
PHYSICAL REVIEW E 94, 042306 (2016)

Population dynamics, information transfer, and spatial organization in a chemical reaction network
under spatial confinement and crowding conditions
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We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical
network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction
system has been “extended” and considered as a prototype reaction-diffusion system. Our results are potentially
relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive
cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization
of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work
makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in
vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the
possible presence of molecular species in low number copies cannot be averaged out.
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I. INTRODUCTION

Biochemical networks in vivo are typically open to the
exchange of energy and matter with the surrounding environ-
ment [1–4]. They often contain autocatalytic steps [5–9] and
their dynamics tends to be strongly influenced by thermal and
intrinsic noise [10,11], macromolecular crowding, and spatial
confinement [12–18]. In this study we investigate by means
of an extended set of Brownian dynamics simulations how
the dynamics of a generic chemical network is affected by
spatial confinement and particle crowding [12,13,16–18]. The
reaction-diffusion system considered in this study is based on
the Willamowski-Rossler (WR) chemical network [19] [see
Fig. 1(a)]; a nonlinear, continuous-time minimal model for
chemical chaos based on first- and second-order chemical
reactions. The WR network contains three autocatalytic steps
involving species A, B, and C and is thermodynamically
open [1–4]. The rate equations defining the original imple-
mentation of the model [19] display a rich and complicated
dynamics comprising fixed point, limit cycle, and chaotic
attractors. The WR network has been previously studied via de-
terministic and nonspatial stochastic simulation methods [20–
25] but never as a stochastic reaction-diffusion system where
crowding and spatial confinement are explicitly taken into
account.

In this study we investigate the effects of spatial confine-
ment and crowding on a minimal version of the WR network
(MWR) (see Fig. 1(b) and Ref. [25]) using hard-sphere [26,27]
Brownian dynamics simulations integrating chemical reactiv-
ity [28,29]. We fix the population numbers for species E1,
E2, E3, P1, and P2 (consequently the rates k1, k3, and k5

become pseudo-first-order) to make the chemical network
thermodynamically open. The following chemical reactions
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describe the MWR system used in our simulations [25] [see
also Fig. 1(a)]:

Ē1 + A
k1−⇀↽−
k−1

2A, (1a)

A + B
k2−→ 2B, (1b)

A + C
k4−→ �P 2, (1c)

Ē2 + B
k3−→ �P 1, (1d)

Ē3 + C
k5−⇀↽−
k−5

2C. (1e)

The main assumption in the MWR system [19,25] is
that three of the backward reaction rate constants shown in
Fig. 1(a), namely k−2, k−3, and k−4, are much smaller than their
forward counterparts and, hence, can be neglected. The MWR
system is composed of two main subsystems: a Lotka-Volterra
oscillator [30–32] involving species A and B and a chemical
switch [20] that couples the Lotka-Volterra component to
species C through species A.

Similarly to the “full” WR network, the MWR rate
equations derived from the set of chemical reactions (1a)–(1e)
display a diverse dynamical behavior comprising fixed point,
limit cycle, and chaotic attractors [19,25].

We employ various information theory (IT) functionals
and (spectral) graph theory to quantify the effects of con-
finement and crowding on the population dynamics, transfer
of information, and spatial organization within the MWR
network. Our results show that while the effects of a variable
container volume are overall linear, the influence of a variable
number of crowders is not immediately quantifiable in a simple
analytical way and translates differently to the three different
species in the MWR network. Our analysis reveals a number
of relevant details about the dynamical nature of the MWR
network that are not accessible to simpler models which do not
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consider excluded volume effects, spatial inhomogeneity, and
the particle nature of the chemical system under consideration.

We believe that modeling techniques based on Brownian
dynamics simulations integrating chemical reactivity could
be, for example, particularly appealing in the theoretical and
computational study of primitive cellular units or protocells;
their synthesis, their stationary dynamics, and their role in
the chemical origin of life [4,8,9,33–41]. Another possible
application for “reactive” Brownian models relates to the study
of gene regulatory networks and in particular of synchronized
genetic oscillators [42–45] where chemical species responsible
for both the activation and the repression of gene activity
diffuse between neighboring cells and interact with specific
receptors on their surface.

More generally, we make the case for a more widespread
development and use of spatial stochastic simulation meth-
ods of biochemical networks in vivo that explicitly take
into account confinement and macromolecular crowding
[12,46–53].

II. METHODS

All three autocatalytic species A, B, and C are spatially
confined within a spherical container, E1 and E3 catalyze the
synthesis of A and C, respectively, whereas E2 catalyzes the
degradation of B. P1 and P2 are the products of reactions (1d)
and (1c), respectively, and they get instantaneously eliminated
from the reaction pool, i.e., their constant population number
is zero. The constant population numbers of E1, E2, and
E3 and the instantaneous elimination of P1 and P2 lead to

FIG. 1. Schematic view of the Willamowski-Rossler chemical
network. (a) The full version. (b) The minimal version analyzed in this
study obtained by setting k−2 = k−3 = k−4 = 0. In red we highlight
the Lotka-Volterra component of the network [19,25]. The overbar
on species E1, E2, and E3 indicates that the concentrations of those
species are constants and the diagonal segment crossing P1 and P2

indicates that those species are instantaneously eliminated from the
system (see Sec. II for details).

a biochemical network composed of A, B, and C which is
spatially enclosed and thermodynamically open, i.e., it ex-
changes matter and energy with the surrounding environment
by means of three sources (E1, E2, and E3) and two sinks (P1

and P2). The constant values of E1,E2,E3 are incorporated
into the pseudo-first-order rates k1,k3,k5, respectively (see
Fig. 1).

The different chemical species in the MWR system are
modeled as reactive, Brownian hard spheres confined in a
spherical, hard container. The details of the Brownian integra-

FIG. 2. Population time series (partial time windows) obtained each from a single trajectory of our Brownian dynamics simulations of the
MWR network with kset3 parametrization. (a) Population time series for systems with varying volume (radii varying from 0.4 to 0.65 μm).
(b) Population time series for systems with varying number of crowders and with constant container volume. The radius of the spherical
container is R = 0.4 μm.
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FIG. 3. Average population values for species A [(a) and (b)], B [(c) and (d)], and C [(e) and (f)] with parametrizations kset1, kset2, and
kset3. (a), (c), and (e) The average populations are plotted against the volume of the spherical container, no inert crowders are present. The
average population of the reactive species grows linearly with the volume of the spherical container. (b), (d), and (f) The average populations
are plotted against the number of inert crowders. A slight decrease in the average population is observed when the number of inert crowders
within a spherical container of radius R = 0.4 μm is increased from 0 to 8000. The presence of the inert crowders affects differently the three
chemical species in the MWR network.

tor used in our simulations can be found in Refs. [28,29]. The
radius of the hard spheres for species A, B, and C is 0.01 μm
and the diffusion coefficient is D = 0.01 μm2 s−1. In all our
simulations the time step is fixed at �t = 0.01 s.

To study the effects of crowding and confinement we
run two separate sets of reactive Brownian dynamics sim-
ulations. In the first set we consider six different spherical
containers with radius varying between 0.4 and 0.65 μm.
The containers are implemented as “hard-wall” spherical
boundary conditions. For each of the six spherical containers
we run a total of 30 independent simulations, each of total
time ttot = 1000 s. Three sets of values for the reaction
rate constants (kset1, kset2, kset3) are used for each one
of the six different spherical containers. They correspond
to three distinct dynamical behaviors in the deterministic
implementation of the MWR model: fixed point, limit cycle,
and chaotic dynamics, respectively. The first set (kset1, fixed
point attractor) is k1 = 30.0, k−1 = 0.25, k2 = 1.0, k3 = 10.0,
k4 = 0.4, k5 = 16.5, and k−5 = 0.5. To generate the second
set (kset2, limit cycle attractor) we simply consider the first set
of parameters and change the value of k4 to 0.6. In the third
set (kset3, chaotic attractor) we set k4 = 0.6, k5 = 18.5, and

k−5 = 0.4. In other words, kset2 is generated from kset1 by
increasing the degradation of A and C (increasing the coupling
between the Lotka-Volterra component and the switch) while
kset3 is obtained from kset1 by increasing both the A-C
coupling and decreasing the ratio k−5/k5.

We run ten independent simulations for each of the three
parameter sets. The starting point for each simulation is
generated randomly placing A = B = C = 100 hard spheres
within the proper spherical container. In the second set of
simulations we take into account the presence of a variable
number of “chemically inert” crowders modeled as hard
spheres of radius r = 0.01 μm and with diffusion coefficient
D = 0.01 μm2 s−1. The starting point for each simulation in
the second set is generated randomly placing A = B = C =
100 hard spheres and a variable number of inert crowders,
with same radius and diffusion coefficient as A, B, and C

in a spherical container with radius R = 0.4 μm. We run
independent simulations for five different crowder population
numbers: varying between 2 × 103 and 8 × 103. For each of
the five crowder population numbers we run a total of 30
independent simulations (ten for each of the three parameters
sets), each of total time ttot = 1000 s.
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FIG. 4. Transfer entropy as a function of the number of inert crow-
ders (constant container volume). Data refer to kset3 parametrization.

III. RESULTS AND DISCUSSION

A. Population dynamics

We focus our analysis on the stationary [54] portion of
our Brownian dynamics simulations. In Fig. 2 we show a set
of representative time windows for the population numbers
of species A, B, and C related to simulations with variable
container volume and no inert crowders present [Fig. 1(a)],
and to simulations with container radius R = 0.4 μm and
varying number of inert crowders from 0 to 8000 [Fig. 1(b)].
All data refer to parametrization kset3. Time series population
data generated under kset1 and kset2 are not shown as they
display similar temporal patterns. Figure 2 qualitatively shows
that (1) both average population and fluctuations increase with
increasing container volume for all species and (2) the presence
of an increasing number of inert crowders affects the average
population of species A, B, and C in different, nontrivial ways.
The presence of an increasing number of inert crowders also
appears to lower both the magnitude of the fluctuations in
the population dynamics and the temporal interdependence
between the populations of the different species. A quantitative
assessment of the mean and fluctuations dependence from

FIG. 5. (a) Statistical complexity measure as a function of the
container volume with no inert crowders present. (b) Statistical
complexity measure as a function of the number of inert crowders at
constant container volume. Data refer to kset3 parametrization.

both the container volume and the crowders number is given
in Fig. 3. In Fig. 3(a) we show that in the limited range
of container volumes considered in our simulations, the
mean population increases linearly with increasing container
volume. The fluctuations calculated as the standard deviation
from the mean also have a tendency to increase although not
linearly. The effects of the presence of inert crowders are
shown in the Fig. 3(b). A, B, and C “chemical” species all show
a decrease in their average population for increasing crowder
numbers which can be intuitively related to the diminished
availability of free volume within the spherical container. The
decrease is more apparent, and linear in nature, for species
C (bottom right) than it is for A and B which both appear
to reach a plateau as the number of crowders increases. It is
worth pointing out how, even in a simple chemical network
like the MWR network, the effects of crowding are far from
being uniform across the different chemical species and cannot
be easily incorporated in lower-resolution reaction-diffusion
models that do not explicitly consider excluded volume effects
and spatial granularity. An additional observation on the data
in Fig. 3 which is more specific to the MWR chemical network
relates to the dependence of the average population from
the parametrization set. First, the population dynamics of
species A, B, and C does not change significantly when the
parametrization set changes from kset1 to kset2. Second, the
transition from parametrization kset1 and kset2 to kset3 has
opposite effects on species B and C. Third, species A does not
show any quantifiable dependence from the parameter set (un-
der both volume and crowders’ number varying conditions).
It is easy to connect the increase in the slope of the average
population of species C to the increase in C’s net synthesis
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going from kset1 and kset2 to kset3. The decrease in the linear
fit’s slope for species B is less clear since species B is not
directly affected by the changes in the parametrization set and
species A, which is directly coupled to B, is insensitive to
those changes. The low sensitivity to parameter changes of
species A can be qualitatively explained considering that A

is the connection point in the MWR network between the
Lotka-Volterra component and the switch component [20]
and therefore might benefit from the mutual “modulation”
given by species B and C. The results on the population
dynamics shown in Fig. 3 and discussed in this section are
an example of the level of detail that can be attained only with
particle-based, spatial stochastic models. Indeed, the presence
of excluded volume effects and the explicit representation
of the reactor volume and its boundaries set the Brownian
simulator apart from both the deterministic and the stochastic
well-mixed simulators. All three dynamic regimes (fixed point,
limit cycle, chaotic) generated under parametrizations kset1,
kset2, and kset3 using deterministic rate equations translate
into a stationary (in a stochastic sense [54]) regime in the
Brownian simulator. In addition, the values for the average
populations in the deterministic calculations, for all three
parametrization sets, are ∼10 to ∼250 times smaller from what
is obtained in our Brownian simulations (data not shown). It is
worth mentioning that the collapse of the three dynamical
regimes generated from the MWR rate equations into a
common, stochastic, stationary regime has been observed also
when the method of Gillespie [11] is used or when Gaussian
noise is added to the rate equation solver [21]. Stochastic,
well-mixed simulators also generate population levels that are
substantially different. In detail, only the population of species
C is consistently above zero, whereas species A and B weakly
oscillate around zero [21]. It appears that when stochasticity
is introduced in the MWR network via well-mixed simulators,
the system becomes highly sensitive to fluctuations, especially
if low particle numbers are employed [25].

B. Information transfer

A possible explanation of the peculiar behavior of species
A and its relation with A’s “double coupling” within the MWR
network comes from the analysis of the information transfer
quantified by the transfer entropy [55] defined as

TY→X =
∑

p
(
Xn+1,X

(k)
n ,Y (l)

n

)
log

p
(
Xn+1 | X(k)

n ,Y (l)
n

)
p
(
Xn+1 | X

(k)
n

) ,

(2)

where Xn is the state of species X at time step n and X(k)
n ≡

(Xn, . . . ,Xn−k+1). In our calculations we consider k = l = 1.
The transfer entropy is a particular case of the conditional
mutual information I (X,Y |Z) [56–58]. The transfer entropy
defined in Eq. (2) quantifies how much knowing the state of
species Y at time step n reduces the uncertainty of the state of X

at time step n + 1, conditioned on Xn. The transfer entropy is
nonnegative and it is equal to zero when past values of species
Y have no influence in determining (reducing the uncertainty
on) the state of species X in the immediate future [55,59–63].

We use transfer entropy to estimate both the amount and the
direction of the information transfer in the MWR network as

FIG. 6. Average number of clusters (a) and average maximum
cluster size (b) as a function of the number of inert clusters. Data
refer to species A, B, and C under kset3 parametrization. The average
number of clusters shows a weak tendency to increase for all three
chemical species. The average maximum cluster size decreases with
denser crowding conditions. The maximum cluster size in species C

displays the largest decrease rate.

well as their dependence from the presence of inert crowders
and from the container’s volume. A number of interesting
conclusions can be inferred from the analysis of the transfer
entropy data. Considering first the chemical network as a
whole, the varying container volume does not significantly
affect the information transfer between the different species
in the network (variations are less than 0.5 bits—data not
shown). For systems with a variable number of inert crowders
(Fig. 4) there is a small but noticeable systematic increase in
the transfer entropy with differences between the less and the
most crowded systems of the order of 1 bit. A further look at the
behavior of the single species shows the pivotal role of species
A as a common influencer of the dynamics of species B and C.
Indeed, Fig. 4 shows that the amount of information transferred
from species A is systematically larger than the information
transferred to species A in crowding number-varying systems.
(The same result has been observed for variable volume, data
not shown.) This asymmetry in the information (common to all
three parametrization sets kset1, kset2, and kset3—kset1 and
kset2 data not shown) can be linked to an increased ability of
A to “absorb” external perturbations and therefore to its lower
sensitivity to parameter change (see previous section).

C. Statistical complexity

In this section we focus only on simulations performed
under parametrization set kset3 as this set of parameters
appears to have an additional layer of complexity with respect
to kset1 and kset2 and carries all the significant information
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FIG. 7. Time evolution for the population size (blue) and the maximum cluster size (yellow). The temporal pattern in the maximum cluster
size accurately mirrors the population size. Data refer to species A under kset3 parametrization. The mutual information between the two sets
of temporal data decreases with increasing number of crowders (see Table I).

about our system. IT functionals can be also used to estimate
the degree of complexity in the time evolution of the chemical
network and its dependence from the container volume
and from the presence of inert crowders. The complexity
estimation quantity that we choose is an intensive statistical
complexity measure which is the product of the normalized
spectral entropy Ŝ(Pr ) and the intensive Jensen-Shannon
divergence Q̂(Pr,Pe) [64,65] defined, respectively, as

Ŝ(Pr ) = −S0

Nf∑
r ′

Pr ′ log2 Pr ′ , (3)

with

Pr = f 2
r∑Nf

r ′ f 2
r ′

, (4)

where fr are the frequencies in the Fourier spectrum and Nf =
4000 is the number of frequencies considered, and

Q̂(Pr,Pe) = Q0

[
S

(
Pr + Pe

2

)
− 1

2
S(Pe) − 1

2
S(Pr )

]
, (5)

where S(Pe) = log2 Nf = S−1
0 ,Q0 is the normalization factor

for Q, and Pe = 1/Nf .
The statistical complexity ŜQ̂ is zero for both Pr =

{1,0,0, . . . ,0} and Pr = Pe = 1/Nf , i.e., for spectral entropy
S = 0 and S = log2 Nf (fully ordered and fully stochastic
systems) [65]. The results for the statistical complexity ŜQ̂

are shown in Fig. 5. Figure 5(a) shows that container volume
variability does not significantly affect the average statistical
complexity for species A, B, and C (both Ŝ and Q̂ do not
vary significantly; � � 0.02). Conversely, for systems with
constant volume and variable crowders number [Fig. 5(b)] the
statistical complexity decreases with an increasing number of
crowders. In detail, the decrease is almost exclusively due
to a decrease in the normalized spectral entropy from 0.62
to 0.55,0.61 to 0.54, and 0.58 to 0.50, for species A, B,
and C, respectively. The intensive Jensen-Shannon divergence
remains constant at around 0.39–0.40. As a general conclusion
from our information theoretic analysis, we can state that the
presence of a growing number of inert crowders drives the
chemical network toward a lower degree of complexity which
is possibly due to a more efficient information transfer (see
Fig. 4) between the reactive chemical species.

D. Spatial organization

The spatial organization of the chemical species in the
network is investigated under the framework of (spectral)
graph theory [66,67]. In detail, for each time step in each
of our Brownian dynamics runs we build three binary,
symmetric adjacency matrices GA, GB , and GC for the
three unweighted, undirected graphs representing the spatial
connectivity network for species A, B, and C, respectively
and separately. Two points (diffusing hard spheres of the
same species) are connected if their distance at a given time
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TABLE I. Mutual information (in bits) between population size
and largest cluster size time series for species A, B, and C and
for different numbers of inert crowders. Largest mutual information
values correspond to a stronger nonlinear time correlation between
population size and the size of the largest spatial cluster.

Inert crowders A B C

0 0.969 0.811 1.574
2000 0.893 0.643 1.359
4000 0.847 0.619 0.806
6000 0.611 0.583 0.735
8000 0.568 0.471 0.442

step is � 0.06 μm. By definition, each point (hard sphere)
is connected with itself and the diagonal elements of the
matrices are therefore all equal to one. We then consider
another three adjacency matrices Gs

A, Gs
B , and Gs

C , for species
A, B, and C, respectively, of the subgraphs composed only
by the points which are directly connected to four or more
other points (hard spheres) of the same chemical species. We
discard the remaining points which have less than four direct
connections to other points as noise. This procedure is similar
to the characterization of the “core” points in the DBSCAN
clustering algorithm [68]. In other words, our approach is akin
to a DBSCAN calculation where only the deterministic part is
considered and where the “boundary” points are discarded as
noise (DBSCAN* in Ref. [69]). It is easy to show [66] that,
given a binary, symmetric adjacency matrix G of dimension
m, the matrix Gfull = Gm−1 (which we call full connectivity
matrix), where the power is defined in a boolean space [70],
has element gij = 1 if and only if there is a connectivity path
between points i and j , i.e., if and only if i and j belong to
the same spatial cluster. The matrix Gfull is binary, symmetric,
and its diagonal elements are all equal to one. In order to speed
up the calculations of the full connectivity matrix (m ∼ 103)
we exploit the existence of a simple bound on the diameter
of our graph [71] and hence reduce the the matrix power
exponent from ∼ 103 to 15–20. The eigenvalues of Gfull are
real and all � 0. The number and the magnitude of the strictly
positive eigenvalues correspond to the number and the size
of the spatial clusters in our system, respectively, as these
are the connected components of the graphs represented by
the adjacency matrices GA, GB , and GC [66,67]. In Fig. 6
we show the average number of clusters (a) and the average
size of the largest cluster (b) as a function of the number
of inert crowders. On the one hand, the average number of
clusters shows a weak tendency to increase with increasing
number of crowders for all three chemical species. On the
other hand, the average maximum cluster size decreases with
denser crowding conditions. Among the three reactive species

the maximum cluster size in species C displays both the largest
values and the largest decrease rate. Figure 6 basically shows
that the presence of an increasing number of crowders opposes
the natural tendency of the reactive particles in our system
to aggregate in well-defined regions of the available space.
An interesting feature of the maximum cluster size temporal
evolution is shown in Fig. 7. For small numbers of crowders
the maximum cluster size for species A tightly mirrors the
time evolution of the population of species A (species B

and C show very similar behavior—data not shown). The
“correlation” between population dynamics and maximum
cluster dynamics weakens with increasing crowder numbers.
Indeed, Table I shows that the mutual information [56] between
population and maximum cluster dynamics decreases with
increasing crowder numbers. Similarly to what we observed
in our analysis of the population dynamics and information
transfer, the influence of a variable numbers of crowders on
the spatial organization is not homogeneous across the three
species in the chemical network.

IV. CONCLUSIONS

In this study we investigate the dynamical behavior of
a generic chemical network under spatial confinement and
crowding. We observe that the presence of inert crowders
affects in a nontrivial way the population dynamics of the
reactive species in the network. The choice of using IT
for most of our analysis is motivated by the fact that the
MWR network is a generic chemical system and that the
quantities resulting from our simulations are stochastic in
nature. IT offers in this case the most general approach to
study interspecies (directional) correlations and the system’s
complex dynamical behavior. The detailed analysis of the
population dynamics of the MWR network under different
confinement and crowding conditions presented in Sec. III
represents an extensive example of the level of detail, not
accessible to deterministic and stochastic well-mixed models,
that can be resolved when spatial confinement and crowding
are explicitly taken into account.

In conclusion, we try to make the case for the use of spatial
stochastic simulations as an elective method to complement
experiments and to improve our understanding of complex,
reaction-diffusion systems where dynamics is both spatially
confined and compartmentalized. The code used for our
Brownian simulations is available on request.
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