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Bifurcation transitions in gap-junction-coupled neurons
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Here we investigate transitions occurring in the dynamical states of pairs of distinct neurons electrically
coupled, with one neuron tonic and the other bursting. Depending on the dynamics of the individual neurons, and
for strong enough coupling, they synchronize either in a tonic or a bursting regime, or initially tonic transitioning
to bursting via a period doubling cascade. Certain intrinsic properties of the individual neurons such as minimum
firing rates are carried over into the dynamics of the coupled neurons affecting their ultimate synchronous state.
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I. INTRODUCTION

A major feature of networked neurons is their capability
for firing in synchrony. It allows them to collectively perform
tasks that would otherwise be difficult to execute. Many
examples of neurons spiking synchronously illustrate well the
relevance of this operational functionality, including Hebbian
learning and memory [1,2], wake-sleep cycles [3], and central
pattern generators [4,5]. Synchronization has also been shown
to be a critical component of neurological conditions such
as epilepsy [6] and Parkinson’s disease [7]. In particular,
and of interest in this study, some neuronal synchronous
states are associated with transitions between regimes of tonic
(rhythmic single spiking) and of bursting (repeating sequences
of multiple spikes) activity. Tonic-to-bursting transitions play
important roles, for instance, in thalamocortical neurons at
sleeping transition states [8], and in sensory-motor nuclei that
generate the typical tremors in Parkinson’s disease [9]. Several
studies have investigated them, mostly involving individual
dynamics of the neurons [10,11], but less is known about these
transitions in the context of distinct interacting neurons.

Here we use numerical simulations to examine tonic-
to-bursting transitions involving pairs of Hodgkin-Huxley-
type neurons coupled via gap junctions. Physiologically, gap
junctions are sets of channels connecting adjacent neurons
permitting ions and electric impulses to pass through their
joint membranes. Electrical connection through gap junctions
can lead neurons into synchrony as well as influence chemical
communication, and are thought to play an important part
in brain development and pattern formation [12]. Our focus
is on how the dynamical states of two different neurons,
one tonic and the other bursting, evolve as the electrical
coupling strength between them increases. Different outcomes
are observed, depending on the initial dynamical states of
the two neurons and on how strong the coupling between
them is. We analyze three cases: (1) the two neurons first
synchronize in the tonic regime and remain tonic, (2) the two
neurons first synchronize in the tonic regime, then undergo a
period-doubling cascade and traverse chaos into a continued
bursting regime, and (3) the two neurons first synchronize in
the bursting regime and remain bursting.

The single neuron model used here also experiences a
tonic-to-bursting transition, albeit different from the transition
found in this study of two coupled neurons. For the single
neuron, as opposed to a period doubling cascade, it happens

via period adding in the bursting states [13], with a minimum
firing rate at the transition point between tonic and bursting. We
found that this minimum firing rate seems to be carried over
to the synchronous tonic-to-bursting transition that exists at
the point of synchronization of the two neurons. We observed
that for a particular linear combination of parameter values
for the two neurons, one tonic and the other bursting, the
synchronization occurs with a minimum coupling strength.
Additionally, the synchronization between the two neurons
also happens at a minimum firing rate that matches the
minimum firing rate of the single neuron at its tonic-to-burst
transition. In what follows we describe our findings indicating
that certain individual neuron signatures are maintained in
the collective of a network, potentially defining its overall
behavior.

II. SINGLE NEURON DYNAMICS

A. Neuron model equations

The neuronal mathematical model we use here is based
on the ground-breaking work of Alan Hodgkin and Andrew
Huxley [14], explaining the ionic processes that underly
initiation and propagation of action potentials in the giant axon
of the squid. The model equations in this work were initially
intended for studying thermo-sensitive neurons [15], and have
since been applied to a variety of systems such as noisy
ionic conductances [16], psychiatric disorders [17], stochastic
dynamics [18], sleep-wake cycles [19], and inhibitory coupling
in neurons [20]. The equations incorporate physiologically
relevant properties of an excitable lipid bilayer cell membrane
embedded with a variety of proteins, some of them working as
ion channels, others as receptors and still others as transporters.
The membrane separates the cell’s inside medium from the
outside, with both media exhibiting dynamical imbalances of
ion concentrations. As an extension of the Hodgkin and Huxley
equations, the Huber-Braun model neuron we use possesses
dynamics of fast spiking and of slow subthreshold oscillations,
both associated with sodium and potassium ion channels. Fast
spiking results from the coordinated depolarizing sodium (Id )
and repolarizing potassium (Ir ) currents. The subthreshold
oscillations result from the slow depolarization sodium (Isd)
and slow repolarization calcium-dependent potassium currents
(Isr). Voltage and time dependent components are at the core
of the model equations, with the membrane playing the role
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of a capacitor being charged and discharged by a variety of
currents dependent on conductances and driving forces.

The equation for the time evolution of the electric potential
V across the membrane is then given by

CV̇ = −Ileak − INa − IK − Isd − Isr − Iinj, (1)

where C represents the membrane capacitance and, neglecting
first approximation fluctuations, Iinj represents an external
injected current therefore considered a control parameter,
and may include the sum of all excitatory and inhibitory
synaptic inputs. The leak current is represented by Ileak =
gleak(V − Vleak) where gleak is the constant leak conductance
and Vleak is the equilibrium potential. The fast and slow
currents for sodium and potassium labeled Na, K, sd, and
sr, respectively, are given by Ij = ρgjaj(V − Vj) where j

denotes Na+, K+, sd, or sr, Vj represents the equilibrium
potential for each corresponding current, and ρ is a scaling
parameter for temperature dependence (constant in this study).
The maximum conductances and equilibrium potentials are
represented by gj and V0j, respectively. The opening and
closing of the ion channels are directly associated with
characteristic time constants τj, which, in the case of sodium
channels, are rather small. Sodium channels can thus be
considered as activating instantaneously, with an activation
function represented by aNa = 1

1+e
−sNa(V −V0Na

) , where sNa sets
the slope of the sigmoid curve, and V0Na corresponds to the
half-activation potential. The equations for the other three
activation variables are

ȧK = φ

τK
(aK∞ − aK), (2)

ȧsd = φ

τsd
(asd∞ − asd), (3)

ȧsr = − φ

τsr
(νaccIsd + νdepasr). (4)

The scaling parameters for temperature dependencies, ρ

and φ, are here set at the constant values ρ = 0.607 and
φ = 0.124. The activation functions aj∞ are represented by
sigmoid steady state curves given by aj∞ = 1

1+e
−sj (V −V0j) , j = K,

sd, sr. In this model aNa ≡ aNa∞, as a result of the very
fast Na+ channel activation, and Ca++ accumulation and
depletion respectively included in νacc and νdep. Deactivation
is embedded in the functional timing of the in-place activation
functions and the corresponding conductances. Equations (1)
through (4) can mimic a wide range of neuronal dynamics,
with parameter values throughout this work as shown in the
Appendix, unless otherwise explicitly mentioned in the text.
In Sec. 3 we use these equations to represent two neurons
connected via bidirectional electric coupling. In this case
Eq. (1) has an addition current, I0,1 = gc(V0,1 − V1,0), where
the subscripts refer to the two neurons named 0 and 1, and
the conductance gc is the coupling constant. The numerical
simulations were carried out applying the standard Runge-
Kutta fourth order method, and the variables and parameters
in the model represent quantities of physiological relevance
for the real system. This includes the conductance gc, except
that the behaviors we see in our study would be expected to be
found at weaker coupling in the real system [21,22].

B. Calcium-activated potassium current

Essentially, action potentials are produced when open Na+

channels allow enough flow of Na+ into the cell, raising the
membrane potential above the threshold of firing. Overlapping
with the process of closing Na+ channels, K+ channels open
but this time the flow of ions is in the opposite direction, from
inside to outside of the cell. The overall result is that after the
quick rise, the membrane potential decreases sharply, ending
the action potential with a downward overshooting translated
into hyperpolarization due to the concomitant inactivation of
the Na+ channels. The wake of the action potential may be
followed by an extended phase controlled by K+ channels
activated by Ca++.

These channels are important regulators for neuronal
excitability, including pacemaker neurons in the hypothalamic
arcuate nucleus [23], are believed to limit the neuron’s
firing rate and also to be responsible for spike-frequency
adaptation [24–28]. The control parameter gsr in our model
equations represents the maximum conductance associated
with K+ channels activated by Ca++. It is an important
parameter used here in association with the injected current
Iinj to generate a wide variety of spiking patterns as shown in
Fig. 1, where the color (online) map in panel (a) displays
colored (shades of gray) regions associated with different
neural behaviors, as indicated by the points 1, 2, 3, and 4,
corresponding respectively to panels (c) tonic, (d) bursting,
(e) chaos, and (f) bursting with one spike per burst. The
gray area on the upper right-hand side of panel (a) is for
subthreshold oscillations only, with no spikes. Barely visible
traces of green (light gray) correspond to parameter space
regions for bursts with alternated two and three spikes (voltage
trace not shown). In panel (a), the border between tonic [region

FIG. 1. Single neuron dynamics. (a) Color map for gsr vs Iinj

with colors (different shades of gray) related to the neuron’s spiking
patterns as depicted in panels (c), (d), (e), and (f) corresponding
respectively to parameter space points 1, 2, 3, and 4 in panel (a). (b)
Color map equivalent of parameter space of map in panel (a), for
the corresponding firing rates according to the color coded bar on
the right-hand side (dark to light gray). Voltage traces (c) tonic, (d)
chaos, (e) burst with four spikes per burst, and (f) bursting with one
spike per burst corresponding to points 1, 2, 3, and 4 respectively in
panel (a).
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FIG. 2. Single neuron firing rate as a function of gsr with
Iinj = 1.0. The arrow indicates the critical value gcritical

sr = 0.305 were
the transition between tonic and burst regimes occurs for the single
neuron.

containing point 1, cyan (medium light gray)] and bursting
[(region containing points 2 and 3, red and yellow (gray and
light gray)] parameter spaces is of particular relevance because
the transition between these two regions represents a drastic
change in the dynamical state of the neuron, although not
necessarily translating into big changes in its firing rate. As
an agent for slow hyperpolarization of the cell membrane,
increasing gsr values should eventually make the tonic neuron
go into the bursting regime.

Panel (b) shows the color (shades of gray) coded average
firing rate (color bar on the right-hand side in Hertz) associated
with each combination of gsr and Iinj in panel (a). This color
coded frequency shows how the firing rate varies in the range
of gsr and Iinj as displayed, indicating that the overall firing rate
of the single neuron decreases with increasing values of gsr and
Iinj. All firing rates were obtained from long time averages of
the corresponding simulated dynamics. An extended range of
this color map can be found in Ref. [20].

For the purpose of this work we focus on fixed Iinj = 1.0
in order to study the interactions between tonic and bursting
neurons electrically coupled. Along this Iinj = 1.0 line [dotted,
shown in Fig. 1(a)], increasing values of gsr make the neuron’s
firing rate evolve as displayed in Fig. 2, with two distinct
overall downward trends. For gsr values between 0.200 and
0.305 (units for conductances g assumed to be mS/cm2 and
for currents I to be μA/cm2 throughout the text) the plot is
smooth with a more accentuated slope compared to the bumpy,
with a less accentuated slope for gsr values between 0.305 and
0.500. In fact, the critical value gcritical

sr = 0.305 defines the
transition point between tonic (to the left) and bursting (to the
right) regimes along the Iinj = 1.0 line in Fig. 1(a).

In the tonic region, starting at gsr = 0.200 mS/cm2 with
a frequency of f = 8.11 Hz, increasing values of gsr up to
gcritical

sr lowers the neuron’s frequency down to f critical = 1.25
Hz, at which point for a short range of increasing gsr up to
the value 0.3125 actually raises the neuron’s frequency to
2.125 Hz. This change in trend from lowering to increasing
the neuron’s frequency also marks the change in behavior
of the neuron from tonic to bursting. As we shall see, this

transition seems to play a role in the way two neurons,
one tonic and the other bursting, synchronize in a common
regime, either tonic or bursting. Continuing to increase gsr

sets the neuron on an upward trend in frequency until
gsr � 0.3125 mS/cm2 with a frequency f = 2.24 Hz. From
this point on, increasing gsr puts the neuron on an overall
trend of decreasing frequency values, with a few bumps in
a staircase format all the way through gsr � 0.469, where
it enters a narrow band of subthreshold oscillations with no
spikes, and then afterwards enters a region where it remains in
its resting potential. Essentially, increasing gsr corresponds to
increasing the number of open calcium-dependent potassium
channels, causing the membrane potential to move down
toward repolarization, and therefore lowering the neuron’s
spiking frequency. Besides the tonic vs. burst behavior for the
neuron in the respective ranges between 0.200 and 0.305, and
between 0.305 and 0.46875, the rates of frequency change in
the two regimes are drastically different as seen by the slopes
of the plot in the two regions in addition to the smooth (tonic)
versus bumpy (burst) evolutions. All the critical values of the
parameters in this work were obtained from the data generated
from our computer simulations.

III. ELECTRICALLY COUPLED NEURONS

A. Tonic versus bursting synchronization

Pairs of neurons hereafter named neuron 0 and neuron
1, electrically connected through diffusive coupling [29,30]
I0,1 = gc(V0,1 − V1,0), may synchronize or not, depending on
how different from each other the intrinsic dynamics of the
individual neurons are, and on how strong the coupling gc

between them might be. For the purpose of this study we select
neuron 0 to be tonic and neuron 1 to be bursting. Let us set
neuron 0 with gsr0 = 0.24 [frequency f0 = 5.84 Hz, voltage
trace in red (gray) shown in Fig. 3 inset (a)] and neuron 1
with gsr1 = 0.36 [frequency f1 = 1.69 Hz, voltage trace in
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FIG. 3. Superimposed bifurcation diagrams for tonic [salmon
(gray)] and bursting [dark blue (black)] neurons for increasing gc.
Their dynamical states evolve to synchrony in the tonic regime for
gc � 0.049. Insets (a) and (b) display the voltage traces for uncoupled
tonic neuron 0 [gsr0 = 0.24, salmon (gray)] and bursting neuron 1
[gsr1 = 0.38, dark blue (black)], respectively. Inset (c) shows the
superimposed voltage traces of the synchronized neurons.
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blue (black) shown in Fig. 3 inset (b)]. Their superimposed
bifurcation diagrams keeping the same coded colors and using
the electrical coupling strength gc as the bifurcation parameter,
are shown in Fig. 3.

For gc = 0, the two neurons are in their original states
which start to change as gc begins to increase. Neuron 0 has its
initially fixed interspike interval varying in a small range while
neuron 1 goes from its original five spikes per burst state to
states of larger numbers of spikes per burst as indicated by the
stripes (each stripe roughly representing an interspike interval
in the respective burst). At gc � 0.030, the bursting neuron 1
undergoes a typical homoclinic bifurcation that happens when
a periodic orbit collides with a saddle point [31]. Past the
homoclinic bifurcation point the magnitude of the interspike
intervals for neuron 1 decreases sharply and at gc � 0.045 the
two neurons synchronize in a period-one state remaining so
from that point on (voltage traces of the two neurons shown
superimposed in inset (c)). In this case, gsr0 = 0.24 to the
left and gsr1 = 0.36 to the right are positioned at about equal
distances from gcritical

sr = 0.305 (see Fig. 2). However, they
correspond to very disparate firing rates, f0 = 5.84 Hz and
f1 = 1.69 Hz, due to rather different slopes for the firing rate
versus gsr curves for tonic and bursting regimes displayed in
Fig. 2. This means that the tonic neuron 0 is firing at a rate about
three and a half times the firing rate of the bursting neuron 1,
making neuron 0 more dominant. The tendency would be for
these two neurons to synchronize in the tonic regime, and
indeed this is what they do, remaining so for the extent of the
range of the coupling strength.

Let us now look at another case of two neurons initially
uncoupled, neuron 0 with gsr0 = 0.29 [frequency f0 = 2.22
Hz, voltage trace shown in Fig. 4 inset (a)] and neuron 1 with
gsr1 = 0.41 [frequency f1 = 1.08 Hz, voltage trace shown in
Fig. 4 inset (b)], both at Iinj = 1.0. Similar to the previous
case depicted in Fig. 3, here the superimposed bifurcation
diagrams (Fig. 4) start at gc = 0 with neuron 0 (red) tonic and
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FIG. 4. Superimposed bifurcation diagrams for tonic [salmon
(gray)] and bursting [dark blue (black)] neurons for increasing gc.
Their dynamical states evolve to synchrony in the bursting regime
for gc � 0.048. Insets (a) and (b) display the traces for uncoupled
tonic neuron 0 [gsr0 = 0.29, salmon (gray)] and bursting neuron
1 [gsr1 = 0.41, dark blue (black)] respectively. Inset (c) shows the
superimposed traces of the synchronized neurons in the tonic regime.

neuron 1 (blue) bursting. Increasing the value of gc initially
allows the two neurons to evolve separately, passing through
a few transitions including windows of periodicity and also
a homoclinic bifurcation (at gc � 0.018), continuing up to
gc � 0.048 at which point they synchronize. However, dif-
ferent from the previous case, they now synchronize in the
bursting regime. Their superimposed voltage traces are shown
in Fig. 4 inset (c).

The gsr0 = 0.29 and gsr1 = 0.41 values in this case are not
nearly equidistant, respectively to the left and to the right,
from gcritical

sr = 0.305. In fact, the value of gsr0 is much closer to
gcritical

sr than that of gsr1, putting neuron 0 closer to the transition
point between tonic and bursting compared with the position
of neuron 1. Despite the frequency of neuron 0 to be about
twice that of neuron 1, the strong busting dynamics of neuron
1 is the predominant factor, forcing the tonic neuron 0 into
bursting when they synchronize.

The two cases presented above suggest that knowledge
about the initial states of the two neurons may not be
sufficient to anticipate the regime in which they will eventually
synchronize. Moreover, a higher initial firing rate displayed by
either of the initially uncoupled neurons is not guaranteed to
make their common synchronous state that of the faster neuron.

An additional measure that can help to better understand
the tonic versus bursting synchronization dichotomy takes into
account the frequency the two neurons share when they first
synchronize. The color map of Fig. 5, with gsr0 values for
neuron 0 along the x axis and gsr1 values for neuron 1 along
the y axis, shows the firing rate of the two neurons at the
point where they synchronize, quantified in the color code
indicated by the color bar on the right-hand side of the figure.
Consider, for example, a point at the bottom left corner of this
color map with coordinates gsr0 = 0.21 for neuron 0, originally
tonic, and gsr1 = 0.32 for neuron 1, originally bursting. With a
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FIG. 5. Parameter space color map for different values of gsr0 and
gsr1. The color code (bar indicated on the right-hand side, black to
light gray) shows the firing rate at which the two coupled neurons
synchronize. The black strip marks the border between neurons
synchronized in the tonic regime (on the left) and bursting regime
(on the right). The firing rate along this border is fmin = 1.25 Hz.
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strong enough coupling, they synchronize in the tonic regime
with a common firing rate of f0sync = f1sync = 5.80 Hz.

Consider now a point at the top right corner, with coordi-
nates gsr0 = 0.28 for neuron 0 originally tonic, and gsr1 = 0.44
for neuron 1 originally bursting. When they first synchronize
they do so in the bursting regime, with a common firing rate
of f0sync = f1sync = 1.8 Hz. If we start at the first point on the
bottom left corner and move in parameter space on a straight
line to the second point on the top right corner, our starting
point is in a region of higher synchronous frequency fsync,
and as we move toward the top right corner of the map, fsync

initially decreases until we reach a region with the lowest
frequency (black strip with negative slope). Past the darker
strip we enter a region of increasing fsync, but now the firing
rate is going up at a slower pace compared with the decrease
in the fire rate encountered on the left-hand side of the black
strip. This strip of lowest fsync happens to be at the border
between the parameter space region for tonic synchronous
states and the parameter space region for bursting synchronous
states. This means that points in Fig. 5 to the left side of
this border correspond to pairs of neurons, one tonic and the
other bursting, that will synchronize in the tonic regime, and
points on the right side of this border to neurons that will
synchronize in the bursting regime. Moreover, the minimum
synchronous frequency characteristic of the borderline points,
typically fmin = 1.25 Hz, matches the minimum frequency
characteristic of the single neuron, itself at the border between
tonic and bursting states, with gsr = gcritical

sr , as shown in Fig. 2.
It seems that the two synchronous neurons acting as one,
since they are operating synchronously, develop an peculiar
combination of their individual dynamics that brings to their
collective behavior characteristic features of their behaviors
individually. In this way, the single-neuron graph showing the
evolution of the firing rate as a function of the conductance gsr

in Fig. 2 can be viewed as a one-dimensional projection of the
two-neuron color map in Fig. 5. Both display a minimum firing
rate, f critical for the single neuron and fsync for the pairs of neu-
rons, with the same value of 1.25 Hz, and both display distinct
regions of tonic and of bursting regimes, separated by a point in
the single neuron case and by a line in the pair of neurons case.

B. Bifurcation transitions

In the previous section we considered two cases for pairs
of different electrically coupled neurons, one tonic, the other
bursting. In the first case the neurons synchronize in the tonic
regime, and in the second case the neurons synchronize in
the bursting regime. We now discuss a third case, also for
two electrically coupled neurons, one tonic and the other
bursting, that incorporates aspects of both previous cases.
This particular class of pairs of neurons first synchronize in
the tonic regime and, as the coupling strength increases, the
synchronous neurons undergo a transition through a period
doubling cascade, then into chaotic behavior after which they
reach the bursting regime where they remain from that point on.

In fact, the region in Fig. 5 above described as the parameter
space area for which the two neurons synchronize in the tonic
regime, can be split into two subregions, both for the two
neurons first synchronizing in the tonic regime. However, as
shown in Fig. 6, in parameter space labeled (i), the two neurons
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FIG. 6. Phase diagram for different values of gsr0 and gsr1 showing
regions of (i) tonic, (ii) period-doubling cascade, and (iii) bursting
behaviors.

synchronize in the tonic regime and remain in that state for
increasing values of gsr, while in parameter space labeled (ii),
the two neurons first synchronize in the tonic regime and then,
with increasing values of gsr they move into chaos, then period-
doubling cascade and then into bursting. In parameter space
labeled (iii), the two neurons first synchronize in the bursting
regime directly and stay in that state. The border line separating
subregions (ii) and (iii) coincides with the dark points for
lowest synchronous frequencies exhibited in Fig. 5.

In order to learn more about the evolution of the dynamics of
two neurons with gsr values intersecting in the subregion (ii) of
Fig. 6, we couple neuron 0 with gsr0 = 0.26 initially tonic and
neuron 1 with gsr1 = 0.36 initially bursting, and increase gc

from zero up to 0.14. The superimposed bifurcation diagrams
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FIG. 7. Superimposed bifurcation diagrams for tonic [gsr0 =
0.26, salmon (gray), inset (a)] and bursting [gsr0 = 0.38, dark blue
(black), inset (b)] coupled neurons for increasing gc. Their dynamical
states evolve to synchrony in the tonic regime for gc � 0.046, inset
(c) for gc = 0.06. Further increase in gc leads the two synchronous
neurons into a period-doubling cascade at gc � 0.071, to chaos
[inset (d) for gc = 0.09], and further down into bursting starting at
gc � 0.119 [inset (e) for gc = 0.13].
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for the interspike intervals of neuron 0 and neuron 1, using
gc as bifurcation parameter, is shown in Fig. 7 (neuron 0 red,
neuron 1 blue). The two neurons start at their own (periodic)
states at gc = 0, and increasing gc values initially expands the
interspike intervals for both neurons in different ways.

In the gc range between �0.0024 and �0.046 the two
neurons remain nonsynchronous and mostly chaotic, except
for a few windows of periodicity. By gc � 0.046 the two
neurons synchronize in a period-one orbit which doubles at
gc � 0.071, with another period-doubling at gc � 0.079, etc.
It is a typical period-doubling cascade leading the two coupled
neurons together into chaos, which happens at gc � 0.0801.
Further increase in the values of gc leads the synchronous
neurons into chaos in the gc range between �0.081 and
�0.112 with several periodic windows opened by a saddle-
node bifurcation and closed by a global bifurcation (internal
crisis) [32]. At gc � 0.112 the two neurons leave the chaotic
window and start into the bursting regime, with a few escapes
up to gc � 0.119 from which point on the two neurons keep a
solid bursting.

IV. CONCLUDING REMARKS

Synchronization in neurological systems is critical for the
survival of many species. Networks of neurons precluded
from operating in synchrony may jeopardize vital functions,
underscoring the functional relevance of stable and robust
mechanisms underlying neuronal synchronous processes. A
commonly found way neurons use for communicating with
one another is through gap junctions, implemented in this study
to help unravel the intricacies involved in the achievement
and maintaining of synchronous states. In particular, we are
interested in better understanding processes leading pairs of
reciprocally coupled neurons into one of two possible final
states, tonic or bursting, or a transitional combination of both.
The pair of neurons we use consists of one neuron initially
in the tonic regime and the other initially in the bursting
regime. As their coupling strength gc is increased, the two
neurons eventually synchronize either in the tonic or in the
bursting state, depending on the values of their conductance
gsr associated with calcium dependent potassium channels.
Three cases are distinguished: (i) The neurons synchronize
in the tonic regime and remain so for the range of gc;
(ii) The neurons synchronize initially in the tonic regime and,
as gc increases, they go through a period-doubling cascade and
then chaos, to ultimately reach the bursting state where they
remain; (iii) The neurons synchronize in the bursting regime
where they stay for the range of gc (Fig. 6).

We found a direct connection between these synchronous
(tonic and bursting) states for pairs of coupled neurons and
the evolution of a single neuron from tonic to bursting with
varying gsr. For the single neuron, the transition between tonic
and bursting happens for gcritical

sr = 0.305 at a lowest firing rate,
fmin = 1.25 Hz (Fig. 2, arrow). This frequency matches the
minimum firing rate observed for pairs of coupled synchronous
neurons as indicated by the black strip observed in Fig. 5. In
the gsr0 range between 0.24 and 0.29, the combination of gsr0

and gsr1 values, that correspond to the common synchronous

minimum firing rate for the two neurons, is represented by
the linear relationship gsr1 � 1.03–2.40gsr0, which is the line
separating regions of tonic-to-bursting (ii) and bursting (iii) in
Fig. 6. In addition, these gsr0 and gsr1 also correspond to the
minimum gc needed to synchronize the two neurons. Regions
(i) and (ii) correspond both to first synchrony in the tonic
regime. In (i) the two neurons synchronize first in the tonic
regime and stay in that state, while in (ii) the two neurons also
synchronize in the tonic regime but, for increasing gc values,
the two neurons move together to a period-doubling cascade,
then to chaos, and finally to bursting where they stay. This
shows the relevance of the conductance for potassium calcium-
regulated channels, not only for influencing the dynamics
of the single neuron, but also for the role it plays when
coupled neurons move into synchronous states. For example,
in Fig. 5 we plot the frequencies at which the two neurons
first synchronize upon strong enough coupling. The range for
gsr0 sets neuron 0 tonic, and the range for gsr1 sets neuron
1 bursting. Given the complexity of the reciprocal electrical
interactions between the two different neurons, it is interesting
that the relationship between the gsr values for the two neurons
is linear for the minimal synchronous frequency. On the other
hand, back to Fig. 2, it should be expected that approaching
gcritical

sr from the tonic side (increasing gsr for the tonic neuron),
and approaching the same gcritical

sr from the bursting side
(decreasing gsr for the bursting neuron), would set pairs of
neurons with the tendency for synchronizing (with a common
firing rate), therefore the negative slope for the black strip at
fmin in Fig. 5.

An important problem still open involves the capability
for prediction of the final state in which the two neurons
will eventually synchronize, given a certain coupling strength
between them. Our results suggest that, in the case of a
tonic and a bursting neuron, there might exist a simple linear
relationship between common parameters with the potential
for providing a good indication of the final state.
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APPENDIX: MODEL PARAMETERS

gleak = 0.1 mS/cm2, Vleak = −60 mV,

gNa = 1.5 mS/cm2, VNa = 50 mV, V0Na = −25 mV,

gK = 2.0 mS/cm2, VK = −90 mV, V0K = −25 mV,

gsd = 0.25 mS/cm2, Vsd = 50 mV, V0sd = −40 mV,

gsr = 0.25 mS/cm2, Vsr = −90 mV, C = 1 μF/cm2,

τK = 2.0 ms, τsd = 10.0 ms, τsr = 20.0 ms,

sK = 0.25 mV−1, ssd = 0.09 mV−1, ssNa = 0.25 mV−1,

ρ = 0.607, φ = 0.124, νacc = 0.17, νdep = 0.012,
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