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Stochastic inference with spiking neurons in the high-conductance state
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The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent
a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of
neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we
provide an analytical derivation of the neural activation function that holds for a large parameter space, including
the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with
conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling
from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in
computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points
to a new computational role of high-conductance states and establishes a rigorous link between deterministic
neuron models and functional stochastic dynamics on the network level.
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I. INTRODUCTION

In responding to environmental stimuli, brains have to make
predictions based on incomplete, noisy, and ambiguous data.
The recent hypothesis that the brain copes with this challenge
by performing Bayesian, rather than logical inference [1–3],
has been strengthened by electrophysiological data that
identified neural correlates of the involved computations
[4,5] and theoretical work on potential spiking network
implementations [6–8].

In probabilistic inference, possible values of a quantity are
described by a random variable (RV) zk and all dependencies
between RVs are stored in a joint distribution p(z1, . . . ,zK ).
The belief about a set of unobserved RVs {z1, . . . ,zM} given
an observed set of RVs is represented by the posterior distri-
bution p(z1, . . . ,zM |zM+1, . . . ,zK ). In particular, the posterior
contains information on the most likely conclusion, as well as
on all potential alternatives.

With regard to the representation of probability distribu-
tions in the brain, theoretical work [2] has argued in favor
of sample-based codes, i.e., instead of providing the entire
distribution at any point in time, samples z(t) ∼ p(z1, . . . ,zK )
are used as a proxy. When modeling large systems, this offers
three important advantages. First, approximate solutions can
be provided at any time, with increasingly reliable results as
the calculation progresses (“anytime computing”). Second,
marginalization comes at no cost, as p(zk) can be determined
by simply neglecting the values of all other RVs. Third, some
sampling algorithms support a high degree of parallelization
with an algorithmic structure that is reminiscent of neural
networks [9]. Recently, a theory has been suggested that
combines these advantages by implementing Markov chain
Monte Carlo (MCMC) sampling in spiking networks of
abstract model neurons [7]. In this framework, spike patterns
are interpreted as samples of binary RVs as follows [see
Fig. 1(a)]:

z
(t)
k = 1 ⇔ Neuron k fired in (t − τon,t]. (1)
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The duration τon of the active state following a spike is a
free parameter for the timescale on which a neuron affects
downstream cells. The neuron model in Ref. [7] is inherently
stochastic, with an instantaneous firing probability,

rk(t)= lim
�t→0

p(spike in [t, t + �t))

�t
=

{
exp(vk)

τ
if zk = 0

0 if zk = 1
,

(2)

where vk is an abstract membrane potential [Fig. 1(b)].
In contrast to this idealized stochastic neuron model, in

vitro experiments have demonstrated the largely deterministic
nature of single neurons [10]. Similarly, microscopic models
of neural circuits typically rely on deterministic dynamics of
their constituents [see Fig. 1(c)]. The aim of this paper is
to demonstrate how a network of deterministic neurons in a
biologically plausible spiking environment can quantitatively
reproduce the stochastic dynamics required for sampling
from a well-defined distribution and perform inference given
observations. In this letter, we extend our earlier discussion of
this approach [11].

We start by calculating the dynamics of a single leaky
integrate-and-fire (LIF) neuron in a spiking noisy environment
and derive its activation function in the high-conductance
state. For this biologically relevant regime, existing an-
alytical descriptions of neuronal response functions (e.g.,
Refs. [16,17]) are not applicable. Here, we provide an approach

FIG. 1. (a) Spike patterns as samples of a random vector z. The
RV zk is active for duration τon (gray bar) after each spike. (b) In
stochastic neuron models, internal state variables (red) modulate
the firing probability (gray). (c) In contrast, deterministic neurons
elicit a spike when the membrane potential (blue) reaches a threshold
voltage.
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based on the propagation of the membrane autocorrelation
throughout spike bursts. This establishes an equivalence to
the abstract, inherently stochastic units [Eq. (2)]. On the
network level, we show how conductance-based synapses
approximate the interaction for sampling from a well-defined
target distribution. Furthermore, we show that the distribution
sampled by LIF networks remains a good approximation of the
target distribution even for large networks with strong recurrent
interaction. We complement our study with a demonstration
of probabilistic inference by implementing a small graphical
model for pattern recognition in a recurrent network of LIF
neurons.

II. LIF DYNAMICS IN A HIGH-CONDUCTANCE STATE

We consider deterministic LIF neurons defined by
Cm

d
dt

uk = gl(El − uk) + Ik , with membrane potential uk ,
capacitance Cm, leak potential El , leak conductance gl , and
input current Ik . When uk crosses a threshold ϑ from below, a
spike is emitted and uk is reset to � for a refractory period
τref . We formally partition the total input current Ik into
recurrent synaptic input, diffuse synaptic noise, and additional
external currents: Ik = I rec

k + I noise
k + I ext

k . The currents I rec
k

and I noise
k are mediated through synapses and obey I

syn
k =∑

i gki (Erev
i − uk) with reversal potential Erev

i of the ith
synapse. The temporal evolution of the conductance gki is
modeled as a low-pass filter on presynaptic spikes: d

dt
gki =

−gki/τsyn + ∑
s wki δ(t − t si ), with synaptic time constant

τsyn, weight wki , and spike times t si .
We start by considering a single neuron that receives diffuse

synaptic noise I noise
k in the form of Poisson spike trains from

its surrounding. The capacity of recurrent networks to produce
such noise has been shown in, e.g., Ref. [12]. For the following
analysis of individual neurons in a noisy environment, we omit
the index k and set I rec = 0.

When a conductance-based LIF neuron receives strong
synaptic stimulation, it enters a so-called high-conductance
state (HCS, [13]), characterized by accelerated membrane
dynamics. For an analytical treatment, it is advantageous to
rewrite the membrane dynamics as τeff

d
dt

u = ueff(t) − u, such
that u decays toward an effective leak potential ueff with an
effective time constant τeff = Cm/gtot [14] (see Appendix A).
The total conductance gtot subsumes both leakage and synaptic
conductances. In a high input rate regime, τeff → 0 and the
effective potential ueff simply becomes a linear transformation
of the synaptic noise input (see Appendix B). Using methods
similar to Ref. [15], it can be shown that, in this regime,
ueff(t) can be described as an Ornstein-Uhlenbeck (OU)
process du = 1

τsyn
(ū − u)dt + σdW with parameters (see

Appendix C):

ū =
{

I ext + glEl +
∑

i

νiwiE
rev
i τsyn

}/
〈gtot〉, (3)

σ 2 =
{∑

i

νi

[
wi

(
Erev

i − ū
)]2

τsyn

}/
〈gtot〉2. (4)

FIG. 2. (a) Membrane potential u(t) and spikes of an LIF neuron
in a spiking noisy environment. (b) Prediction of the activation
function (red) compared to simulation results (green), as well as
to other predictions from literature [16,17]. (c) In a HCS, u (blue)
and ueff (red) are nearly identical when the neuron is not refractory.
After each refractory period (gray), the predicted distribution of ueff

(pink) is used for the propagation in [Eq. (6)]. (d) High-noise regime:
theoretical prediction (red) vs. simulation results (green), with a fitted
logistic function σ (ū) (blue).

III. THE ACTIVATION FUNCTION OF LIF
NEURONS IN THE HCS

Similar to the abstract model [7], we define the refractory
state of a neuron as z(t) = 1. The mapping of spikes to RV
states [Eq. (1)] naturally leads to the concept of an activation
function p(z = 1|ū), where ū = 〈ueff〉t . In the following, we
derive a general expression for the activation function of an
LIF neuron under Poisson stimulus, which is of particular use
in the cortically relevant HCS regime. Figure 2(a) shows an
exemplary simulation (membrane potential and spike train) of
such a scenario. The activation function in Fig. 2(b) is obtained
by sweeping over I ext (see Appendices G and H).

Related setups have already been examined in Refs. [16,17].
However, the methods in Refs. [16,17] are tailored to certain
parameter ranges, which, in particular, do not include the HCS
regime with refractoriness. This is because Ref. [16] requires
τsyn � τeff , whereas Ref. [17] assumes τref � τeff,τsyn, which
leads to discrepancies in the predicted activation functions
[Fig. 2(b)]. The deeper reason for the observed discrepancies
is found in the lack of an appropriate propagation of the
autocorrelation of ueff through τref . Here, we propose a
derivation that explicitly includes this propagation and thereby
covers a large parameter space, including the cases studied in
Refs. [16,17], as well as the HCS.

In Fig. 2(a), two modes of firing can be observed: a
“bursting” mode, where the effective membrane potential ueff

after the refractory period is still above threshold, and a freely
evolving mode, where the neuron does not spike again im-
mediately after the refractory period. This is illustrated by the
distributions in Fig. 2(c). Our approach relies on the calculation
of burst lengths and their associated occurrence probability Pn.

Denoting the relative occurrence of burst lengths n by Pn,
the average drift time from � to ϑ between the kth and (k + 1)st
spike in a burst by τ b

k and the average duration of the freely
evolving mode that follows an n-spike-burst by Tn, we identify
the following relation:

p(z = 1|ū) =
∑

n Pnnτref∑
n Pn

(
nτref + ∑n−1

k=1 τ b
k + Tn

) . (5)
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Knowing the OU process governing ueff , recursive expressions
for Pn and Tn can be derived. These terms have considerable
impact on the activation function if τref ≈ τsyn. In the limit
of strong noise stimuli, we can calculate the average drift
time τ b

k in a quasistatic approximation [17] of ueff and assume
that u ≈ ueff for the freely evolving mode, thus obtaining (see
Appendix D):

Pn =
(

1 −
n−1∑
i=1

Pi

)∫ ∞

ϑ

dun−1p(un−1|un−1 � ϑ)

×
[∫ ϑ

−∞
dunp(un|un−1)

]
, (6)

Tn =
∫ ∞

ϑ

dun−1p(un−1|un−1 � ϑ)

×
[∫ ϑ

−∞
dunp(un|un < ϑ,un−1)〈T (ϑ,un)〉

]
, (7)

τ b
k =

∫ ∞

ϑ

duk ln

(
� − uk

ϑ − uk

)

×
∫ ∞

ϑ

duk−1p(uk|uk � ϑ,uk−1). (8)

Figure 2(c) displays an intuitive picture of the integrals in
Eqs. (6) and (7). The transfer function p(un|un−1) is the
Green’s function of the OU process at time t − ts = τon and
〈T (ϑ,un)〉 denotes the average time needed for the membrane
to reach ϑ starting from un, which can be given in closed form
[18]. The dependency of Pn, Tn, and τ b

k on the moments of the
OU process [Eqs. (3) and (4)] renders Eq. (5) a function of ū.

So far, we have only considered τeff = 0. To further improve
the prediction, we take into account finite values of τeff by
means of an expansion in

√
τeff/τsyn. Due to the symmetry of

the PSP shape in τeff and τsyn, this can be done analogously
to Refs. [16,17], where the opposite limit of large τeff and
small τsyn is used (see Appendix D). A comparison between
our prediction of p(z = 1|ū) and results from a numerical
simulation is shown in Fig. 2(b).

IV. SAMPLING WITH NETWORKS OF LIF NEURONS

We can now reconcile the response of LIF neurons with
the inherently stochastic neuron model [Eq. (2)] that requires
a logistic activation function for constant potential v: p(z =
1|v) = σ (v) := [1 + exp(−v)]−1. In the HCS regime, this
logistic activation can be approximated by LIF neurons with
high accuracy. Figure 2(d) shows our theoretical prediction and
simulation results for the activation function alongside a fitted
logistic function. For the translation from the LIF domain to the
abstract model [Eq. (2)] we have employed a linear mapping,

v = (ū − ū0)/α, (9)

with scaling factor α and ū0 denoting the potential for which
p(z = 1) = 1

2 .
We next connect the neurons to form a recurrent network.

In addition to noise stimuli, an LIF neuron in a network
receives synaptic currents I rec

k from other neurons. For certain
connectivity structures, it is possible to predict the target
distribution [7,19] of states z(t) that arise from the stochastic

dynamics of the recurrent network. We use the emulation of
Boltzmann machines (BMs) as an example case. The joint
distribution reads,

pB(z) = Z−1 exp(zTW z/2 + zTb), (10)

where W is a symmetric zero-diagonal weight matrix, b is a
bias vector, and Z is the normalizing partition function. This
probabilistic model underlies state-of-the-art machine learning
algorithms for image [20] and speech recognition [21]. It has
been shown [7] that a network of abstract neurons (Eq. 2) with
linear membrane potentials,

vk = bk +
K∑

j=1

Wkj zj , (11)

will sample from the desired target distribution [Eq. (10)]. This
finding uses the fact that individual neurons sample from the
conditionals p(zk = 1|z\k) = σ (vk), with z\k = {zj | j 
= k},
in an MCMC updating scheme.

As shown above, LIF neurons in a spiking noisy environ-
ment closely approximate this logistic activation function if the
synaptic currents I rec

k shift the mean membrane potential ūk

according to the linear interaction [Eq. (11)]. Using the linear
transformation [Eq. (9)] between vk and ūk , and estimating
the effect of a conductance-based synapse of weight wkj , we
arrive at the following translation between the abstract and the
LIF domain (see Appendix E):

bk = (
ūb

k − ū0
k

)/
α, (12)

Wkj = 1

αCm

wkj

(
Erev

kj − μ
)

1
τsyn

− 1
τeff

[
1 − e

e
− τeff

τsyn
(e− τsyn

τeff − 1)

]
,

(13)

where ūb
k is the mean potential ūk that establishes p(zk =

1|ūk = ūb
k) = σ (bk) in Eq. (5), and Erev

kj denotes the reversal
potential for synapse wkj . The idea behind Eq. (13) is to match
the integrals of individual postsynaptic potentials (PSPs) on
vk and ūk . Since the membrane loses any memory following a
reset, in contrast to Ref. [7], we use the synaptic conductance
as a memory carrier.

The remaining systematic difference to the abstract model
lies in the additive—instead of renewing—nature of PSPs
elicited by the same presynaptic neuron, which has a noticeable
effect in the case of fast consecutive spikes (bursts). Since the
membrane potential closely follows the effective potential in
the HCS, renewing PSPs can be achieved by using renewing
postsynaptic conductances. For this, we have used short-term
synaptic depression [22] with a recovery time constant equal
to τsyn.

The sampling quality with networks of LIF neurons was
examined in computer simulations of BMs, with randomly
drawn parameters bk and Wkj [Figs. 3(a) and 3(b)]. The target
distribution pB(z) is approximated by the distribution pN (z) of
network states with τon = 10 ms. The chosen integration time
T = 10 s displays a conservative estimate of the maximum
duration a neuronal ensemble will experience stable stimulus
conditions in a behaving organism and can thus be expected to
sample from a stable target distribution. For this integration
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FIG. 3. (a) Spike pattern of a recurrent network of K = 5 LIF
neurons during sampling from a randomly generated Boltzmann
machine. (b) Sampled distribution pN(z) of network states (blue)
and target distribution pB(z) (red). pN(z) was estimated from ten
10 -s simulation runs (error bars: std. deviation between runs).
(c) DKL(pN||pB) as a function of integration time T for 10 trials.
The red dotted line shows convergence for the theoretically optimal
abstract model [7]. (d) DKL(pN||pB) when sampling for T = 106 ms
from 100 different randomly generated target distributions.

time, we find that the recurrent network of LIF neurons
accurately encodes the target distribution, within the precision
imposed by the sample-based representation. The network
distribution pN (z) becomes increasingly more reliable as more
samples are considered [Fig. 3(c)]. After a few samples, the
network has generated a coarse approximation of pB(z) that
could serve as an “educated guess” in online computation
tasks. Only for simulation times T well beyond biologically

relevant timescales do systematic errors in pN (z) become
apparent. The sampling quality holds for a variety of target
distributions [Fig. 3(d); see Appendix I for simulation details).

These observations hold for larger-scale networks as
well (Fig. 4). For weak coupling, the networks are in an
asynchronous irregular state of firing, which enables highly
accurate sampling of the target distribution. As synaptic
weights increase, the network activity expectedly becomes
more synchronous and the sampled distribution overall less
accurate, especially in low-probability regions of the state
space, but the high-probability modes are always sampled from
with high fidelity.

V. DEMONSTRATION OF PROBABILISTIC INFERENCE

We conclude our investigation of sampling in recurrent
networks of LIF neurons with an example of Bayesian
inference based on incomplete observations. A fully connected
BM of K = 144 neurons, aligned on a 12 × 12 grid, was
trained as an associative network [23] to store patterns of
handwritten digits 0, 3, and 4 in the weights Wkj and biases
bk . Each pixel of the image grid was assigned to one network
neuron. The resulting joint distribution p(z) displays “prior
knowledge” stored by the network.

The probabilistic model was augmented by adding real-
valued input channels for each pixel, associated with random
variables yk ∈ R, 1 � k � K . The resulting generative model
p( y, z) has the structure shown in Fig. 5(a) and connects the
latent network variables zk to observable inputs yk by means
of likelihood functions p(yk|zk), which we have chosen to
be Gaussian with unit variance [Fig. 5(b)]. The likelihoods
p(yk|zk) tend to align the network state with the observation,
i.e., zk = 1 for yk > 0, while the prior p(z) reconciles the
observations with knowledge on consistent activation patterns
z. The task for the network is to calculate and represent

FIG. 4. Sampling in large networks. Spike raster (top left), joint distribution (bottom), and KL divergence (top right) as in Figs. 3(a)–3(c),
respectively. Since the target distribution cannot be computed analytically for 500 RVs, we define the Gibbs-sampling estimate after 106 steps
as a reference distribution. For the joint, the sampled distribution over 5 RVs (out of 500) obtained from the LIF network (after Tsim = 104 ms) is
plotted alongside the Gibbs estimate. Error bars indicate standard deviation between 10 simulation runs. In all panels, biases were drawn from a β

distribution: bk ∼ 1.2[B(0.5,0.5) − 0.5]. (a) Small weights: Wkj ∼ 0.6[B(0.5,0.5) − 0.5]. (b) Moderate weights: Wkj ∼ 1.2[B(0.5,0.5) − 0.5].
(c) Strong weights: Wkj ∼ 2.4[B(0.5,0.5) − 0.5]. Systematic deviations between the sampled distribution and the reference manifest mainly
in low-probability modes and are due to the difference in PSP shapes between the abstract model and LIF neurons.
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FIG. 5. (a) Graphical model used for the probabilistic inference task. (b) A Gaussian likelihood model provides input to the sampling
neurons. (c) Two-dimensional projection of states z(t) when sampling from the prior p(z), which was trained to store hand-written digits 0, 3,
and 4. Solid line: network trajectory over 200 ms. Color maps: Marginals of zk averaged over 25 ms. The time arrow covers the duration of the
red trajectory and consecutive snapshots are 25 ms apart. (d) As described in (c) when provided with incomplete input y that is incompatible
with digit 0 and ambiguous with respect to digits 3 and 4.

the posterior distribution according to Bayes’ rule: p(z| y) ∝
p(z)p( y|z). A short derivation (see Appendix F) shows that
the posterior p(z| y) is a BM for any input y with the following
abstract membrane potential:

vk = bk + yk +
∑

j

Wkj zj . (14)

In the LIF domain, the sum bk + yk is equivalent to an effective
bias [Eq. (I1)] and corresponds to an external current I ext

k =
I b
k + I

y

k that shifts ūk appropriately. Thus, a neuron receives
synaptic input from recurrent connections and noise sources,
as well as an external current, i.e., Ik = I rec

k + I noise
k + I ext

k .
In case of I

y

k = 0 ∀k, the network samples from the prior
distribution p(z) = p(z| y = 0). A two-dimensional projection
of network states z(t) ∼ p(z) is shown in Fig. 5(c). The sampled
distribution has three distinct modes that correspond to the
three handwritten digits stored in the recurrent weight matrix.
A closer look at the network trajectory reveals that the system
stays in one mode (“digit”) for some duration, traverses the
state space, and then samples from a different mode of the
distribution.

A typical inference scenario with incomplete observations
is shown in Fig. 5(d). Four input channels at the center were
picked to inject positive currents I

y

k > 0 to the network while
all other inputs remained uninformative. Positive currents I

y

k

were chosen such that the observation y appeared incompatible
with digit 0, and remained ambiguous with respect to digits
3 and 4 (see Appendix J). In accordance with Bayes’ rule,
the resulting bimodal posterior distribution p(z| y) has a
suppressed 0 mode, but preserves the 3 and 4 modes.

VI. DISCUSSION

We have shown how recurrent networks of conductance-
based neurons in a spiking noisy environment can perform
probabilistic inference through sampling from a well-defined
posterior distribution. Our approach extends Bayesian spiking
network implementations to deterministic neuron models
widely used in computational neuroscience. We have provided
an analytical derivation of the bursty firing response of LIF
neurons under Poisson bombardment, which holds for a wide
range of parameter regimes (both high and low ratios of
τsyn/τeff , as well as both high and low τref). Our approach
is based on the propagation of the membrane autocorrelation
throughout bursts and can thereby provide a prediction of the

activation function in a regime where existing approaches
[16,17] do not hold (see also Fig. 6 in Appendix K).
We have further shown how high-frequency spiking inputs
that could be provided by the surrounding network can
lead to fast membrane dynamics, which enable individual
LIF neurons to correctly encode conditional distributions
given information from their presynaptic partners. Thereby,
our derivation also identifies a potential functional role of
biologically observed high-conductance states and synaptic
memory within a Bayesian framework of brain computation.

For mathematical tractability, simplifying modeling as-
sumptions had to be made. The neuron model uses an absolute
refractory time τref , which matches the activation time constant
τon, and neglects any gradual recovery effects. On the network
level, we have assumed statistically independent noise sources
and instantaneous axonal transmission. One important differ-
ence to cortical structure is the requirement of a symmetric
connectivity matrix. The precise symmetry is a consequence
of all neurons sharing the same parameters and can be
relaxed as neurons become diverse [α �→ αk in Eq. (13)].
Furthermore, while Dale’s principle is known to not hold
universally [24], negative coupling in large networks between
otherwise excitatory neurons could be, in principle, introduced
through populations of inhibitory interneurons. LIF PSPs
differ from the theoretically optimal rectangular shape, which
could impair convergence to the target distribution outside of
the high noise regime [25]. However, computer simulations
indicate that in many biologically relevant scenarios the above
approximations are not critical (see also Fig. 7 in Appendix L).
In particular, the sampling properties of LIF networks remain
preserved as network size and interaction strength increase
(Fig. 4). Embedding LIF sampling in cortical-size networks
appears feasible in light of our results, but remains a matter
for future work.

For neuroscientific modeling, our analysis of LIF neu-
rons can be readily transferred to other neuron [26] and
synapse models. Beyond neuroscience, the ability to perform
probabilistic inference with deterministic neurons displays a
promising computing paradigm for neuromorphic hardware
systems, which typically implement physical models of
integrate-and-fire neurons [27,28]. The distributed nature of
the proposed LIF sampling networks allows us to exploit the
inherent parallelism of neuromorphic architectures and fosters
their application to online data evaluation and robotics. In this
context, our results have already provided the basis for the
implementation of Bayesian networks [29] and learning [30].
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APPENDIX A: CONDUCTANCE-BASED
LIF NEURON MODEL

We restate the set of equations that govern the conductance-
based LIF model. For the membrane potential, we have

Cm

du

dt
= gl(El − u) + I, (A1)

with capacitance Cm, membrane potential uk , leak potential
El , leak conductance gl , and input current I . The input current
I can be formally partitioned into recurrent synaptic inputs,
diffuse synaptic noise, and additional “external” currents, i.e.,

I = I rec + I noise + I ext. (A2)

I ext may represent external current stimuli, average synaptic
stimulus currents, or changes in the leak mechanism (i.e.,
changes in gl or El). The total synaptic current I syn =
I rec + I noise obeys the equation

I syn =
∑
syn i

g
syn
i

(
Erev

i − u
)
, (A3)

where g
syn
i represents the conductance at the ith synapse

and Erev
i the corresponding reversal potential. The synaptic

conductance obeys the ODE

dg
syn
i

dt
= −g

syn
i

τsyn
+

∑
spk s

wiδ(t − ts), (A4)

with synaptic time constant τsyn and weight wi . The sum runs
over all presynaptic spikes s. The solution to this equation is a
superposition of exponentials:

g
syn
i =

∑
spk s

wi�(t − ts) exp

(
− t − ts

τsyn

)
. (A5)

Putting all of the above together, we obtain the full ODE for
the membrane potential:

Cm

du

dt
= gl(El − u) +

∑
i

∑
spk s

wi�(t − ts)

× exp

(
− t − ts

τsyn

)(
Erev

i − u
) + I ext. (A6)

We can now divide the right-hand side of [Eq. (A6)] by gtot =
gl + ∑

i g
syn
i and rearrange the terms in order to obtain

τeff
du

dt
= ueff − u, (A7)

with a new effective membrane time constant,

τeff = Cm

gtot
, (A8)

and effective leak potential,

ueff(t) = glEl + ∑
i g

syn
i (t)Erev

i + I ext

gtot(t)
. (A9)

This transformation is routinely used in studies of
conductance-based neurons (see, e.g., Ref. [14]). Here, we
have made the time dependencies explicit, since the following
HCS approximation will serve to eliminate t in the denomina-
tor.

APPENDIX B: THE HIGH-CONDUCTANCE STATE

In a first approximation, assuming a rapidly firing Poisson
background (νsyn → ∞), the total average conductance can
become arbitrarily large (〈gtot〉 → ∞), causing the membrane
potential to follow the effective potential nearly instanta-
neously (〈τeff〉 → 0). Equation (A9) can then be rewritten as

u ≈ ueff = glEl+
∑

i

〈
g

syn
i

〉
Erev

i +∑
i �g

syn
i Erev

i +I ext

〈gtot〉 + ∑
i �g

syn
i

,

(B1)

where

�g
syn
i = g

syn
i − 〈

g
syn
i

〉
(B2)

denotes the fluctuations of the synaptic conductances.
For a single Poisson source with rate νi connected to the

neuron by a synapse with weight wi and time constant τsyn,
the conductance course can be seen as a sum of independent
random variables, each of them representing the conductance
change caused by a single spike. In the limit of large νi ,
the central limit theorem guarantees the convergence of the
conductance distribution to a Gaussian, with moments given by

〈
g

syn
i

〉 =
∑
spk s

〈
wi�(t − ts) exp

(
− t − ts

τsyn

)〉

= lim
T →∞

〈N 〉
T

wi

∫ T

0
exp

(
− t

τsyn

)
dt

= wiνiτsyn, (B3)

and

Var
[
g

syn
i

] =
∑
spk s

Var

[
wi�(t − ts) exp

(
− t − ts

τsyn

)]

= lim
T →∞

〈N〉
{〈[

wi�(t − ts) exp

(
− t − ts

τsyn

)]2
〉

+
〈[

wi�(t − ts) exp

(
− t − ts

τsyn

)]〉2
}

= lim
T →∞

νiT

{
1

T
w2

i

∫ T

0
exp

(
−2

t

τsyn

)
dt

− 1

T 2

[∫ T

0
exp

(
− t

τsyn

)
dt

]}

= 1

2
w2

i νiτsyn, (B4)
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so the relative fluctuations of gsyn are of the order√
Var

[
g

syn
i

]
〈
g

syn
i

〉 =
√

1

2 νiτsyn
(B5)

and vanish in the limit of large firing rates.
This warrants an expansion of Eq. (B1) in �g

syn
i , ∀i.

Considering only the first-order term, we obtain

u(t) = I ext + glEl + ∑
i g

syn
i (t)Erev

i

〈gtot〉 , (B6)

which renders u simply a linear transformation of the synaptic
noise current J syn = ∑

i g
syn
i Erev

i .

APPENDIX C: DERIVATION OF THE EQUIVALENCE
TO AN OU PROCESS

From Eq. (A4), we can find that the synaptic noise J syn

obeys the first-order inhomogenous ODE,

dJ syn

dt
= −J syn

τsyn
+

∑
syn i

∑
spk s

�J
syn
i δ(t − ts), (C1)

where �J
syn
i = wiE

rev
i . This equation is highly reminiscent of

the ODE that defines the OU process:

dx(t) = θ [μ − x(t)]dt + σdW (t). (C2)

It is well-known that the PDF of the OU process,

f (x,t |x0) =
√

θ

πσ 2(1 − e−2θt )

× exp

{−θ

σ 2

[
(x − μ + (μ − x0)e−θt )2

1 − e−2θt

]}
,

(C3)

is the unique solution of the Fokker-Planck equation,

1

θ

∂f (x,t)

∂t
= ∂

∂x
[(x − μ)f ] + σ 2

2θ

∂2f

∂x2
, (C4)

with starting condition x0 := x(t = 0). In the following, we
prove that, under certain assumptions, the distribution of the
synaptic input J syn obeys the same Fokker-Planck equation.
To this end, we follow an approach similar to Ref. [15].

Consider the PDF of the synaptic input f (J syn,t). We
can use the Chapman-Kolmogorov equation to describe its
evolution after a short time interval �t as an integral over all
possible intermediate states J ′:

f (J syn,t + �t) =
∫ ∞

−∞
f (J syn,t + �t |J ′,t)f (J ′,t)dJ ′. (C5)

For a small enough �t , the probability of the occurrence
of multiple spikes within �t can be neglected. As incoming
spikes are assumed to be generated by Poisson processes, the
probability of a single spike occurring in �t is �t

∑
i νi . By

summing over the two possible histories of J syn within �t

(either a single incoming spike or no spike at all), we can use
Eq. (C1) to find

f (J syn,t + �t |J ′) =
[

1 − �t
∑

i

νi

]
δ

[
J syn − J ′ exp

(
− �t

τsyn

)]
+ �t

∑
i

νiδ

[
J syn− (

J ′ + �J
syn
i

)
exp

(
− �t

τsyn

)]
, (C6)

where νi represents the afferent firing frequency at the ith synapse. Plugging this into Eq. (C5) and integrating over J ′ yields

f (J syn,t + �t) =
(

1 − �t
∑

i

νi

)
exp

(
�t

τsyn

)
f

[
J syn exp

(
�t

τsyn

)
,t

]
+ �t

∑
i

νi exp

(
�t

τsyn

)
f

[
J syn exp

(
�t

τsyn

)
− �J

syn
i ,t

]
.

(C7)

We can now expand f (x,t + �t) up to first order in �t ,

f (J syn,t + �t) ≈ f (J syn,t) + ∂f (J syn,t + �t)

∂�t

∣∣∣∣
�t=0

�t, (C8)

and rearrange the terms to obtain

f (J syn,t + �t) − f (J syn,t)

�t
= ∂f (J syn,t + �t)

∂�t

∣∣∣∣
�t=0

=
{

−
∑

i

νi exp

(
�t

τsyn

)
f

[
J syn exp

(
�t

τsyn

)
,t

]
+

(
1 − �t

∑
i

νi

)
1

τsyn

{
exp

(
�t

τsyn

)
f

[
J syn exp

(
�t

τsyn

)
,t

]

+ exp

(
2

�t

τsyn

)
J syn

∂f
[
J syn exp

(
�t
τsyn

)
,t

]
∂J syn exp

(
�t
τsyn

)
}

+
∑

i

νi exp

(
�t

τsyn

)
f

[
J syn exp

(
�t

τsyn

)
− �J

syn
i ,t

]
+ (· · · )�t

}
�t=0

. (C9)
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By taking the limit �t → 0, we obtain

∂f (J syn,t)

∂t
= 1

τsyn

∂

∂J syn
[J synf (J syn,t)] +

∑
i

νi

[
f

(
J syn − �J

syn
i ,t

) − f (J syn,t)
]
. (C10)

In the limit of small synaptic weights (i.e., �J
syn
i → 0), we can expand the second term on the right-hand side up to the second

order in �J
syn
i . This yields, after some rearrangement,

∂f (J syn,t)

∂t
= 1

τsyn

∂

∂J syn

[(
J syn −

∑
i

νi�J
syn
i τsyn

)
f (J syn,t)

]
+

∑
i νi�J

syn
i

2

2

∂2f (J syn,t)

∂J syn2 , (C11)

which is the exact equivalent of the Fokker-Planck equation
of the OU process [Eq. (C4)]. Since u(t) is only a linear
transformation of J syn(t), it can also be approximated by an
OU process in the limit of large input frequencies and small
synaptic weights, with Eqs. (B6) and (C11) giving the specific
time constant, mean value, and variance:

θ = 1

τsyn
, (C12)

μ = I ext + glEl + ∑
i νiwiE

rev
i τsyn

〈gtot〉 , (C13)

σ 2

2
=

∑
i νi

[
wi

(
Erev

i − μ
)]2

τsyn

2〈gtot〉2
. (C14)

We conclude this section with two important notes. First,
for the above methodology to be generally applicable, we must
be able to take the limit �J

syn
i → 0 for arbitrary first and

second moments of f (J syn,t) without modifying them. This
is possible if at least one excitatory and one inhibitory input
is present, which then give us two degrees of freedom with a
proper choice of νexc → ∞ and ν inh → ∞. Second, all higher
moments (3 and above) need to vanish in the abovementioned
limit. This has been shown to also be the case under the above
conditions [31].

APPENDIX D: DERIVATION OF THE
ACTIVATION FUNCTION

We can distinguish between two firing modes of the neuron.
The first mode can be classified as “burst spiking” and occurs
when multiple spikes occur in rapid succession with an
expected ISI of 〈�tk〉 = τref + 〈t s+1

k − t sk 〉s = τref + τ b
k , where

τ b
k represents the average drift time from the reset to the

threshold potential following the kth refractory period within
a burst. In this case, for each spike within a burst,

ueff(ts) � ϑ, (D1)

and also, for all but the last spike,

ueff(ts + τref) � ϑ. (D2)

The second mode appears between such bursts, where the
membrane potential evolves freely in the subthreshold regime.
If we define, just like in the abstract model, that the kth neuron
is in the state zk = 1 for a duration τon = τref following a spike,

we can write

p(z = 1) =
∑

n Pnnτref∑
n Pn

(
nτref + ∑n−1

k=1 τ b
k + Tn

) , (D3)

where Pn represents the distribution of burst lengths (condi-
tioned on the existence of the first spike) and Tn is the mean
time interval between the end of a burst (i.e., the endpoint of
its last refractory period) and the next spike. The variables
Pn, Tn, and τ b

k depend on all neuron and noise parameters,
but for calculating the activation function (Fig. 2 in the main
manuscript and Fig. 6 in the Appendix), we only vary ū.

We can now calculate both Pn and Tn iteratively. The idea
behind this approach is to propagate the membrane potential
PDF from spike to spike within a burst and cut off the irrelevant
parts for a particular burst length n. We denote the spike times
within a burst of length n by t0, . . . ,tn−1 and the endpoint
of such a burst by tn := tn−1 + τref . For brevity, we also use
ui := u(ti). Assuming a first spike at some time t0 (u0 :=
u(t0) = ϑ), a “burst” of length n = 1 requires a subthreshold
free membrane potential after the first refractory period (u1 :=
u(t0 + τref) < ϑ). This occurs with probability

P1 : = p(u1 < ϑ |u0 = ϑ)

=
∫ ϑ

−∞
du1p(u1|u0 = ϑ)︸ ︷︷ ︸

I1

, (D4)

where p(ui+1|ui) := f (u,τref|ui), which was defined in
Eq. (C3). On average, the neuron then stays in the subthreshold
regime for a period equal to the mean first passage time from
u1 to ϑ , so the mean duration of the time interval until the
onset of the next burst can be expressed as

T1 =
∫ ϑ

−∞
du1p(u1|u0 = ϑ)〈T (ϑ,u1)〉. (D5)

The first-passage time problem of the OU process has
often been discussed [32]. While no closed-form expres-
sion for the distribution of first-passage times T (b,a) =
inf t � 0 : x(t) = b|x(0) = a is known, its moments can be
computed analytically [18]. In particular, the mean first
passage time reads

〈T (b,a)〉

= θ

σ

√
π

2

∫ b

a

dx exp

[
(x − μ)2

2σ 2

][
1+erf

(
x − μ√

2σ

)]
. (D6)
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A burst of n = 2 spikes can only occur when the effective
membrane potential lies above the spiking threshold (u1 � ϑ)
after the first refractory period and below after the second
(u2 < ϑ). This makes P2 and T2 recursive functions of P1:

P2 = p(u2 < ϑ,u1 � ϑ |u0 = ϑ)

= p(u1 � ϑ |u0 = ϑ) p(u2 < ϑ |u1 � ϑ,u0 = ϑ)

[Eq. (D4)]= (1−I1)︸ ︷︷ ︸
=1−P1

∫ ∞

ϑ

du1p(u1|u1 �ϑ)

[∫ ϑ

−∞
du2p(u2|u1)

]
︸ ︷︷ ︸

I2

(D7)

T2 =
∫ ∞

ϑ

du1p(u1|u1 � ϑ)

×
[∫ ϑ

−∞
du2p(u2|u2 > ϑ,u1)〈T (u2,ϑ)〉

]
, (D8)

where p(ui |ui � ϑ) is a shorthand notation for p(ui |ui �
ϑ,ui−1 � ϑ, . . . ,u1 � ϑ,u0 = ϑ). In particular, this represents
a renormalization of the PDF of the effective membrane
potential to values above the spiking threshold after i refractory
periods.

We can now continue this recursion up to an arbitrary burst
length and write

Pn = p(un < ϑ,un−1 � ϑ, . . . ,u1 � ϑ |u0 = ϑ)

= p(u1 � ϑ |u0 = ϑ)

×p(un < ϑ,un−1 � ϑ, . . . ,u2 � ϑ |u1 � ϑ,u0 = ϑ)
[Eq. (D4)]= (1 − I1) p(u2 � ϑ |u1 � ϑ,u0 = ϑ)

×p(un < ϑ,un−1 � ϑ, . . . ,u3 � ϑ |
× |u2 � ϑ,u1 � ϑ,u0 = ϑ)

[Eq. (D7)]= (1 − I1)(1 − I2) p(u3 � ϑ |u2 � ϑ,u1 � ϑ,u0 = ϑ)

×p(un < ϑ,un−1 � ϑ, . . . ,u4 � ϑ |
× |u3 � ϑ, . . . ,u1 � ϑ,u0 = ϑ)

=
n−1∏
i=1

(1 − Ii) p(un < ϑ |un−1 � ϑ, . . . ,u1 � ϑ,u0 = ϑ)

(D9)

=
(

1 −
n−1∑
i=1

Pi

)

×
∫ ∞

ϑ

dun−1p(un−1|un−1 � ϑ)

[∫ ϑ

−∞
dunp(un|un−1)

]
︸ ︷︷ ︸

In

(D10)

Tn =
∫ ∞

ϑ

dun−1p(un−1|un−1 � ϑ)

×
[∫ ϑ

−∞
dunp(un|un < ϑ,un−1)〈T (un,ϑ)〉

]
. (D11)

The transition from a product to a sum between Eqs. (D9) and
(D10) requires the identity

n−1∏
i=1

(1 − Ii) = 1 −
n−1∑
i=1

Pi, (D12)

which can be easily shown by induction from Pn =
In

∏n−1
i=1 (1 − Ii) [Eq. (D9)] and P1 = I1 [Eq. (D4)]. Since

limn→∞ Pn = 0, one can stop the recursion at some small
enough Pn.

What remains to be calculated is the average time to
threshold τ b

k within a burst that follows the kth refractory
period. Since we assume a HCS, we are looking at a regime
in which τeff � τsyn. Therefore, we can assume ueff to be

approximately unchanged during the short time interval τ b
k

(adiabatic approximation, see also Ref. [17]). For a fixed uk ,
the jump time can be easily calculated from Eq. (A7):

τ b
k (uk) = ln

(
� − uk

ϑ − uk

)
. (D13)

The average jump time can then be obtained by integrating over
all suprathreshold values of uk , which in turn have probabilities
that follow from integrating over all suprathreshold values of
uk−1:

τ b
k =

∫ ∞

ϑ

duk ln

(
� − uk

ϑ − uk

) ∫ ∞

ϑ

duk−1p(uk|uk > ϑ,uk−1).

(D14)

With Eqs. (D3), (D10), (D11), (D14), and (D6), one could
now predict the activation function of an LIF unit in an extreme
high-noise regime (τeff → 0). We can, however, generalize
our approach by taking the finite nature of the effective time
constant into account.

If we go back to Eq. (A7) and leave τeff = C/〈gtot〉 small but
finite, we can still perform all the remaining approximations,
but are required to modify Eq. (B6):

τeff u̇(t) = I ext + glEl

〈gtot〉 + J syn(t)

〈gtot〉 − u(t). (D15)

Together with Eq. (C1), we now have a system of first-order
ODEs, which can be solved analytically by standard techniques
(variation of constants). The PSPs are then no longer a linear
transformation of the exponentially shaped PSCs, but rather
α-shaped (more precisely, a difference of exponentials):

us(t) = �(t − ts)A
(e− t−ts

τeff − e
− t−ts

τsyn )

τeff − τsyn
, (D16)

with A = wi (Erev
i −〈ueff〉)τsyn i

〈gtot〉 . This shape causes a lower PSP peak
than in the case of exponential PSPs, decreasing the overall
width of the membrane potential distribution. Intuitively
speaking, this results in a horizontal shift and compression
of the activation function.

More recently, analytical treatments of these phenomena
have been proposed [33]. In these approaches, large membrane
time constants (equivalent to a long τeff) and small synaptic
time constants are usually considered. However, Eq. (D16) is
symmetric in τeff and τsyn, so the same argument applies to our
case as well, but the two time constants need to be switched. It
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is, for example, possible to correct the first passage time from
the reset to the threshold potential by using an expansion in√

τ ′/τ (with τ ′ and τ being the smaller and the larger of the
two time constants, respectively) [16]:

〈T (ϑ,u)〉 = τ
√

π

∫ ϑeff −μ

σ

u−μ

σ

dx exp(x2)[erf(x) + 1], (D17)

with μ and σ 2 the first two moments of the free membrane
potential distribution and an effective threshold,

ϑeff ≈ ϑ − ζ

(
1

2

)√
τ ′

2τ
σ, (D18)

in which ζ denotes the Riemann zeta function. In our particular
case, the expansion is done in

√
τeff/τsyn, so τ ′ = τeff and

τ = τsyn. With this approximation, we assume that u converges
from ρ to ueff in negligible time after it is released from
the refractory state. Afterwards, its convergence to ueff is
determined by Eq. (A7). Note how Eq. (D17) is equivalent to
a change of the integration variable and limits in the original
equation [Eq. (D6)] for the first passage time.

APPENDIX E: TRANSLATION OF SYNAPTIC WEIGHTS

A sufficient condition for a single neuron to sample from
the correct conditional distribution is given by its activation
function:

p(zk = 1|z\k) = σ (vk). (E1)

The relationship between the abstract model and the LIF
implementation is defined by the lateral dilation α and relative
offset ū0

k of the LIF activation function:

p(zk = 1|z\k) = σ

(
ūk − ū0

k

α

)
. (E2)

The parameters α and ū0
k can be determined by fitting Eq. (E2)

either to simulation results or to the theoretical prediction
[Eq. (D3)]. As a consequence, also synaptic weights need to
be rescaled by the factor α. Additionally, the difference in PSP
shapes needs to be taken into account.

We choose a translation rule in which we set the LIF
synaptic weights wij such that the area under a PSP [Eq. (D16)]
during the refractory state of the corresponding afferent neuron
(i.e., for a duration τref) is equal to Wij τref α:

Wkjτrefα =
∫ τref

0

wkj

(
Erev

kj − 〈ueff〉
)
τsyn

〈gtot〉

×
exp

(− t−ts
τeff

) − exp
(− t−ts

τsyn

)
τeff − τsyn

dt

= wkjτsyn

〈gtot〉

(
Erev

kj − μ
)

τeff − τsyn

× [τsyn(e− τref
τsyn − 1) − τeff(e

− τref
τeff − 1)]. (E3)

By setting τref = τsyn, we obtain the mapping between the
abstract and LIF synaptic weight domains:

Wkj = 1

αCm

wkj

(
Erev

kj − μ
)

1 − τsyn

τeff

× [τsyn(e−1 − 1) − τeff(e
− τsyn

τeff − 1)]. (E4)

Additionally, depressing short-term plasticity [22] has been
applied to attenuate the amplitudes of consecutively arriving
α-shaped PSPs from a network neuron and emulate renewing
synapses. In particular, within the Tsodyks-Markram short-
term plasticity model [22], the synaptic efficacy parameter
and recovery time constant have been chosen as USE = 1 and
τrec = τsyn, respectively.

Analogously to the weights, the biases can be determined
from the condition σ (bk) = σ ([ūb

k − ū0
k]/α) in the absence of

recurrent activity, i.e., I rec
k = 0.

APPENDIX F: PROBABILISTIC MODEL FOR
DEMONSTRATION OF INFERENCE

We define a joint model p( y,z) over real-valued input nodes
y = (y1, . . . ,yK ) and binary latent variables z = (z1, . . . ,zK )
as sketched in Fig. 4(a) of the main manuscript. The real-valued
variables yk encode intensities of the input pixels. The latent
variables zk correspond to neurons in the network. Our aim is
to demonstrate that the network can sample from the posterior
distribution p(z| y).

For this example, we have chosen a particularly simple
likelihood function, namely a Gaussian emission model with
variance σ 2 = 1 and mean values μ = ± 1

2 . From the graphical
model we identify the structure of the joint distribution,

p( y,z) = p(z)
K∏

k=1

p(yk|zk), (F1)

where p(z) is a Boltzmann distribution and the likelihood is
defined by

p(yk|zk) = N (yk; μ = 1/2)zkN (yk; μ = −1/2)1−zk , (F2)

which is equivalent to

log p(yk|zk) = zk[logN (yk; 1/2) − logN (yk; −1/2)]

+ logN (yk; −1/2)

= zkyk + logN (yk; −1/2), (F3)

using normal distributions

N (yμ[; μ]) := exp[−(y − μ)2/2] /
√

2π, (F4)

with unit variance. The posterior of this model reads

p(z| y) = p( y,z)

p( y)

= exp

(
1

2
zTW z + zT (b + y)

)/
Norm, (F5)

where the normalizing constant depends on the input y,
but is independent of the network variables and thus
defines a Boltzmann distribution over z for any y. In
particular, we identify the abstract membrane potential
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TABLE I. Neuron parameters used for the simulations in the main
manuscript.

Cm 0.1 nF Membrane capacitance
gl 5 nS Leak conductance
El −65 mV Leak potential
ρ −53 mV Reset potential
Erev

exc 0 mV Excitatory reversal potential
Erev

inh −90 mV Inhibitory reversal potential
ϑ −52 mV Threshold voltage
τsyn 10 ms Synaptic time constant
τref 10 ms Refractory time constant

vk = bk + yk + ∑
j Wkj zj for sampling from p(z| y) by

means of a spiking network.

APPENDIX G: SIMULATION PARAMETERS

All simulations have been performed with the NEURON
simulation package [34] and the PyNN API [35], with a time
step of dt = 0.01 ms. For the LIF neuron, we have chosen the
following parameters (Table I; compare with, e.g., Ref. [36]
for parameters fitted to experimental data):

Synaptic noise was implemented as bombardment by
inhibitory and excitatory Poisson stimuli with rates νinh =
νexc = 5000 Hz. The excitatory synaptic weight for the noise
stimuli was set to wnoise

exc = 0.0035 μS. The inhibitory weight
wnoise

inh was adjusted as to yield p(zk = 1) ≈ 0.5 with no
current stimulus present. For above parameters, this happens
at an average free membrane potential of ū = −55 mV. This
determines wnoise

inh according to∣∣∣∣Erev
inh − ū

Erev
exc − ū

∣∣∣∣ = wnoise
exc

wnoise
inh

. (G1)

APPENDIX H: THE ACTIVATION FUNCTION OF LIF
NEURONS IN A SPIKING NOISY ENVIRONMENT

(FIG. 2 IN MAIN MANUSCRIPT)

In order to sweep through the activation function, the
external current I ext was varied. However, in order to facilitate
a comparison with the logistic activation function of the
abstract model, we have represented p(z = 1) as a function
of ū instead. The latter is equivalent to the mean μ of the
corresponding Ornstein-Uhlenbeck process, with Eq. (C13)
allowing a direct translation between I ext and ū.

The abscissa values in Fig. 2(d) in the main manuscript
represent averages of the free membrane potential obtained
from 10 simulation runs with a total duration of Tsim = 100 s
and firing threshold θ set to Erev

exc = 0 mV. The deviations from
the theoretical prediction [Eq. (D3)] are smaller than the size
of the symbols, therefore no error bars are shown.

The ordinate values and standard errors were calculated
from the simulated spike train data according to

p(z = 1) = 1

N

N∑
i=1

pi, (H1)

s =
√√√√ 1

N − 1

N∑
i=1

[pi − p(z = 1)]2, (H2)

with pi = N
spk
i τon

Tsim
being the fraction of time spent in z = 1 and

N
spk
i representing the total number of spikes in the ith out of

N = 10 performed simulations. Since the respective standard
errors of the mean are smaller than the size of the symbols, no
error bars are shown.

APPENDIX I: SAMPLING VIA RECURRENT NETWORKS
OF LIF NEURONS (FIGS. 3 AND 4 IN MAIN MANUSCRIPT)

The simulated network consists of K = 5 neurons with a
synaptic weight matrix W and a bias vector b (both in the
Boltzmann domain). All entries were drawn from a β distribu-
tion B(0.5,0.5) and mapped linearly to the interval [−0.6,0.6].
More specifically, bk,Wkj ∼ 1.2[B(0.5,0.5) − 0.5]. The
parameters and mapping of the beta distribution were
chosen with the intent of generating diverse distributions,
spanning multiple orders of magnitude. The bias bk , de-
fined in the Boltzmann domain, determines the probability
p(zk = 1|z\k = 0) for neuron k. In the LIF domain, the
probability p(zk = 1|z\k = 0) = 0.5 corresponds to the mean
free membrane potential ū0

k . Then, a nonzero bias can be
described in the LIF domain as a linear shift from ū0

k

to a mean membrane potential ūb
k . This yields the linear

transformation

bk =(
ūb

k − ū0
k

)
/α, (I1)

where α represents the scaling factor between the two domains.
Both quantities ū0

k and α can be determined from the predicted
activation function of a single LIF unit. The first quantity
constitutes the inflection point of the activation function [at
p(zk = 1|z\k = 0) = 0.5], the latter follows from the slope of
the function.

By computing ūb
k , we can map any bias bk of a single unit

of the Boltzmann machine onto a yet unconnected LIF neuron.
In simulations, ūb

k was established by injecting a temporally
constant external current I k

ext according to

I ext
k =(

αbk + ū0
k

)〈gtot〉 − glEl −
∑

i

νiw
noise
i Erev

i τsyn. (I2)

In order to achieve sampling network dynamics in the
LIF domain faithful to those displayed by an equivalent
Boltzmann machine, the Boltzmann weight matrix W was
translated into LIF network weights wij according to Eq. (E4).
Thus, superposing PSPs saturate the membrane potential,
approximating the constant amplitude of a PSP in the abstract
neuron model.

For Fig. 3(b) in the main manuscript, this setup of a
random Boltzmann machine was simulated N = 10 times
with different random seeds for the Poisson background for
a duration of Tsim = 10 s. The red bars show the analytically
computed target joint distribution pB(z). The blue bars depict
the network distribution pN(z), calculated from the firing
activity of the simulated LIF network set up to match pB(z).
The means and error bars have been calculated as in Eqs. (H1)
and (H2), respectively.

The above simulations were repeated with a significantly
longer duration in order to study systematic deviations due to
the LIF implementation. Figure 3(c) in the main manuscript

042312-11



PETROVICI, BILL, BYTSCHOK, SCHEMMEL, AND MEIER PHYSICAL REVIEW E 94, 042312 (2016)

shows the distance between the target distribution pB(z) and
its LIF network representation pN(z) in form of the Kullback-
Leibler divergence,

DKL(pN||pB) = 〈log[pN(z) / pB(z) ]〉pN(z). (I3)

This estimate has been taken for one set of parameters (W ,
b) for ten independent trials (thin lines) in an LIF network at
integration times T : 0 � T � Tsim = 106 ms. The red dashed
line displays the averaged DKL(pN||pB) for the abstract net-
work model with identical parameters (W , b). The decrease of
DKL(pN||pB) for longer integration times indicates the increas-
ing precision of the sampling network over time. Eventually,
the DKL(pN||pB) converges for the LIF network to a nonzero
value, reflecting small systematic errors. Figure 3(d) in the
main manuscript shows the distribution of DKL(pN||pB) values
for 100 randomly drawn Boltzmann machines emulated by LIF
networks, evaluated from a single run of Tsim = 106 ms each.

Figure 4 was generated in the same way as Fig. 3, except
for the network size and weight distribution.

APPENDIX J: DEMONSTRATION OF PROBABILISTIC
INFERENCE (FIG. 5 IN MAIN MANUSCRIPT)

We trained a fully visible, fully connected Boltzmann
machine to store three handwritten digits (0, 3, 4) that were
taken from the MNIST data set [37] and were scaled down
to 12 × 12 pixels. The pixel intensities of these patterns
(ranging from 0 to 1) were linearly scaled to an activation
between 0.05 and 0.95, defining the target statistics 〈zk〉T and
〈zk zj 〉T for the Boltzmann machine. Then, external currents
I b
k and synaptic weights wkj were optimized via the update

rules �Ib
k ∝ 〈zk〉T − zk and �wkj ∝ 〈zk zj 〉T − zk zj , with

samples z obtained through sampling from an LIF network
set up with synaptic noise and neuron parameters as described
above.

The recurrent connections, defined by wkj , induce synaptic
currents I rec

k in addition to the noise currents I noise
k . Addi-

tionally, each neuron’s mean effective membrane potential
Eq. (C13) is shifted by external currents of the trained
quantities I b

k as well as input currents I
y

k . The latter encode
observations y, which are defined in the context of the
probabilistic model described in AVI. Hence, the total received
current of neuron k in the network amounts to

Ik = I rec
k + I noise

k + I b
k + I

y

k . (J1)

The resulting samples z(t) displayed in subplot Figs. 5(c)
and 5(d) were taken for 4000 ms, after a burn-in time that
ensured that the network had converged to its equilibrium
distribution.

1. Figure 5(c), main manuscript: Sampling from the prior

From the probabilistic model it follows that p(z| y = 0) =
p(z). This means that the LIF network will sample from
the prior when I

y

k = 0, ∀k. The figure makes use of two
projections of network states z(t) to illustrate the sampled
distribution:

(1) Star plot: In order to illustrate the 12 × 12-dimensional
network states z(t), a two-dimensional linear projection in a

star plot has been chosen (blue dots). The axes indicate the
three basis vectors B, representing pixel intensities 〈zk〉T of
the digits (0, 3, 4),

〈zk〉034
T = (B0,B3,B4)T, (J2)

with a total intensity normalization ||Bi || =
√∑

j |Bi
j |2=1.

The network states z(t) acquired from the simulation are
projected onto this basis:

z034(t) = (B0z(t),B3z(t),B4z(t))T. (J3)

This three-dimensional vector is then projected onto a two-
dimensional plane in coordinates

zproj(t) =
(

sin
(
φ0

B

)
sin

(
φ3

B

)
sin

(
φ4

B

)
cos

(
φ0

B

)
cos

(
φ3

B

)
cos

(
φ4

B

)
)

z034(t), (J4)

with (φ0
B,φ3

B,φ4
B) = (0, 2 π

3 , 4 π
3 ) indicating the directions of the

normalized basis vectors.
These linear projections zproj(t) of network states z(t) are
used to illustrate similarity of states as distance in the two-
dimensional plane. In Fig. 5(c) in the main manuscript, a
network evolution time of 4000 ms is shown, samples z(t)

taken every 2 ms; i.e., in total 2000 projected states are
displayed. We ensured in longer simulations that the total
simulation runtime is sufficient to represent the distribution
under the mixing of the Markov chain.
The significant clustering of the network states around the
directions of the arrows indicates the proximity to the target
states (0, 3, 4) for a majority of time.
The transitions of the network states z(t) are depicted as a
red trajectory in the star plot. This trajectory connects 100
projected network states within a time interval of 200 ms,
demonstrating the time evolution of zproj(t).

(2) Snapshots: The squared color maps on the time axis
display the averaged pixel intensity of the network in a time
window 25 ms:

z̄k(t) = 1

25 ms

∫ t+12.5 ms

t−12.5 ms
z

(t ′)
k dt ′. (J5)

The equidistant time intervals between these snapshots were
taken every 25 ms within the time frame of the above
mentioned red trajectory of 200 ms.

In summary, the network spends most of the time in distinct
modes (digits) and only little time in “blurred” states that could
not be clearly assigned to one digit. Furthermore, it spends an
approximately equal amount of time in each mode, indicating
that the prior p(z) does not favor one of the three digits.

2. Figure 5(d), main manuscript: Sampling from the posterior

Incomplete and ambiguous input y was provided to the
network by setting four of the inputs different from zero: yk 
=
0 for k ∈ I with I denoting an index set and |I| = 4. These
inputs were chosen at the center of the image where digits 3 and
4 both have black pixels, while digit 0 is white. More precisely,
I = {77,78,79,80} when pixels are indexed row-wise starting
from the top-left corner. In the LIF implementation, positive
values yk correspond to positive currents I

y

k , as specified in
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FIG. 6. Comparison of our prediction of the activation function [Eq. (D3)] to simulation data, as well as to the predictions given by Refs. [16]
and [17], for several parameter sets. (a) Standard parameter set as given in Table I. This figure shows the same curves as Fig. 2(b) in the main
manuscript. (b) Same as described for (a) but with quadrupled membrane capacitance Cm and one quarter of the leak conductance gl , input
rates νexc,inh and weights wexc,inh. This parameter set is identical to the one used for the top left corner of Fig. 7 and has the effect of slowing
the membrane, i.e., increasing τeff by a factor of 16. (c) Same as described for (a) but with a decreased synaptic time constant τsyn = 3 ms. The
prediction from Ref. [16] is improved, since the correlations in the pre- and post-refractory effective membrane potential are smaller in this
scenario. (d) Same as described for (a) but with an increased synaptic time constant τsyn = 30 ms. The prediction from Ref. [16] deteriorates
due to the longer-range membrane potential autocorrelation. Conversely, the prediction from Ref. [17] improves, since the refractory time
becomes less important. (e) Same as described for (a) but with a very short refractory time τref = 1 ms. Here, we enter the parameter range
where Ref. [17] provides good predictions. (f) Same as described for (a) but with the input rates νexc,inh and weights wexc,inh decreased by a
factor of 10, thereby slowing the membrane considerably (imperfect HCS). Additionally, we have chosen a large reset-to-threshold distance of
ϑ − � = 10 mV. In this scenario, the τ b

k -term in Eq. (D3) becomes dominant and the activation function departs from the logistic shape that it
has in the HCS.

Eq. (I2). We set I
y

k = 0.831 nA for the four nonzero inputs,
inducing an effective bias bk + yk by injecting a total current
I b
k + I

y

k . For the plot, the same projections of network states
were used as in Fig. 5(c) in the main manuscript.

Under the incomplete input, the network spends only little
time in the 0-mode or “blurred” states, while the equilibrium
distribution exhibits two distinct modes in the 3- and 4-
directions. Thus, the posterior reflects both the almost certain
conclusion that “the input is not a zero” and the uncertainty that
“the input could either be a three or a four.” In particular, the
network response is well-suited for further processing (e.g.,
by other cortical populations or in a technical application). For
instance, the network states could be integrated by a linear
classifier to recognize the digit class.

APPENDIX K: PREDICTION OF THE ACTIVATION
FUNCTION FOR VARIOUS PARAMETER SETS

We have used Eq. (D3) for predicting the activation
functions of LIF neurons in the HCS regime. In this regime, the
refractory time τref and the synaptic time constant τsyn become
the dominant time constants:

τeff � τref ≈ τsyn. (K1)

So far, we have compared our prediction to simulation data,
as well as to two other predictions by Refs. [16] and [17]
in Fig. 2(b) of the main manuscript. Here, we depart from
these assumptions and show in Fig. 6 that our prediction
holds for several different parameter sets. In particular, the
predictions from Refs. [16] and [17] are only valid when
either synaptic time constants [Fig. 6(c)] or refractory times
[Fig. 6(e)] become shorter.

APPENDIX L: VALIDITY OF THE LIF SAMPLING
FRAMEWORK FOR VARIOUS PARAMETER SETS

For our various network simulations (Figs. 3–5 in the
main manuscript) we have used a set of biologically plausible
parameters from Ref. [36] (see also Appendix G: Simulation
parameters). In particular, we have used high input noise rates
and weights in order to achieve the HCS, as well as a small
distance between firing threshold and reset, in order to reduce
τ b
k , during which a neuron falsely encodes the state z = 0.

Furthermore, we have assumed τref = τsyn. Figure 7 shows
that these are by no means strict constraints.
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FIG. 7. Sampling with LIF neurons over a broad range of relevant model parameters. All plots depict the Kullback-Leibler divergence
between the sampled distribution (with a certain set of parameters) and the target distribution, which is identical to the one used in Fig. 3(b) in
the main manuscript. (a) Sweep over neuron size and leakage, as well as background input parameters. The axes represent multiplicative scaling
values for four parameters: background (Poisson) synaptic weights wexc,inh and firing rates νexc,inh on the abscisa, neuron capacitance Cm and
leak conductance gl on the ordinate. The parameter values used throughout the main manuscript (see also Appendix G: Simulation parameters)
therefore have the coordinates (1,1). The network simulation run times were chosen as Tsim = 106 ms. As expected, the large neuron and weak
noise scenario (top left square) does not permit accurate sampling, as the activation function is no longer logistic [see also Fig. 6(f)]. In general,
the plot shows that good sampling quality can be achieved for any neuron capacitance and leak as long as the background noise is strong
enough (HCS). (b) Sweep over the ratio of the synaptic and refractory time constants. The best sampling performance is, indeed, achieved
for τsyn ≈ τref , but the network still produces good approximations of the target distribution when the two time constants are not precisely
identical. All DKL data points result from 20 simulations with run times of Tsim = 105 ms each. The error bars represent the standard error of
the mean. (c) Effect of an increased distance from reset to threshold potential. An increase in ϑ − � causes a gradual decay of the sampling
quality, since the membrane requires additional time to reach a suprathreshold ueff when the refractory period is over. This can, in principle,
be accommodated by defining a larger time window τon during which the neuron is considered to encode the state z = 1. Nevertheless, in an
HCS, the effective time constant can be low enough to render the threshold-to-reset distance irrelevant.
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