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Cascading failures in interdependent networks with finite functional components
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We present a cascading failure model of two interdependent networks in which functional nodes belong to
components of size greater than or equal to s. We find theoretically and via simulation that in complex networks
with random dependency links the transition is first order for s � 3 and continuous for s = 2. We also study
interdependent lattices with a distance constraint r in the dependency links and find that increasing r moves the
system from a regime without a phase transition to one with a second-order transition. As r continues to increase,
the system collapses in a first-order transition. Each regime is associated with a different structure of domain
formation of functional nodes.
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I. INTRODUCTION

Modern real-world infrastructures can be modeled as a
system of several interdependent networks [1–4]. For example,
a power grid and the communication network that executes
control over its power stations constitute a system of two
interdependent networks. Power stations depend on commu-
nication networks to function, and communication networks
cannot function without electricity. There have been several
recent attempts to model these systems [5–20]. One of these
is based on a model of mutual percolation (MOMP) in which
a node in each network can function only if (1) it receives a
crucial commodity from support nodes in other networks and
(2) it belongs to the giant component (GC) formed by other
functional nodes in its own network.

If the nodes within each network of the system are randomly
connected, and the support links connecting the nodes in differ-
ent networks are also random, then the MOMP for an arbitrary
network of networks (NON) can be solved analytically using
the framework of generating functions, which allows to map
the stochastic model into node percolation.

It turns out that a NON is significantly more vulnerable
than a single network with the same degree distribution. In
regular percolation of a single network, the size of the GC
gradually approaches zero when the fraction p of nodes that
survived the initial failure, approaches the critical value pc. In
contrast, in the MOMP, the fraction of nodes in the mutual GC,
μ(p) undergoes a discontinuous first-order phase transition at
p = pτ > pc, dropping from a positive value, μτ , for p � pτ

to zero for p < pτ .
The authors of Ref. [12] extended MOMP to Euclidian

lattices by studying the process of cascading failures in two
lattices A and B of the same size L in which the dependency
links are limited by a distance constraint r . In this case there is
a particular value of r denoted by rmax below which there is a
second-order transition and above which the system collapses
in a first-order transition. This process is characterized by the
formation of spatial holes that burn the entire system when
r � rmax [21].

The first rule of MOMP is quite general and can be easily
verified from an engineering standpoint, but the second rule

is not easy to verify. Although it seems that a functioning
node must belong to the giant component in order to receive
sufficient power, information, or fuel from its own network,
this condition can be relaxed, i.e., the second rule in the
MOMP can be replaced by a more general rule (2′) in which
a node in order to be functional must belong to a connected
component of size greater than or equal to s, formed by other
functional nodes of this network. This rule is significantly more
general and realistic than rule (2) because the nodes in finite
components are still able to receive sufficient commodities
to continue functioning. Note that the original rule (2) is
actually a particular case of rule (2′) for s = ∞. In this paper,
we will show how the replacement of condition (2) by the
more general condition (2′) with s < ∞ affects the results in
complex networks and Euclidean lattices [5,12].

II. THEORETICAL FORMALISM FOR COMPLEX
NETWORKS

The most important role of the MOMP of a NON is played
by the function gi(yi) [5] such that yigi(yi) is the fraction
of nodes in the giant component of network i of the NON
after a random failure of a fraction 1 − yi of its nodes. The
generating function of the degree distribution of network i is
given by [5,11].

Gi(x) =
∞∑

k=0

Pk,ix
k, (1)

where Pk,i is the degree distribution of network i and the
generating function of the excess degree distribution is

Hi(x) = d

dx

Gi(x)

〈ki〉 =
∞∑

k=0

Pk+1,i(k + 1)xk/〈ki〉, (2)

where

〈ki〉 =
∞∑

k=1

k Pk,i = G
′
i(x)|x=1 (3)

is the average degree of network i.
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The fraction of nodes in the giant component relative to the
fraction y of surviving nodes is given by

gi(y) = 1 − Gi[fi(y)y + 1 − y], (4)

where fi(y) is the probability that the branches do not reach
the GC, which satisfies the recursive equation [22]

fi(y) = Hi[fi(y)y + 1 − y]. (5)

We also compute the generating function of the component
size distribution [23]

Ci(x,y) =
∞∑

s=1

πi,s(y)xs = xGi[Bi(x,y)y + 1 − y], (6)

where πi,s(y) is the fraction of nodes belonging to components
of size s in network i relative to the fraction y of surviving
nodes, and Bi(x,y) satisfies the recursive equation

Bi(x,y) = xHi[Bi(x,y)y + 1 − y]. (7)

Note that when x = 1, Eqs. (6) and (7) are equivalent to
Eqs. (4) and (5), respectively, and hence

Ci(1,y) =
∞∑

s=1

πi,s(y) = 1 − gi(y). (8)

To move from rule (2) to rule (2′) we replace function gi(yi)
with function gi,s(yi), defined the same as gi(yi) but replacing
the words giant component with components of size larger
than or equal to s. Thus,

gi,s(y) = 1 −
s−1∑
r=1

πi,r (y). (9)

III. ANALYTIC SOLUTION IN RANDOM REGULAR AND
ERDÖS RÉNY NETWORKS

In this section we present the analytic solution for two
random regular (RR) and two Erdös Rény (ER) interdepen-
dent networks. From Eq. (9), using the Lagrange inversion
formula [23], we obtain the coefficients πi,s(y) for s > 1

πi,s(y) = y〈ki〉
(s − 1)!

ds−2

dxs−2
[Hi(x y + 1 − y)]s |x=0 (10)

and

πi,1(y) = Gi(1 − y). (11)

For ER graphs with a Poisson degree distribution and an
average degree 〈k〉 and for RR graphs with degree z, we can
obtain an analytical solution for Eq. (10) for πi,s(y). For ER
networks πER,s(y) is given by

πER,s(y) = (s y 〈k〉)s−1 exp(−s y 〈k〉)
s!

, (12)

and for RR graphs, with degree z, for s = 1, πRR,1(y) is given
by

πRR,1(y) = (1 − y)z, (13)

and when s > 1, πRR,s(y) is

πRR,s(y) = z ps−1(1 − y)s (z−2)+2 [s (z − 1)]!

(s − 1)![s (z − 2) + 2]!
.

(14)

IV. MODEL IN COMPLEX NETWORKS

To illustrate our model, we consider two networks A and
B with degree distributions in which bidirectional interdepen-
dency links establish a one-to-one correspondence between
their nodes as in Ref. [5]. The initial random failure of a
fraction 1 − p of nodes in one network at t = 0 produces a
failure cascade in both networks.

A. Theory

At step t of the failure cascade, the effective fraction of
surviving nodes μ̃A,t (p) and μ̃B,t (p) of networks A and B,
respectively, satisfies the recursive equations

μ̃A,t (p) = p gB,s(μ̃B,t−1(p)),
(15)

μ̃B,t (p) = p gA,s(μ̃A,t (p)),

and the fractions of nodes belonging to components of size
greater than or equal to s, μA,t (p) and μB,t (p), are given by

μA,t (p) = μ̃B,t (p) gB,s(μ̃B,t (p)),
(16)

μB,t (p) = μ̃A,t (p) gA,s(μ̃A,t (p)),

where μ̃A,0(p) = p and μA,0(p) = p gA,s(p). The process is
iterated until the steady state is reached, where

μ̃A(p) = p gB,s[μ̃B(p)],
(17)

μ̃B(p) = p gA,s[μ̃A(p)],

and

μ (p) ≡ μA(p) = μB(p) = μ̃A(p)μ̃B(p)/p.

When p = pτ , the order parameter of our model, μ(p),
transitions from μ(p) > 0 when p > pτ to μ(p) = 0 when
p � pτ . In the most simple case when the networks have
identical degree distributions, gA,s(x) = gB,s(x) ≡ gs(x). At
the threshold, p = pτ and μ̃(pτ ) satisfy

μ̃(pτ ) = pτ gs[μ̃(pτ )]

1 = pτ g′
s[μ̃(pτ )], (18)

where g′
s(y) = dgs(y)/dy. Because g2(y) = 1 − G(1 − y),

the second derivative of g2(y) is always negative, and thus
Eq. (18) has a trivial solution at μ̃(pτ ) = 0 from which
pτ = 1/G′(1) = 1/〈k〉, where G′(1) = dG(y)/dy|y=1, and,
as a consequence, the system undergoes a continuous phase
transition. For networks with a nondivergent second moment
of the degree distribution the transition is third order; but, for
networks with a divergent second moment the transition is
of a higher order. However, when s � 3, gs(y) changes the
sign of its second derivative from positive at y = 0 to negative
at y = 1, and hence Eq. (18) has a nontrivial solution in the
interval 0 < p < 1 at which μ̃(p) abruptly changes from a
positive value above pτ to zero below pτ . Thus for s � 3
we always have a first-order transition, which was previously
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found [5] but only for s = ∞. The different kinds of transitions
that we find in our model are reminiscent of the ones found in
k-core percolation [24–27]. A k core of a graph is a maximal
connected subgraph of the original graph in which all vertices
have degree at least k, formed by repeatedly deleting all
vertices of degree less than k. In particular, in 2-core there
is a continuous transition, while for k � 3 the transition is first
order, as in our model for s = 2 and s � 3, respectively. The
key difference between the k-core transition and our model is
that in our model the functionality of a node is not based on its
degree but rather on the size of the finite components to which
it belongs. The similarity between the phase transitions in our
model and the ones in k-core is due to a resemblance between
the pruning rules of both processes. For example, in our model
with s = 2, the final state is constituted of nodes with at least
one active link in their own network and one dependency link
and, hence, all nodes have two active links as in the final state
of 2-core. Next we will see that the similarities of the phase
transitions arise due to the similarities in the leading terms
of the Taylor expansions of the equations that govern k-core
and our model. However, we will also demonstrate that both
models do not belong to the same universality class.

1. Scaling behavior of the fraction of active nodes for s = 2
in our model

From Eq. (18) for s = 2, at the steady state, the effective
fraction of remaining nodes μ̃(p) ≡ μ̃ is given by

μ̃ = p[1 − G(1 − μ̃)], (19)

where p is the fraction of nodes that survived the initial
damage, and G(x) is the generating function of the degree
distribution. For RR, ER, and scale-free networks with
nondivergent second moment (λ > 3), close to the threshold
pτ at which μ̃(pτ ) = 0, expanding Eq. (19) around μ̃ = 0
gives

μ̃ = p[G′(1)μ̃ − G′′(1)μ̃2/2 + O(μ̃3)], (20)

and solving this equation for μ̃ leads to

μ̃ = 2
pG′(1) − 1

p G′′(1)
+ O(μ̃2). (21)

Equation (21) shows that μ̃ → 0, when p → 1/G′(1); thus
there is a continuous phase transition at p = pτ ≡ 1/G′(1).
Recalling that for any degree distribution with converging first
and second moments, G′(1) = 〈k〉, G′′(1) = 〈k2〉 − 〈k〉, we
can rewrite Eq. (21) as

μ̃ = 2
δp〈k〉

(pτ + δp)(〈k2〉 − 〈k〉) + O[(δp)2], (22)

where p = pτ + δp, with δp → 0. Since the denominator does
not diverge, then μ̃ ∼ (p − pτ )β

′
, with β

′ = 1.
For two interdependent networks with the same degree

distribution, the order parameter is given by

μ = μ̃2/p, (23)

and thus μ ∼ (p − pτ )β with β = 2.
For 2 < λ < 3, the second moment diverges, thus using the

Tauberian theorem [28] the expansion of μ̃ is given by

μ̃ = p[G′(1)μ̃ − Aμ̃λ−1 + O(μ̃λ−2)], (24)

in which, for p = pτ + δp,

μ̃ =
[
δpG′(1)

pA

]1/(λ−2)

+ O(δp)1/(λ−2) (25)

∼ (p − pτ )1/(λ−2), (26)

so β
′ = 1/(λ − 2) and, as a consequence [see Eq. (23)], β =

2/(λ − 2). Thus there is a fourth-order phase transition for
8/3 < λ < 3. In general, for scale-free (SF) networks with
2 < λ < 3, the transition is of mth order for 2 + 2/(m − 1) <

λ < 2 + 2/(m − 2).

2. Scaling behavior of the fraction of active nodes in 2-core

In contrast with Eq. (19), for 2-core percolation, the fraction
of active nodes q obeys the equation

q = p[1 − G(1 − f ) − f G′(1 − f )], (27)

where p is the fraction of nodes that survived the initial damage
and f is the effective fraction of survived links obeying a
self-consistent equation

f = p

[
1 − G′(1 − f )

G′(1)

]
. (28)

For homogeneous networks, such as RR and ER, after
expanding Eq. (28) around f = 0, we obtain

f = p

G′(1)
[G′′(1)f − G′′′(1)f 2/2 + O(f 3)]. (29)

If G′′′(1) < ∞, then pτ = G′(1)/G′′(1) = 〈k〉/(〈k2〉 − 〈k〉) as
in regular percolation, and

f = 2[δpG′′(1)]

p G′′′(1)
. (30)

Finally expanding Eq. (27) around f = 0 leads to q =
pf 2G′′(1)/2 + O(f 3) ∼ (p − pτ )2, which indicates a third-
order phase transition.

For SF networks, if 3 < λ � 4, from the Tauberian theo-
rem [28]

f = p

[
G′′(1)

G′(1)
f − Af λ−2 + O(f λ−2)

]
, (31)

from where f ∼ (p − pτ )1/(λ−3) with pτ = G′(1)/G′′(1) and
q ∼ (p − pτ )2/(λ−3) and the transition becomes of the order m

if 3 + 2/m < λ � 3 + 2/(m − 1). If 2 < λ < 3, G′′(1) = ∞,
then pτ = 0, f ∼ p1/(3−λ) and q ∼ p1/(3−λ). Thus for 2 <

λ < 3 there is a phase transition but at pτ = 0, and the order
parameter of this transition changes in reverse order from
infinity for λ = 3 to 3 for λ = 2 + ε with ε → 0.

Thus we have a close analogy between the model of
functional finite component interdependent networks with
s = 2 and 2-core percolation in terms of the order of the
phase transition. This analogy stems from the similarities in the
Taylor expansion of the equations describing these two models,
but the physical basis on which these equations are constructed
totally differs. In addition, the order of the transitions differs
for SF networks with 2 < λ < 4, and thus the two models do
not belong to the same universality class.

042304-3



DI MURO, BULDYREV, STANLEY, AND BRAUNSTEIN PHYSICAL REVIEW E 94, 042304 (2016)

B. Simulations in complex networks

We test our theoretical arguments with stochastic simu-
lations in which we use the Molloy-Reed algorithm [29]
to construct networks with a given degree distribution. The
procedure is as follows:

(1) At t = 0 we remove a random fraction of nodes 1 − p

in network A, remove all the nodes in the components of
network A smaller than s, and remove all the dependent nodes
in network B.

(2) At t � 1 we remove all the nodes in the components of
network B smaller than s and remove all the nodes in network
A dependent on dead nodes in B.

(3) We repeat (2) until no more nodes can be removed.
We perform simulations for a system of two ER graphs,

two RR graphs in which all nodes have the same degree z,
each of N = 106 nodes, and two SF graphs with N = 5 × 106

(see Fig. 1). The SF networks have a degree distribution Pk ∝
k−λ with kmin � k � kmax, where λ is the exponent of the
SF network. We set kmin = 2 and kmax = √

N . To compare
our simulations with the theoretical results [Eq. (18)] we use
analytical expressions for πi,s(p) given in the case of ER and
RR networks by Eq. (10). For SF networks we compute πi,s (p)
numerically. The details of the analytical solution for ER and
RR networks are presented in Sec. III.

Figures 1(a), 1(b), and 1(c) show perfect agreement between
the theoretical results and the simulations. Figure 1(d) shows a
plot of pτ as a function of s for two RR networks with degree
z = 3, two ER networks with 〈k〉 = 3, and two SF networks

with λ = 3, kmin = 2 and an average degree 〈k〉 = 3.18. As
predicted, pτ = 1/〈k〉 for s = 2 and increases as s increases.
For s → ∞ we recover the mutual percolation threshold of
Ref. [5] shown as dashed lines in Fig. 1(d).

V. MODEL IN INTERDEPENDENT EUCLIDEAN
LATTICES

We also study the same model for square lattices, general-
izing Refs. [12,14]. When there are random interdependency
links, i.e., when there is no geometric constraint on the
interdependencies, we use the exact results for the perimeter
polynomials of the finite components to compute gs(p),

gs(p) = 1 −
s−1∑
n=1

n pn−1 Dn(1 − p), (32)

where Dn(1 − p) are the perimeter polynomials for small
components on a square lattice [30].

Here the system undergoes a first-order phase transition
when s � 3 at the predicted values of pτ = 0.485 for s = 3 and
pτ = 0.5506 for s = 4, obtained by solving Eq. (18). When the
interdependency links satisfy distance restrictions, we define
the distance between the two interdependent nodes in lattices
A and B as the shortest path between the nodes along the
bonds of the lattices, i.e., |xA − xB | + |yA − yB | � r , where
(xA,yA) and (xB,yB ) are the coordinates of the interdependent
nodes in lattices A and B, respectively. Using simulations we
see a first-order phase transition emerging at a certain value of
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FIG. 1. μ(p) as a function of p for different values of s for two (a) RR networks with degree z = 3 for N = 106, (b) ER networks with
average degree 〈k〉 = 3 for N = 106, and (c) SF networks with λ = 3 for N = 5 × 106 with 1000 networks realizations for different values of
s, from s = 2 to s = 6, (the left most curves, indicated by circles). The symbols are the simulations and the dashed lines are the theory. (d) The
threshold pτ as a function of s obtained from the theory for the same RR (black circles), ER (red squares), and SF (blue diamonds) networks
presented in (a), (b), and (c). The dashed lines are used as a guide to show pτ for s → ∞.
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FIG. 2. For interdependent lattices with interdependent distance r and survival component size s = 4, for L = 512 (a) pτ (r) (©) vs. r for
the first-order r � rI = 18 and the continuous phase transition rII = 15 � r < rI = 18 and pf

c (r) (�). The lines are used as a guide for the
eyes. (b) μ(p) vs. p for different values of r . For r < rII = 15 the results do not depend on the lattice size L. The system size dependence
emerges only at r = rII = 15.

r = rI in qualitative agreement with the case s = ∞ studied
by Li et al. [12]. At this value of r the system reaches maximum
vulnerability, indicated by a maximum of pτ (r) as a function
of r [see Fig. 2(a)].

The rI value is much greater than the value obtained for
the MOMP (s = ∞). For r close to rI, the cascading failures
propagate via node destruction on the domain perimeters
composed of surviving node components, and this creates
moving interfaces when the size of the void separating the
domains is greater than r . These moving interfaces belong to
the class of depinning transitions characterized by a threshold
p = p

f
c (r) that increases with r (see Fig. 2). Here p = p

f
c (r)

is the critical fraction of nodes remaining after the initial
failure, such that for p > p

f
c (r) the interface of an infinitely

large void will be eventually pinned and stop to propagate. In
contrast, when p < p

f
c , the interface of the voids propagates

freely without pinning and eventually burns the entire system.
Near p

f
c (r), the velocity of the domain interfaces approaches

zero with a power-law behavior v ∼ (pf
c − p)θ , where θ > 0

is a critical exponent [31]. In order to compute p
f
c , we

compute the velocity v of the growing interface as a function
pf − p until we get a straight line in a log-log plot, which
corresponds to the value of the critical threshold p

f
c . The

value of the slope of v ∼ p
f
c − p is the critical exponent

θ . We find θ = 0.53, suggesting that the interface belongs
to the universality class of a Kardar-Parisi-Zhang (KPZ)
equation [32] with quenched noise. As p = p

f
c (r) increases,

the probability that large voids with a diameter greater than r

will spontaneously form, decreases, and becomes vanishingly
small in a system of a finite size. Thus in a finite system
we must decrease p below p

f
c (r) in order to create these

voids. When p < p
f
c (r), the interface of the voids begins to

freely propagate without pinning and eventually, like a forest
fire, burns through the entire system. Thus the emergence
of a first-order transition in a finite system depends on the
system size, i.e., the larger the system, the larger the rI value

FIG. 3. Snapshots of the model of interdependent lattices for s = 4, L = 1024 and different values of r = 10 < rII, p = 0.56 (left) and
r = rII = 15, p = pm = 0.572 (right) at the end of the cascade of failures. It can be seen that for small r < rII the system is divided into many
independent domains, while for r = rII the domains coalesce, and the cascades are driven by the propagation of the interface near the depinning
transition.
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at which the effective first-order (all-or-nothing) transition is
observable.

Figure 2(a) shows that as r continues to increase, pτ

begins to decrease and slowly approaches the pτ value for
random interdependence as r → ∞. There is no second-order
percolation transition for finite s and small r that governs
the size of the voids, in contrast to what was found by
Li et al. [12] for s → ∞. For finite s, a second-order transition
emerges when the r value is large, r = rII < rI, but when
r < rII there is no transition, the fraction of survived nodes
μ(p) is zero only at p = 0, and it continues to be differentiable
and independent of the system size for any positive value of
p. Note, however, that as r approaches rII the derivative of
μ(p) develops a sharp peak at a certain value of p ≡ pm(r)

below which μ(p) is very small but finite. At r = rII we see
a second-order transition because the height of the peak of
the derivative of μ(p) now increases with the lattice size L,
which is typical of a second-order transition. This behavior
is associated with different regimes of domain formation. For
small values, r < rII, the first stages of the cascading failure
fragment the system into small independent regions, each of
which has its own pinned interface (see Fig. 3). In this regime,
after the first stages of the cascade of failures the system
practically does not change. After the first stages, the interfaces
propagate very slow and can stop at any point leaving the
resulting snapshots indistinguishable from the one obtained
in the steady state. A single interface emerges only when
these regions coalesce at r = rII, and a second-order phase
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FIG. 4. Cumulative distribution of the fraction of survived nodes, μ̃, for different values of r . As we can see from the plots, as r increases
above rII, a plateau develops in the cumulative distribution for p ≈ pτ , which means that the distribution of the values of μ̃ is bimodal and the
system will eventually reach a first-order transition at r � rI. In this regime, there is a large gap between the values of μ̃, indicating that for the
same value of p, either a large fraction of the system can stay functional or the system can completely collapse.
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transition related to the propagation of this interface through
the entire system emerges. This second-order phase transition
observed for r = rII has a unimodal distribution of the fraction
of surviving nodes μ̃(p), and we use the maximum slope of
the graph μ̃(p) to compute the critical point pτ = pm(rII).
As r increases between rII and rI, the distribution of μ̃(p)
becomes bimodal, and we compute the transition point pτ

using the condition of equal probability of both modes. Note
that pτ reaches a maximum at r = rI where the two peaks
of the distribution of μ̃(p) separate completely, as indicated
by a wide plateau in the cumulative distribution of μ̃(p) [33].
The cumulative distribution of μ̃(p) ≡ μ̃ for square lattices is
presented in Fig. 4.

The emergence of the first-order phase transition above
rII is related to the decrease of the correlation length as we
move away from rII. We thus find that when s is small, rI is
significantly larger than rI(∞). For the shortest path metric
rI(∞) = 11, and rII(4) = 15 and rI(4) = 18 for L = 1024. As
s increases, rI gradually decreases and coincides with rI(∞)
for s → ∞.

VI. CONCLUSION

In summary, we find that in complex networks with s > 2,
our model has a first-order transition as for the previously
studied case of MOMP with s → ∞. For s = 2, our model
has a higher-than-second-order transition similar to that found
in k core, but the order of the transitions in SF networks differs

depending on the exponent of the degree distribution. However,
the finite component generalization of MOMP in spatially
embedded networks has a totally different behavior, which
is not related to k core. In this case, the transitions, when they
exist, are dominated by the behavior of the pinning transition of
void’s interfaces. Our model in spatially embedded networks is
a rich and interesting phenomenon, which has many practical
applications for studying the cascade of failures in real-world
infrastructures embedded in space. Our work can be extended
to any NON model incorporating MOMP, but our finite
component model is significantly more general and realistic.
We can generalize our model to derive equations for a partially
interdependent NON. Here the second-order transition will
also appear when s > 2 if the fraction of interdependent nodes
is small. The value of s can differ in different networks of the
NON and can be a stochastic variable, such that a component
of size s survives with probability p(s), as in the heterogeneous
k core [27,34].
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