterion is based on the largest eigenvalue
of the matrix governing the linearized dynamics. Then we will
define the survival probability in terms of the PDF of this
largest eigenvalue. In Sec. III we will show our numerical
results for the one-dimensional system. First, we will address
the survival probability and then we will discuss the random
critical patch size. In Sec. IV we show our results for the
fractal Peano basin. A conclusion section closes the paper. In
the Appendix we derive an analytical expression for the PDF
of the critical patch sizes.

II. THE CRITERION FOR SURVIVING

This section is dedicated to presenting the survival criterion
used to study extinction and survival for a species population
undergoing a Fisher dynamics in a disordered environment,
following the work of Nelson and Shnerb [33].

The discrete version of Eq. (1) is

∂ρi(t)

∂t
=

N∑
j=1

Lij ρj (t) − bρ2
i (t), (3)

where ρi(t) is the population density at site i. We assume
homogeneous initial conditions, i.e., ρi(0) = ρ0 > 0 for all
sites i = 1, . . . ,N of the discrete network. The Liouville
operator, L, governs the linearized dynamics around ρ = 0.
The latter is a symmetric random matrix with elements given
by

Lij =
{(

D/�2
0

)
Mij if i �= j,

μi − (
D/�2

0

) ∑
k Mik if i = j,

(4)

where �0 is the lattice parameter and μi is the random growth
rate at site i. We assume that μi = −a + Ui , where a is a
positive constant indicating different levels of hostility and Ui

is an independent and identically distributed random variable
drawn from the uniform distribution in the interval [−�,�],
where � is the parameter characterizing the strength of the
environmental fluctuations on the growth rate.

The adjacency matrix M entering in Eq. (4) accounts for
network topology. Its matrix elements are Mij = 1 if sites i

and j are connected to each other and Mij = 0 otherwise. We
expand ρi(t) in a complete set of eigenvectors vλ of L, i.e.,

ρi(t) =
∑

λ

cλ(t)(vλ)i , (5)

where (vλ)i is the ith component of vλ, and the sum is
performed over all eigenvalues of L. We assume ortonor-
malized eigenvectors, i.e.,

∑
i(vλ)i(vλ′)i = δλ,λ′ , where δλ,λ′

is the Kronecker δ. In this way the set of coupled dynamical
equations becomes

dcλ(t)

dt
= λcλ(t) −

∑
λ′,λ′′

wλ,λ′λ′′cλ′(t)cλ′′(t), (6)

where the coupling coefficients wλ,λ′λ′′ are defined as

wλ,λ′λ′′ = b
∑

i

(vλ)i(vλ′ )i(vλ′′)i . (7)
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Up to this point the analytical treatment is exact, but calculation
of Eq. (6) is challenging. We will explore an analogy, in the
imaginary time, between L and the Anderson localization
Hamiltonian H [33], to obtain an approximate solution of
Eq. (6). Indeed, we know [39,40] that for a 1D disordered
Hamiltonian, like the one given by Eq. (4), the eigenvectors
corresponding to the few positive eigenvalues are localized
and, to a first approximation, nonoverlapping. Therefore,
the coupling coefficients wλ,λ′λ′′ are almost negligible unless
λ′ = λ′′ = λ. This approximation decouples Eq. (6) and we
get the solution

cλ(t) = cλ(0)eλt

1 + cλ(0)(wλ/λ)(eλt − 1)
, (8)

where wλ ≡ wλ,λλ = b
∑

i[(vλ)i]3. Upon replacing Eq. (8) in
Eq. (5) and taking the limit t → ∞ we obtain the steady-state
concentration,

ρ	
i =

∑
λ>0

(λ/wλ)(vλ)i , (9)

where the sum is performed only over the positive eigenvalues
of L. The stationary state, Eq. (9), is independent of the initial
conditions as far as the cλ(0)’s are all different from zero. The
stationary value of the total population simply becomes

K	 =
∑
i,λ>0

(λ/wλ)(vλ)i . (10)

Equations (9) and (10) constitute the main results of this
section. Indeed, we observe that ρ	

i and K	 are proportional
to a sum over localized eigenvectors vλ (λ > 0) and, in the
limit of few positive eigenvalues, population will survive
and remain localized around small patches in space. There-
fore, analytical condition on the largest eigenvalue λ1 of L
allow us to predict species survival (λ1 > 0), or extinction
(λ1 < 0), without needing to integrate the entire Fisher
Eq. (1).

Notice that, although the presence of quenched random
growth rates in Eq. (3), the population density ρi(t) still evolves
in a deterministic way. In addition, the largest eigenvalue
of L is a variable that depends on the particular system
configuration, i.e., a,D,N,� and �U = {Ui}. In this case the
conditional probability, p(λ1| �U ), simply becomes p(λ1| �U ) =
δ[λ1 − λ1( �U )]. Therefore, the probability distribution function
(PDF) of λ1 is obtained averaging the conditional probability,
p(λ1| �U ), over the distribution, p( �U ), of {Ui}, i.e.,

p(λ1) =
∫

p(λ1| �U )p( �U )d �U. (11)

Unfortunately, one cannot solve the above equation analyti-
cally and one must resort to numerical calculations to obtain
p(λ1).

In order to quantify the approach to extinction (survival),
we will define a survival probability, Ps ∈ [0,1], according to
the following expression:

Ps =
∫ ∞

0
p(λ1)dλ1. (12)

The survival probability is the central quantity of our analysis.
Accordingly, we define the following phases:

Ps = 0, extinction phase, (13)

0 < Ps < 1, coexistence phase, (14)

Ps = 1, survival phase. (15)

We will use this tool to address the phase diagram of the
survival probability.

On the other hand, we observe that the spatial extent of
the (localized) eigenvectors of L reflects the spatial extent of
Lc. The participation ratio (PR) is a standard quantity used to
study eigenvector localization [41]. It is defined by

r(v) =
( ∑

i |vi |2
)2∑

i |vi |4 , (16)

and is roughly equal to the number of sites where the eigen-
vector has a significant weight. In the uniform case (� = 0),
vi ∼ 1/

√
N and r ∼ N . In the limit of strong disorder, r ∼ 1,

and the eigenvector is localized over a single site. It is important
that the definition of the participation ratio is independent of a
particular eigenvector normalization, i.e., r(v) = r(v′), where
v′ = cv and c is a (real or complex) constant. We will show, in
the next section, that the participation ratio of the eigenvector
associated to λ1 may be used to estimate the critical patch
size Lc.

III. THE ONE-DIMENSIONAL CASE

In this section we show our numerical results for Ps and
Lc, for the one-dimensional system with periodic boundary
conditions. We computed the first five largest eigenvalues
of L and the corresponding eigenvectors using ARPACK
routines [42]. Using this package we were able to consider
systems up to order N ∼ 104. For each value of the disorder
parameter � we perform averages over approximately 2 × 104

samples. We present our results in some suitable unit of time
and we assume, for convenience, that �0 = 1.

A. The survival probability

We now focus on the impact of spatially random growth
rates on the survival probability Ps . Although the critical
patch size is closely related to the survival probability, we
shall dedicate a specific subsection to discuss this relation
later.

In Fig. 1 we show the survival probability for a system with
1000 sites and a = 1. In the same plot, we show the average
of the largest eigenvalue (left vertical axis). The uniform
environment is simply recovered for � = 0. In this case the
eigenvalue problem for L can be exactly solved [43], resulting
in λ1 = −a. Therefore, the survival probability is zero for
a > 0 and the species becomes extinct.

Now consider the disordered environment (� �= 0). Com-
plete extinction occurs with probability 1 for � < a. Above
this threshold Ps is a smooth function of � and there is a
phase supporting coexistence of both extinction and survival
of species.
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FIG. 1. Left vertical axis: Average of λ1 as a function of disorder
strength � (dashed line). In the shaded region we plot the standard
deviation. Right vertical axis: Survival probability Ps as a function of
disorder strength � (dotted lines). The system size is N = 1000, and
the diffusion coefficients considered are D = 1 (blue) and D = 30
(red). In the inset we show in a semi-log scale p(λ1) for � = 1.5
and D = 1. The peak of the distribution is well centered around 〈λ1〉.
The green dashed line corresponds to a Tracy-Widom fit (four fitting
parameters, see Ref. [45]), while the black line corresponds to a
Gaussian fit (two fitting parameters).

Diffusivity has a negative impact over species survival, i.e.,
the value of � necessary to keep Ps at value 1/2 increases with
D. Furthermore, diffusivity increases the variance of λ1 (the
standard deviation of λ1 is represented by the shaded region of
Fig. 1), which causes the broadening of the coexistence phase
(0 < Ps < 1). This can be seen in Fig. 1 for the values D = 1
and D = 30.

In order to characterize Ps , we need to compute the
probability distribution function of the largest eigenvalue of
L, p(λ1). However, results from the random matrix theory
indicate that for various classes of random Hermitian matrices,
the probability distribution of the normalized largest eigen-
value is universal [44], i.e., p(λ1) has an universal functional
shape known as Tracy-Widom distribution [44]. Indeed, it is

known that a very good approximation to the Tracy-Widom
distribution is the Gamma distribution [45], that in turn, for a
large shape parameter, converges to a Gaussian distribution.

The random matrix Eq. (4) governing the linearized
dynamics is Hermitian with random elements only in the
diagonal. However, we find numerically that even our class of
matrices seem to obey to Tracy-Widom distribution. We fitted,
for a particular set of parameters, p(λ1) to a Gaussian and a
Tracy-Widom distribution. Our main results are shown in the
inset of Fig. 1. We observe that p(λ1) is slightly asymmetric.
Moreover, the Gaussian fit deviate little from the Tracy-Widom
fit. Given this small difference, we will approximate p(λ1) to
a Gaussian distribution.

Now we investigate the phase diagram. Without loss of
generality, we define the critical disorder strength, �c(N,D,a),
according to the implicit expression 〈λ1〉(�c,N,D,a) = 0.
In this way we have Ps(�,N,D,a) → 1/2 for � → �c,
which is consistent with a Gaussian approximation for p(λ1).
Therefore, �c reflects a sort of critical extinction-survival
transition. To extract �c from our numerical simulations we fit
〈λ1〉 to a polynomial function of degree two. The fitting is done
in a small interval in � around 〈λ1〉 = 0 where the chi-squared
becomes <10−5. In this way, �c is simply obtained by solving
the quadratic equation 〈λ1〉 = 0.

From a practical point of view, we have to determine �c

in a three-dimensional parameter space (a, D, and N ). To
face this problem we used the following methodology. First,
we fixed a certain arbitrary value of N . Then we analyzed
the dependence of �c/a on D/a [indeed, in Eq. (3) one can
absorb a in a redefinition of time and the effective parameters
become �/a, D/a and b/a]. The main results of this analysis
may be seen in Fig. 2(a). In the limiting case of a vanishingly
diffusivity, D → 0, the critical strength approaches a from
above (�c → a), given that the system size is large enough
(N � 1). We find that �c has a power-law dependency,
�c/a = f (N )(D/a)δ + 1, where f is a function of N and
δ is an universal exponent. The solid line in Fig. 2(a) is a
fit according to this expression (the chi-squared is less than
∼5 × 10−4). To verify universality of δ, we repeated this
same procedure for different values of N . We find from the
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FIG. 2. (a) Critical disorder strength �c/a vs. D/a for a one-dimensional system with N = 500. The growth rates considered are shown in
the figure. The solid line is a fit according to Eq. (17). The reduced chi-squared is <5 × 10−4. (b) We linearize �c using the exponent δ = 0.45
and show the collapse for a scaling function in the form f = N−φδ , with φ = 1/3 being the scaling exponent. The growth rate considered is
a = 1.
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fitting analysis a small fluctuation of δ less than 5%, hence,
δ = 0.45 ± 0.02.

The dependence of �c on N was obtained using a different
technique. In this case we employed a finite-size scaling
analysis [46]. Figure 2(b) shows a quite good collapse for
a scaling function in the form f (N ) = N−φδ , where φ = 1/3.
The actual value of φ was guessed from the quality of the
collapse.

Finally, we can write out explicitly the critical disorder
strength as

�c(N,D,a) = ca1−δ(N−φD)δ + a, (N � 1), (17)

where φ = 1/3, δ = 0.45 ± 0.02, and c = 1.42 ± 0.02. Equa-
tion (17) constitutes our first fundamental result. In a dis-
ordered environment we are able to predict how different
parameters (D, N , and a) affects the critical disorder strength
needed to make Ps = 1/2.

B. The random critical patch sizes

As explained in the Introduction, in the case of an
uniform environment (KiSS model), the critical patch size
is known [21,22], and Lc is proportional to the square-root
of the diffusion coefficient [see Eq. (2)]. The critical patch
size for a species population undergoing a Fisher dynamics
in a fluctuating spatially random environment is not known,
and to find it numerically is a difficult and time-consuming
task.

The fundamental difference from the uniform KiSS model
and its extensions [23–25,28–30] is the random nature of the
critical patch size. Here we use F (Lc) to represent the PDF
of the critical patch sizes and 〈Lc〉 to represent its ensemble
average.

We address the critical patch size using the ansatz for Lc as
given by Eq. (16):

Lc/�0 ≈ r(vλ1 ), (18)

where �0 is the lattice parameter (fixed to �0 = 1 for conve-
nience) and λ1 is the largest eigenvalue of L. When D = 0,
the above ansatz is clearly satisfied: the critical size of the

patches in order for the species to survive is 1 [in each site
when (−a + Ui) > 0 is satisfied], that is exactly the value
of the PR corresponding to the largest eigenvalue of L (that
for D = 0 is a diagonal matrix). For one positive eigenvalue
(λ1 > 0), from Eq. (9) we know that only sites where the
species will survive correspond to those entries where vλ1 is
localized, and thus the ansatz is again verified. Finally, in
the case of a few positive eigenvalues, we will have more
than one patch where the species survives. From the Anderson
localization (and assuming nonoverlapping eigenvectors), we
know that the critical (smallest) patch size Lc corresponds to
the PR of the eigenvector associated to the largest eigenvalue
of L [40]. We note that our ansatz is supported by the intuitive
meaning of the definition of the PR. Indeed, when the system
is localized in a single site r = 1 and Lc = 1, while when it
is fully delocalized r = N and Lc = N . Therefore, our ansatz
is a generalization to all intermediate cases. For example if
vi = exp (−|i|/ξ ) one finds r = coth2(1/ξ )/ coth(2/ξ ) ≈ 2ξ

and so Lc/� ≈ ξ as intuitively expected.
The way 〈r〉 is related to the survival probability Ps is shown

in the inset of Fig. 3(a), for a particular set of parameters
(shown in the figure). The critical patch size is small for large
values of Ps (population can survive in small patches). In fact,
Ps increases with � (see Fig. 1), meaning that environmental
fluctuations favor species persistence. The same behavior has
been reported in Ref. [29]. We now investigate the behavior
of 〈rc〉 and F (rc) along the critical disorder strength �c (such
that, 〈λ1〉 → 0 and Ps → 1/2). In particular, we investigate
their dependence on D/a and N , the latter studied by means
of finite-size scaling. In Figs. 3(a) and 3(b) we present the
summary of our main numerical results.

The main box of the Fig 3(a) shows 〈rc〉 as a function of√
D/a for three different levels of hostility, namely, a = 1, a =

1/2, and a = 1/4. The perfect straight line observed leaves no
doubt about the dependence of 〈rc〉 on the square-root of D/a,
exactly the same dependence of Lc on D/a in the KiSS model
[see Eq. (2)]. We analyzed the scaling of 〈rc〉 on N . As expected
our results indicate a very weak and negligible dependence of
〈rc〉 on N , with an exponent compatible with zero.
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FIG. 3. (a) Average of the participation ratio along the critical disorder strength (such that, Ps → 1/2) against
√

D/a for a 1D system. We
consider three levels of hostility a as shown in the legend. The solid line corresponds to Eq. (19). In the inset we show the relation between Ps

and 〈r〉. The parameters considered are shown in the figure. (b) Collapse of the PDF of participation ratios according to Eq. (20). We fixed the
parameters N = 1000 and a = 1. Notice that the small fluctuation observed is related to histograms (bin) problems.
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Finally, we can write out explicitly the critical patch size as

〈Lc〉/�0 ≈ 〈rc〉 = C

(
D

a

)β

+ 1, (19)

where β = 1/2 and C = 2.79 ± 0.01. Observe that for D → 0
we have 〈Lc〉/�0 → 1, meaning localization of the population
over a single site, which is the correct result.

To achieve a complete characterization of the problem,
we investigated the PDF, F , of the participation ratios along
the critical disorder strength. Finite-size scaling arguments
suggest that

F (rc) = 1

〈rc〉p
(

rc

〈rc〉
)

, (20)

where p(x) has an universal shape in terms of the model
parameters, and is given by

p(x) = A

x2
exp

{
−

(
2
x

− μ
)2

2σ 2

}
, x > 0, (21)

where A is a normalization constant, and μ and σ are free
parameters that can be fixed from a fitting procedure. A simple
derivation of Eq. (21) is provided in the Appendix. The solid
line in Fig. 3(b) is a fit with Eq. (21): the best fit gives μ =
0.48 ± 0.01 and σ = 0.071 ± 0.005.

Equations (19)–(21) constitute our second main result. We
have a full characterization of the critical patch sizes as a
function of the different parameters (D, N , and a): given
a species in a hostile and disordered environment, we can
determine in which patches the population will survive in the
long-time dynamics.

IV. THE FRACTAL PEANO BASIN

Now we use our numerical tools to address the survival
probability and the critical patch size for the fractal Peano
basin. The Peano basin has a self-similar structure [34,35] and
its topological properties may be used to model dendritic-like
structures mimicking riverine ecological structure. Indeed, the
connectivity of the environment, and in particular the river
geometry, may affect the species extinction probability [8,47].

The Peano network may be constructed from the following
algorithm. For every new generation Q, any segment joining
two sites is split, and three new sites are placed in the half of
the segment. Figure 4 represents this procedure. Thus, for a
given generation Q, the total number of sites is N = 4Q + 1.

FIG. 4. Structure of the fractal Peano basin for the first (Q = 1)
and second (Q = 2) generations.

Now we present some general characteristics of the largest
eigenvalue of L. We consider periodic boundary conditions
along the backbone [that corresponds to the open circles
in Fig. 4]. In the uniform environment (� = 0), we find
numerically that λ1 = −a. Therefore, complete extinction
occurs for a > 0. In the presence of random growth rates
(� �= 0), the survival probability, Ps , and the average of the
largest eigenvalue, 〈λ1〉, exhibit the same qualitative features
illustrated in Fig. 1 for the linear case. In particular, we find
that p(λ1) has a more pronounced asymmetry around 〈λ1〉
(as compared to the linear case), showing a small departure
from the Gaussian shape. However, we still define the
critical disorder strength according to 〈λ1〉(�c,N,D,a) = 0.
In particular, we show that

�c(N,D,a) = c′a1−δ′
(N−φ′

D)δ
′ + a, (N � 1), (22)

where φ′ = 1/4 and δ′ = 0.55 ± 0.01 are the scaling expo-
nents, and c′ = 1.27 ± 0.05 is a constant. The actual values of
δ′ and c′ were obtained from the fitting analysis. The solid lines
in the main box of Fig. 5(a) corresponds to Eq. (22) (the chi-
squared of all the fits are less than ∼10−4). While the actual
value of φ′ was obtained using finite-size scaling. In the inset
of Fig 5(a) we show the collapse of �c for φ′ = 1/4.

Now we address the critical patch size. We find that the
eigenvector associated to λ1 is spatially localized and its
amplitude decays very fast across neighboring sites. Therefore,
the participation ratio of the eigenvector associated to λ1 still
reflects the number of sites where the species are localized,
and it may still be used to estimate Lc.

Unlike the one-dimensional case, the effect of the diffusion
coefficient is drastic on the PDF of critical patch sizes. In
Fig. 5(b) we study the evolution of F (rc) for increasing values
of D. The first essential point is that the scaling-law Eq. (20)
is no longer valid for low-diffusion regimes. However, it starts
to be valid for higher values of D, when the mixing is so large
that the topological structure is no more relevant.

In Fig. 5(c) we compare the participation ratio, 〈rc〉, along
the critical disorder strength (such that Ps → 1/2 for � →
�c), between the Peano basin and the 1D case. As we might
expect, the average value of rc for the Peano basin does not have
the dependence on the square-root of the diffusion coefficient.
We performed fits with a power-law function, and we find that

〈Lc〉/�0 ≈ 〈rc〉 = C ′
(

D

a

)β ′

+ 1, (23)

with β ′ = 3/4 and C ′ = 1.77 ± 0.03. For low diffusion coeffi-
cient the size of the critical patch in the Peano basin is slightly
smaller with respect to the one-dimensional case, i.e., the
stationary population is more localized. However, the amount
of positive fluctuations in the growth rate allowing for survival
is always higher in the Peano case, as shown by comparison of
Figs. 2(a) and 5(a). In other words, survival is always favored
in the one-dimensional case.

The results we found on the scaling of Lc suggest that the
β exponent depends on the fractal dimension of the system. In
fact, our results are consistent with an exponent β = dw/4,
where dw is the exponent of the diffusion in the fractal√

〈r2〉t ∼ (Dt)1/dw . In the d-dimensional case we have dw = 2,
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FIG. 5. (a) Critical disorder strength �c vs. D for the fractal Peano basin. The number of sites considered are shown in the legend. The solid
lines are fits according to Eq. (22). The reduced chi-squared is <10−4 for all the fits. In the inset we linearize �c using the exponent δ′ = 0.55
and show a quite good collapse using φ′ = 1/4. (b) Scaling analysis of the PDF of participation ratios for various diffusion coefficients. (c) We
compare the average of the participation ratios between the fractal Peano basin (N = 1025) and the 1D system (N = 1000). The growth rate
considered in all the plots is a = 1.

whereas in the Peano dw = 3 [48]. For other fractals, according
to our conjecture the β exponent can be also irrational.

V. CONCLUSIONS

In this work we studied the population dynamics of a
single species in hostile and disordered environments for two
different spatial network topologies: the 1D system and the
fractal Peano basin. We first studied the conditions leading
to extinction as well as survival of species, i.e., the survival
probability. We then calculated the critical patch size needed
to ensure survival of species in the long-time dynamics, i.e.,
the critical patch size. We addressed these two problems
by estimating both numerically and analytically the largest
eigenvalue, λ1, and the corresponding eigenvector, vλ1 , of the
linearized Fisher dynamics.

From the probability distribution function (PDF) of λ1 we
were able to investigate the effect of different parameters
(diffusion, size, etc.) on the critical disorder strength �c,
which reflects a sort of critical extinction-survival transition
(since that, Ps → 1/2 for � → �c). For both topologies the
increase of the spatial fluctuations favor the species survival,
and we provided explicit expressions for �c [see Eqs. (17)
and (22)]. In particular, we have shown that the fractal Peano
requires higher spatial fluctuations to ensure persistence, as
compared to the 1D case, and using scaling arguments we
find the corresponding scaling exponents, φ = 1/3 (1D) and
φ′ = 1/4 (Peano).

Regarding the critical patch size, we demonstrated that the
participation ratio, r , corresponding to vλ1 can be used to
estimate Lc, that is, Lc ≈ r . This connection may be quite
useful in situations where a numerical integration of Eq. (1) is
highly costly, or in cases where an analytical approach to Lc is
challenging, for example, in a fractal topology. Furthermore,
using this connection we were able to address the PDF of the
critical patch sizes, F (Lc).

Our theoretical framework exploits concepts from Ander-
son localization and random matrix theory to study and predict
conditions of persistence and extinction of populations of

replicating bacteria in a hostile environment, where only few,
randomly distributed patches may support life. Similar ideas
have been applied to study the biological evolution of simple
organisms through the quasispecies model [49–52]. The role
of the spatial structure of the environment has an impact on
the species localization and corresponding critical patch sizes,
especially in low-diffusion regimes. We thus found, as in other
contexts [8,53], the species survival may be favored, for a
given fixed diffusion, by environments with lower average
connectivity. A natural future direction will be to study,
both theoretically and experimentally [54], the role of spatial
and temporal correlations of the environmental fluctuations
on the species survival, and what is the spatial configura-
tion of resources that may maximize the species stationary
population.
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APPENDIX: PROBABILITY DISTRIBUTION FUNCTION
OF CRITICAL PATCH SIZES

Using simple arguments we can obtain a fitting expression
for p(r). From Anderson localization we know that vλ1 (x) ∼
exp(−κ0|x|), where k0 is the inverse of the localization length
(a positive quantity). Using this expression in Eq. (16) we
can show that r ∼ 2κ−1

0 (N → ∞). The PDF of the critical
patch sizes follows from the PDF of the inverse localization
length [55]:

p(r) =
∫ ∞

0
δ
(
r − 2κ−1

0

)
g(κ0)dκ0. (A1)
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Based on the numerical results, we approximate g(k0) by
a half-normal distribution, g(κ0) = A exp{−(κ0 − μ)2/2σ 2}
(κ0 > 0), where μ is the mean, σ is the variance, and A is
a normalization constant. Using this expression in Eq. (A1),
we obtain

p(r) = A

(r)2
exp

{
−

(
2
r

− μ
)2

2σ 2

}
, r > 0, (A2)

where A is given by

A = 4[
1 + erf

(√
2μ

2σ

)]√
2πσ 2

. (A3)

The error function is defined as erf(x) = 2π−1/2
∫ x

0
exp(−t2)dt . Equation (A2) has two free parameters, and it
can be used to fit the numerical data.
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