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Controlling segregation speed of entangled polymers by the shapes:
A simple model for eukaryotic chromosome segregation
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We report molecular dynamics simulations of the segregation of two overlapping polymers motivated by
chromosome segregation in biological cells. We investigate the relationship between polymer shapes and
segregation dynamics and show that elongation and compaction make entangled polymers segregate rapidly.
This result suggests that eukaryotic chromosomes take such a characteristic rod-shaped structure, which is
induced by condensins, to achieve rapid segregation.
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I. INTRODUCTION

In eukaryotic cells, the extremely long genomic de-
oxyribionucleic acid (DNA) molecules that can be more
than 1 m length in some species are stored in a spherical
nucleus that is 10 μm in diameter. On entry into mitosis,
the mass of chromatin distributed in the interphase nucleus
is converted into a discrete set of chromosomes that have
highly condensed rod-shaped structures. Two condensed sister
chromosomes are juxtaposed with each other along their
entire lengths (Fig. 1). This process is often referred to as
mitotic chromosome condensation and avoids entanglements
of different chromosomes and preserves their integrity.

The spatial organization of chromosomes in mitosis is a
fundamental question of biology. Why do metaphase chro-
mosomes in many species take on characteristic rod shapes
instead of more simple spherical shapes?

Molecules responsible for chromosome condensation are
condensin protein complexes [1]. Most eukaryotes possess
two different condensin complexes, condensin I and II. In
mitosis, both condensins are associated with chromosomes, are
enriched on chromosome axes, and have distinct contributions
to the chromosome construction. In Ref. [2], the authors
showed that the relative amounts of condensin I and II
determine the chromosome shapes. They showed that the rod
diameter and the rod length of the condensed chromosomes
can be varied by changing the relative ratio of condensin I
and II, i.e., in a condensin II-rich environment, chromosomes
take shorter and thicker shapes. In fact, condensin II is much
less abundant in early embryonic extracts than in somatic cells
[1], and metaphase chromosomes in early embryonic cells
tend to be longer and thinner compared with those in somatic
cells. During development, the chromosomes progressively
decrease their lengths and increase their diameters [3–5]. In
addition, another experiment [6] showed that knockout of a
condensin I subunit results in the formation of short and thick
chromosomes and that the chromosomes do not segregate and
the cell division is arrested in metaphase for a long time.
These facts imply that the time taken for segregation depends
on the shapes of the chromosomes, and it is suggested that cells
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regulate the length of the mitosis phase by changing relative
amounts of condinsin I and II.

The importance of chromosome shape in segregation
dynamics can be addressed from the point of view of polymer
physics. In Ref. [7], the authors investigated the relationship
between cell shapes and chromosome segregation in bacte-
ria. They showed that, by using coarse-grained molecular
dynamics (MD) simulations, two entangled long chains in a
rod-shaped confined box spontaneously segregate to maximize
their chain entropy. However, as the box length becomes
shorter in the longitudinal direction, the entropic force for
the segregation decreases and, finally, the two entangled long
chains cannot segregate in a box which is isotropic in size. In
eukaryotic cells, the nucleus is spherical and two entangled
long chains (chromosomes) are unable to segregate.

Eukaryotic chromosomes may use a segregation mech-
anism that differs from that of bacteria. Eukaryotic chro-
mosomes take on condensed rod-shaped structures during
segregation because of condensin functions, while bacterial
chromosomes stay as simple long chains. Condensins make
loop structures in chromosomes and increase the topological
complexity. In general, increased topological complexity facil-
itates segregation of entangled polymers [8,9]. The condensins
may facilitate chromosome segregation by introducing loop
structures, which in turn induce rod-shaped compaction to
drive eukaryotic chromosome segregation.

In this article, we investigate the relationship between
polymer shapes and segregation dynamics by using coarse-
grained MD simulations with the Langevin thermostat. We
calculate the typical speed of segregation of variously shaped,
initially entangled polymers and show that elongation and
compaction make entangled polymers segregate rapidly. Using
the calculation results, we describe the scaling of the segrega-
tion dynamics with polymer shape parameters and give simple
explanations for them. In spite of the microscopic complexity
induced by interactions between many particles and thermal
randomness, the segregation dynamics of highly condensed
polymers can be described by a few physical parameters that
determine the polymer shapes. These capture the qualitative
essence of polymer physics dynamics [10].

Based on these results we propose that eukaryotic chro-
mosomes take on their characteristic rod-shaped structure,
induced by condensins, to achieve rapid segregation.
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FIG. 1. Chromosome condensation in mitosis. The red and
blue lines indicate two sister chromosomes. In mitosis, condensin-
mediated chromosome condensation and nuclear envelope break-
down (NEBD) occur.

II. MODEL AND SIMULATION

A. Polymer model

In the MD simulations, we model the polymers using a
bead-spring model. Each polymer consists of N beads with the
diameter σ , which are connected linearly by springs to form
a chain. There are additional attractive interactions between
distant beads to introduce loop structures in the chain. Our
model is described as three types of potential energies (Fig. 2),

U = Uexcl + Uspr + Ustrc, (1)

where Uexcl, Uspr, and Ustrc represent the volume-exclusion
among beads, spring interaction between neighboring beads

Np=2, Nl=2, Cl=4

N=18

D

L
D

FIG. 2. (a) Simple illustration of the effects of the loop struc-
tural interactions. The interaction makes a long chain compact.
(b) Examples of a spherical shape (left) and a rod shape polymer
(right). The spherical and rod-shaped polymers have the structural
parameters (Nl,Cl,Np) = (40,21,1) and (40,21,4), respectively. Here
only springs are illustrated and beads are ignored for visiblity.

in the chain, and attractive interaction to form loop structures,
respectively.

The volume-exclusion interaction Uexcl is described by
a Weeks-Chandler-Andersen (WCA) potential, which corre-
sponds to the repulsive part of the Lennard-Jones potential:

Uexcl = 4εexcl

N∑
j<i

[(
σ

rij

)12

−
(

σ

rij

)6

+ 1

4

]
, (2)

for rij <
6
√

2σ and 0 elsewhere. rij denotes the distance
between centers of ith and j th beads. At rij = σ , the
interaction energy is εexcl = 1kBT , where kB and T are the
Boltzmann constant and the temperature, respectively. This
models soft beads of diameter σ , whose centers cannot come
much closer than σ to each other since the potential is quite
steep. In the simulation, σ defines the basic length scale and
εexcl the energy scale. Our unit of mass is given by m, the
mass of a bead. Having specified our basic units, the time unit
is given by τexcl = σ

√
m/εexcl = 1. In the following, we will

omit these units.
The spring interaction Uspr between neighboring beads in a

chain is described by the harmonic potential:

Uspr = εspr

∑
i<N

1

2
r2
i,i+1, (3)

where ri,i+1 is the distance between the ith and (i + 1)-th
bead centers and εspr is the spring coefficient and we chose
εspr = 1kBT . The spring has no excluded volume (phantom
spring). Thus, spring-spring and spring-bead can pass through
each other, and hence two entangled chains can also pass
through each other. In actual cells, topoisomerase II, the
protein that cuts and reconnects DNA, enables DNA strands to
pass through each other to avoid DNA entanglement [11]. This
effect is incorporated in our model by the phantom spring.
We chose a small-enough spring coefficient so the average
distance between two neighboring beads becomes large and
the passage between separate chains occurs frequently in
simulations. We discuss the effects of this parameter on
polymer segregation later.

The loop structural interaction Ustrc introduces attractive
forces among beads that are placed far apart along the
chain. This gives loop structures and makes it compact. This
interaction mimics the function of condensins on mitotic
chromosomes in a biological context. We consider a long
polymer chain with a total of N beads and make a compact
structure as follows.

(1) We choose Np beads at N/Np intervals and call them
the base-point beads (the red beads in Fig. 2).

(2) We choose Nl beads, which are arranged at every Cl

bead between each consecutive base point and call them the
attaching beads (the green beads in Fig. 2).

(3) The Nl attaching beads and the base-point beads attract
each other.

Then we obtain a compact structure where Np base points
are arranged on an axis and each base point has Nl loops with
the length Cl (Fig. 2). There are three structural parameters:
Np, the number of base-point beads; Nl , the number of
loops gathered in each base point; and Cl , the number of
beads in each loop (loop length). Total number of beads
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N = NpNlCl + Np. Here, for simplicity, we consider that Cl

(Nl) is the same in all the loops (bases). The loop structural
interaction is described by the harmonic potential:

Ustrc = εstrc

Np−1∑
l=0

Nl∑
m=1

1

2
r2
Lpl,Lpl+Clm

, (4)

where Lp = NlCl + 1 and rLpl,Lpl+Clm is the distance between
centers of the (Lpl)-th and (Lpl + Clm)-th beads, and εstrc

is the interaction strength and we chose εstrc = 1kBT . The
(Lpl)-th bead is the base point and the (Lpl + Clm)-th bead is
the attaching bead to the base point.

We employ a velocity-Verlet MD integrator [12] with a fixed
time step of 0.01; the system is kept at constant temperature
by means of a Langevin thermostat with a fixed friction of
γ = mτexcl, so τ ∗ = τexcl = 1. Other parameters vary for the
different simulation runs; see Table I.

B. Polymer shape and size

The geometric properties of polymers, such as shape and
size, are usually characterized through the gyration tensor, G.
The entries of this 3 × 3 coordinate matrix are given by

Gab = 1

N

N∑
i=1

(�ri,a − �rCM,a)(�ri,b − �rCM,b), (5)

where a and b run over the three Cartesian components and
�rCM = 1

N

∑N
i=1 �ri is the spatial location of the polymer center

of mass. The non-negative eigenvalues of G, ranked with
decreasing magnitude, λ2

1, λ2
2, and λ2

3, correspond to the square
length of the principal axes of the polymer gyration ellipsoid.
Accordingly, their relative magnitude conveniently captures
the overall spatial anisotropy of the polymers, while their
sum yields the square radius of gyration R2

g and the product
produces the square volume V 2:

R2
g = tr(G) =

3∑
a=1

λ2
a, V 2 = det(G) =

3∏
a=1

λ2
a, (6)

where tr and det are the trace and the determinant operators,
respectively. To measure the typical size and anisotropy of
the ensemble of the polymer, we compute the averages λa =√〈λ2

a〉, Rg =
√

〈R2
g〉, and V =

√
〈V 2〉 where the brackets

〈...〉 denote averaging over a polymer of 50 independent
equilibrium systems with the same condition.

These measurements are tuned by the structural parameters
in the potential Ustrc. In particular, the bead concentration
c = N/V , the size and the aspect ratio α of the polymer
are determined by the structural parameters Nl , Cl , and Np.
The aspect ratio α is given by α = D/L with the diameter
D = 2λ3 and the length L along the rod, see Fig. 2(b).
The length L is given by the sum of the pole-pole distance
L = 〈∑Np−1

l=1 rLp(l−1),Lpl〉. The aspect ratio is an indicator of
the elongation of the polymer.

C. Two polymer segregation

In calculating the segregation dynamics, two fully en-
tangled (overlapping) polymers with identical characteristics
(Nl , Cl , Np) are prepared as initial conditions. To create

TABLE I. The simulation parameters for the different runs. When
the structural parameter Np = 1 is fixed, the polymers take spherical
shapes in all runs. The numbers in parentheses represent statistical
errors of the last two or three digits.

N Cl Rg ti ts

421 21 7.093(59) 0.151(35) 0.392(59)
14 6.544(35) 0.098(28) 0.243(31)
10 5.941(28) 0.081(21) 0.150(24)
7 5.448(61) 0.065(14) 0.095(21)

601 40 9.612(51) 0.294(85) 1.119(81)
20 7.767(43) 0.233(31) 0.322(61)
15 7.155(46) 0.189(27) 0.188(93)
10 6.416(22) 0.122(32) 0.139(46)
6 5.721(31) 0.085(16) 0.078(29)

841 60 10.97(86) 0.622(94) 1.664(95)
42 10.20(54) 0.478(60) 1.083(73)
28 9.390(69) 0.396(48) 0.717(81)
21 8.391(52) 0.286(25) 0.412(68)
14 7.592(38) 0.182(30) 0.276(39)
12 7.275(23) 0.185(38) 0.181(28)
7 6.404(13) 0.115(25) 0.101(23)

1261 84 14.82(45) 1.257(162) 3.516(137)
70 13.80(61) 1.089(114) 2.617(83)
60 13.20(69) 0.844(84) 2.094(90)
42 11.68(42) 0.623(28) 1.122(75)
30 10.44(36) 0.499(39) 0.636(69)
21 9.314(41) 0.386(24) 0.362(54)
18 8.767(38) 0.345(21) 0.259(63)
14 8.281(21) 0.286(26) 0.209(41)
7 7.028(38) 0.159(17) 0.102(27)

1681 84 15.64(97) 1.451(145) 3.024(115)
70 14.64(63) 1.195(84) 2.382(87)
60 13.95(56) 1.066(80) 1.898(78)
42 12.39(30) 0.747(67) 0.957(85)
30 10.99(28) 0.543(35) 0.562(73)
21 9.898(21) 0.475(30) 0.315(60)
14 8.830(16) 0.331(19) 0.193(55)
7 7.533(24) 0.193(22) 0.105(21)

2101 70 15.79(71) 1.523(114) 2.496(92)
60 14.82(50) 1.092(69) 1.890(84)
50 13.90(66) 1.005(67) 1.554(87)
42 13.10(53) 0.809(65) 0.925(40)
30 11.46(46) 0.630(27) 0.479(36)
21 10.40(33) 0.541(23) 0.313(49)
14 9.271(49) 0.353(25) 0.242(35)
7 7.531(36) 0.214(17) 0.126(29)

2521 70 16.66(57) 1.681(82) 2.558(81)
60 15.24(63) 1.333(75) 1.856(72)
42 13.10(56) 0.912(56) 0.919(50)
30 12.18(43) 0.692(54) 0.509(48)
21 10.91(34) 0.541(41) 0.354(37)
14 9.646(65) 0.409(32) 0.210(32)
7 8.309(46) 0.248(27) 0.120(36)

4201 42 14.22(74) 1.062(42) 0.905(45)
21 12.15(67) 0.679(56) 0.365(42)
14 10.66(41) 0.524(32) 0.209(34)
10 9.787(26) 0.426(28) 0.159(37)
7 9.035(13) 0.348(13) 0.140(20)
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configurations of two overlapping polymers, the ith bead of
one chain and the ith bead of the other chain are initially
interconnected by weak harmonic bonds. This initialization is
valid for our target biological system because two replicated
sister chromosomes are bound to each other by cohesin
protein complexes at mitotic onset [13]. We simulate the
first several thousand steps with a softcore WCA potential
to avoid a singularity of overlapping beads at initial random
configurations, i.e., a WCA potential that has been modified
such that the potential is linear for distances smaller than a
radius rcap and rcap is reduced gradually to the plain WCA
potential. After that, to equilibrate the system, we simulate
for several million steps until the radius of gyration of the
polymers converges to a value.

After the equilibration of the interconnected polymers, we
remove the interconnecting bonds to obtain two separate chains
that are entirely overlapping. We continue to simulate the
system until the two chains have segregated and the chains do
not overlap. This procedure is repeated independently, 50 times
for various polymer shapes with different structural parameter
sets.

For each of these data sets, we calculate the overlap fraction
of the two chains as a function of time. The overlap fraction
is defined as follows. The polymer region of a polymer chain
is spanned by the series of spheres with the center �rl and the
radius Rl given by

�rl = 1

Cl

Cl∑
i=Cl (l−1)+1

�ri, Rl = max(|�ri − �rl|), (7)

with the coordinate �ri of the ith bead in the lth loop constructed
by the structural interaction. The overlap fraction Ov is defined
by the bead number in the other polymer region per the total
bead number. The average ov = 〈Ov〉 over the 50 runs is
calculated every time step.

Figure 3 shows an example of time evolution of the overlap
fraction ov , the distance �rCM of the center of masses between

 0
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 0  0.2  0.4  0.6  0.8  1

time
x103
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ΔrCM

Rg
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FIG. 3. MD time evolution of the overlap fraction ov , the distance
of the center of masses �rCM between two polymers, and the radius
of gyration, Rg , of one polymer. �rCM and Rg are both divided by
the equilibrium mean value of Rg of one polymer. The small window
shows the log-log plot of the overlap (+ symbol) and the fitting
function (solid line). The polymers have the structural parameters
(Nl,Cl,Np) = (40,21,1).

two polymers, and the radius of gyration Rg of one polymer
during the segregation of two entangled polymers. During the
process, Rg is almost constant (slightly decreases) because the
structural interaction holds the polymer structures.

Calculation of ov for many cases with various structural
parameters shows that ov decreases monotonically and almost
linearly after the flat induction time as in Fig. 3. These
results show that the segregation dynamics can be divided into
three stages, i.e., the induction stage to initiate segregation
dynamics, the segregation stage, and the diffusion stage after
segregation. Here we define the induction time ti when ov

is almost flat and the segregation time ts when ov decreases
linearly. To extract these parameters, we fit ov by a simple
linear function, ov = 1 − (t − ti)/ts , in the linear decreasing
region. Actually, we see that ov can be fitted by the linear
function in the region 0.2 < ov < 0.8, where ov linearly
decreases for most cases.

III. RESULTS

A. Spherical shape polymers

First, we consider spherical shaped polymers for simplicity.
This situation is realized by fixing the parameter Np = 1 in
the structural interaction where all of the attaching beads likely
get together.

For the spherical shape polymer, the three eigenvalues λ1,2,3

of the gyration tensor take the same expectation values within
the error and the radius of gyration Rg and the volume have

relations Rg ≈ √
3λ1,2,3, V ≈ λ1λ2λ3 ∝ R

3
g , respectively.

Figure 4(a) shows Rg as a function of Cl for several values
of N . In the spherical case, Np = 1 and only the Nl (or N ) and
Cl are variable among the structural parameters. The radius of
gyration increases monotonically with Cl and N and is then
roughly fitted by the following function assuming the scaling
relationship:

Rg ∼ NμgC
νg

l (8)

and the scaling coefficients μg = 0.18 ± 0.03 and νg =
0.30 ± 0.07 are obtained by the least-squares method.

Figures 4(b) and 4(c) show the induction ti and the
segregation time ts as a function of Rg for several values of N

and Cl . All the data are taken from Table I.
Each set of data can be fitted by the function

tγ (x) = (aγ xγ )bγ , (9)

where γ = i and xγ = Rg in Fig. 4(b) and γ = s and xγ =
Rg/c in Fig. 4(c). The fitting parameters are, respectively,

ai = 0.07247 ± 0.0003, bi = 2.579 ± 0.04, (10)

as = 0.07399 ± 0.0008, bs = 1.184 ± 0.02. (11)

The solid curves in Figs. 4(b) and 4(c) represent the fitting
functions (9), respectively. These results show that both the
induction ti and the segregation ts time can be approximately
scaled by

ti = (ciRg)3, ts = cs

Rg

c
, (12)
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FIG. 4. (a) The radius of gyration Rg for several N in the spherical
shape polymer. (b) The induction time ti and (c) the segregation time
ts for several N in the spherical shape polymer. The small windows
in each panels show the log-log plots.

where ci and cs are determined by fitting the data and
ci = 0.0742 ± 0.0004 and cs = 0.0772 ± 0.002, respectively.
The dashed curves in Figs. 4(b) and 4(c) represent the fitting
functions of the theory (12), respectively.

The scaling laws (12) relate segregation dynamics to
polymer shapes. The induction and the segregation time have
different dependencies on the polymer shapes. The former
depends on only the polymer size Rg (or D) but not the
concentration c, while the latter depends on both the polymer

size and the concentration. This difference is reflected in
differences in the dynamics.

The main driving force for the overlapping of two poly-
mers is the volume exclusion between them. Because the
volume-exclusion potential is an increasing function of the
beads’ concentration, the force is induced by the gradient
of the concentration. For the initial induction time, the two
polymers overlap entirely. In this case, the volume-exclusion
interactions among beads are random and do not generate any
directional repulsive forces between two polymers. Hence, the
system initially shows purely diffusive behavior until a certain
separation is reached. After the initial separation is realized,
the segregation direction, which is the direction connecting the
two centers of mass of the polymers, is determined and then
the polymers segregate actively in the segregation time.

In the initial diffusion process, the induction time ti is
obtained by the time for the polymer to diffuse the ratio of
the size Rg (or D)

ti ∝ R
2
g/μ ∝ D

2
/μ, μ ∝ R

−1
g ∝ D

−1
, (13)

where μ is the mobility and it is proportional to the inverse
diameter from Stokes’ law in the continuum approximation.
Therefore the induction time ti is proportional to the volume

R
3
g ∝ D

3
.

For the segregation time, the two overlapping polymers
spontaneously segregate from each other by the volume-
exclusion interaction between the polymers. The repulsive
interaction is induced by the gradient of the concentration
c along the segregation direction as follows. In the mean-field
approximation, the volume-exclusion potential Uex is propor-
tional to the concentration c and the overlapping bead number
Nov, i.e., Uex ∝ cNov. Nov is proportional to the overlapping
length �ov along the center-of-mass direction, Nov ∝ c�ov,
and then Uex ∝ c2�ov. Each overlapping bead feels friction
ηov proportional the concentration ηov ∝ c. Combined with
the volume exclusion and the friction, the decreasing speed of
the overlapping region, i.e., the segregation speed is

vov = −
〈

1

ηov

∂Uex

∂�ov

〉
∝ c, (14)

and then the segregation time is ts ∝ Rg/c ∝ D/c.
For large Rg or small c, the scaling laws (12) seem to deviate

from the data. In the parameter regions, the loop length Cl is
large and the bead concentration is small. Therefore the spatial
fluctuation of the concentration is large and the mean-field
approximation discussed above breaks down.

Here we discuss effects of the strength εspr of the spring
interaction (3). Figures 4(b) and 4(c) show the εspr effects on
the segregation times. In both figures, the plus and the cross
symbols represent the MD simulation results with εspr = 1kBT

and 2kBT , respectively, when the other parameters are fixed
to the same values. From these results, the relationship (12)
is preserved unless the spring interaction is weak enough for
the beads to pass through the springs easily. If the spring
interaction becomes stronger, εspr > 3kBT , it is more difficult
for the beads to pass through the springs and the segregation
times become longer and deviate from the relationship (12).
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TABLE II. The simulation parameters for the different runs
for rod-shaped polymers. The numbers in parentheses represent
statistical errors of the last two or three digits.

Cl Nl Np D α ti ts

21 20 1 8.191 (9) 0.151(35) 0.392(59)
2 8.314(25) 1.815(14) 0.187(23) 0.417(26)
3 8.427(19) 2.844(19) 0.206(34) 0.455(29)
4 8.503(34) 3.755(29) 0.214(36) 0.492(39)
5 8.791(71) 4.819(52) 0.217(33) 0.542(32)

10 8.812(93) 9.631(134) 0.212(43) 0.579(34)

14 30 1 6.955 (7) 0.117(28) 0.213(54)
2 7.064(15) 1.937(12) 0.126(23) 0.223(36)
3 7.506(22) 2.812(22) 0.133(26) 0.272(45)
4 7.767(31) 3.770(41) 0.143(28) 0.288(25)
5 7.838(57) 5.035(72) 0.147(22) 0.293(53)

10 8.142(91) 9.768(122) 0.152(35) 0.303(45)

21 40 1 9.491(12) 0.276(25) 0.412(68)
2 9.668(17) 2.106(15) 0.286(28) 0.427(24)
3 9.953(42) 3.133(19) 0.322(37) 0.441(29)
4 10.03 (5) 4.266(39) 0.330(30) 0.466(45)
5 10.11 (6) 5.463(56) 0.333(42) 0.488(66)

14 60 1 8.426 (6) 0.198(30) 0.226(39)
2 8.498(14) 2.141(11) 0.207(34) 0.246(24)
3 8.543(27) 3.286(17) 0.220(27) 0.259(26)
4 8.766(48) 4.684(31) 0.224(39) 0.261(35)
5 8.831(71) 5.265(67) 0.231(53) 0.265(67)

B. Rod-shaped polymers

Next, we consider rod-shaped polymers. This situation is
realized by changing the parameter Np from unity. Simulation
parameters and results for the polymer shapes and dynamics
are summarized in Table II. In Table II, the diameter D and
the aspect ratio α for the shapes, the induction ti , and the
segregation time ts for the dynamics are presented.

For the polymer shapes, as Np increases under fixed Cl

and Np, the diameters D of the polymer take almost the
same values but slightly increase, while the aspect ratio α

increases proportionally. This situation corresponds to the case
of polymer elongation under fixed D and the concentration

c ≈ N/(αD
3
). The induction ti and the segregation time ts

slightly increase as Np increases but seem not to depend on
the aspect ratio α.

Figures 5(a) and 5(b) shows the induction ti and the
segregation time ts as a function of D by varying the aspect
ratio α for several values of N and Cl ; all the data are
taken from Table II. Here we multiply the horizontal axis
by β = √

3/2 in order to match the axis of the spherical cases,
Figs. 4(b) and 4(c), where Rg = βD.

Each of the data sets can be fitted by a function,

tγ (x) = (aγ xγ )bγ , (15)

where γ = i and xγ = βD in Fig. 5(b) and γ = s and xγ =
βD/c in Fig. 5(c). The fitting parameters are, respectively,

αi = 0.07941 ± 0.0015, bi = 3.001 ± 0.11, (16)

αs = 0.07377 ± 0.0044, bs = 1.107 ± 0.08. (17)
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FIG. 5. (a) The induction time ti and (b) the segregation time
ts for several N in the rod-shaped polymer. The horizontal axis is
multiplied by β = √

3/2 to match the axis of the spherical cases,
Figs. 4(b) and 4(c), where Rg = βD.

The solid curves in Figs. 5(a) and 5(b) represent the respective
fitting functions (15). The dashed curves are the same fitting
functions as those of the spherical cases shown in Figs. 4(b)
and 4(c) For the rod-shaped polymers, both ti and ts are almost
on the same fitting curves as those for the spherical shape
polymers as shown in Fig. 5, and then the segregation dynamics
of the rod-shaped polymers can be described by the same
scaling laws as those of the spherical-shaped polymers.

For the segregation dynamics, both the induction ti and the
segregation time ts are not affected by increasing Np under
fixed Cl and Nl . These results mean that the segregation
dynamics of two entangled polymers do not depend on the
aspect ratio, i.e., the length, but depends on the diameter and
the concentration. By combining this result and Eq. (9), we
can get the following relationship between the polymer shapes
and the segregation dynamics:

ti ∝ D
3
, ts ∝ D/c. (18)

This elongation insensitivity reflects the segregation dy-
namics as being substantially a one-dimensional phenomenon
that occurs in the segregation direction.
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TABLE III. The averaged DNA amount NMb and the chromosome
diameter D and the length L of metaphase chromosomes for some
species. Data are taken from Table 1 in Ref. [14]. NMb is the genome
size divided by the chromosome number of each species. Human
chromosome data are taken from the five largest chromosomes.

Species NMp (Mbp) D (μm) L (μm)

C. japonica 125 0.5 1.7–3.3
Human 229 0.6 5.4–7.2
Barley 729 0.9 10–14
Pine 1917 1.0 14–21
T. cristatus 1958 1.1 11–36
N. viridescens 3382 1.0 10–20
P. japonica 7450 1.3 14–39

IV. DISCUSSION AND CONCLUSION

We have investigated the relationship between polymer
shapes and segregation from entanglement by using MD
simulation. We show that two entangled polymers at high
concentration spontaneously segregate from each other and the
segregation dynamics can be distinguished into three stages:
the induction, the active segregation, and the diffusion stages.
The induction and the segregation time relate to the shape of the
polymer and both times depend only on the diameter and the
concentration but not on the length due to the dimensionality.
The induction time has particularly strong dependence on the
diameter, ti ∝ D3.

In nature, the length of eukaryotic chromosomes is richly
diverse. The chromosome dimensions of some species with
a broad range of genome sizes are summarized in Table III
[14]. The measurements shown in Table III include the
small chromatids of Chionographis japonica to the very large
chromatids of Paris japonica. In addition to the great variety
in the DNA amount per chromosome, individual species
have karyotypes with a great heterogeneity of chromosome
sizes. In interspecies, the diameter differences may arise from
differences in the relative amounts of condensins.

Table III shows that the metaphase chromosomes of many
animal and plant species take elongated cylinder shapes. Fur-
thermore, the diameters seem to be conserved for many species
and karyotypes, while the DNA amount and the chromosome
length have varieties. For humans, the largest chromosome,
chromosome 1, has NMb ≈ 250 Mb and L ≈ 8 μm, and the
smallest chromosome, chromosome 22, has NMb ≈ 50 Mb
and L ≈ 2 μm. Despite the big difference in genomic and
physical length, the two chromosomes have similar diameters
D ≈ 0.6 μm. Cells appear to conserve chromosome width for
some reason and/or advantage.

This conservation can be understood from the point of view
of segregation time. The relationship (18) describes that the
induction and the segregation time of two entangled polymers
strongly depend on the diameter. If each chromosome has a dif-
ferent diameter, then in isotropic D ∼ N1/3 each chromosome

has a different segregation time ∼D
3 ∼ N , such as, for human,

the largest chromosome has a 5-times-longer segregation time
than the smallest one. In this case, it would be difficult for
ordered cell division after chromosome segregation. Due to the
necessity for orderly cell division, eukaryotic chromosomes
may need to take shapes with such a conserved diameter.

The relationship (18) indicates that a more elongated
compact polymer has a shorter segregation time. Actual
eukaryotic chromosomes have limitations to their mobility
because of the nuclear envelope and the other chromosomes.
Due to this spatial limitation, chromosomes may not take
longer shapes. It will be interesting to investigate these effects
in future work.

The fact [3–5] that metaphase chromosomes in early
embryonic cells tend to be longer and thinner compared with
those in somatic cells (mentioned in the Introduction) may
support our results. In the early embryo, the cell cycle is about
0.5 h, which is more rapid than the meiotic phase time of 1–2 h
in somatic cells [15]. The metaphase chromosomes in the early
embryo may take longer and thinner shapes in order to achieve
a rapid cell cycle.

Our study contrasts with that of Ref. [7]; polymer shapes
are constricted by internal forces, Eq. (4), in our study and
are restricted by boundary conditions in Ref. [7]. This may
correspond to the difference in polymer shaping strategies
between eukaryotic and bacterial cells. Whether two entangled
polymers spontaneously segregate depends on the boundary
conditions in Ref. [7], whereas polymers shaped by internal
force always segregate spontaneously in our study. This is
because polymer constriction by internal force generates a
repulsive force between two entangled polymers and the
absence of boundary conditions allows polymers to diffuse
away from each other. Based on our results, we speculate that
in the evolution of eukaryotes, enlargement of the cell size pro-
vided space for chromosome segregation, and the introduction
of constriction forces to accelerate segregation and to form
rod-shaped chromosomes to control segregation speed.
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