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Billiard with a handle
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We consider an open billiard with two holes, connected by a handle. The central billiard is chosen so that its
closed form’s islands of stability occupy a significant part of the phase space. Holes destroy these islands, which
leads to almost all trajectories of the system being interleaved. We also study the unbalanced flow of billiard
particles through the handle, which appears only after a small border site of nonspecular reflection is added to
the system. With this site our system is rather a ratchet of a different type, since the site does not produce an
explicitly acting force or violate the reversibility of trajectories.
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I. INTRODUCTION

Mathematical billiards are standard objects of study in
the chaos theory; they are the simplest low-dimensional
Hamiltonian systems that implement chaotic behavior. The
behavior of many physical systems can be reduced to the
motion of a particle in a billiard. It is difficult to overestimate
the importance of billiards for the basic concepts of statistical
physics [1]. In a general case the phase space of a billiard
is mixed and contains areas of both regular and chaotic
motion. However, there are completely chaotic billiards [2,3]
or completely regular ones, such as in the case of an elliptic
billiard [4] or a confocal parabolic billiard [5,6]. Big attention
is drawn to the study of behavior of trajectories in some
generalizations of usual billiards. Such generalizations include
soft billiards [7], billiards with a modified law of reflection
[8,9], and billiards in external fields [10,11].

An important part of billiards theory comprises open
billiards, which are currently intensively studied [12–17].
They are related to such fields of physics as optics, statistical
physics, plasma physics, and many others. Detailed description
of this interconnection can, for example, be found in the
review [18]. Considering open billiards, attention is mainly
given to the distribution of escape times from the billiard. In
general, exponential distribution law is typical for a strongly
chaotic behavior and sedate law in the case of a regular one
(see, e.g., [19]). Often, in addition to the main exponential
decay, a power-law tail of the distribution is observed. An
open billiard may have a border with more than one hole.
For example, in the work [20] the Bunimovich billiard with
two holes was studied, and it was shown that the existence
of a power-law tail depends on the choice of the holes’
positions.

In this paper we consider a system consisting of an open
billiard with two holes and a handle connecting these holes
with each other, so that the whole system is closed. Due to
the presence of a handle, the distribution of particles entering
the billiard is formed in a natural way. The border of this
billiard consists of four parts, two of which are parabolas and
other two are circle segments. Parabolas generally are not
confocal, but the movement of particles between them largely
inherits the properties of motion between confocal parabolas,
which is integrable. As a result, there are significant regions

of regular motion in the phase space. A family of similar
billiards, some periodic orbits, and their stability were studied
in [21]. Opening the holes can destroy quasiperiodic motion
on the island of stability, since it removes part of the billiard’s
boundary, which might be hit by the trajectory. The influence
of this effect in open billiards is currently incompletely studied.
In our billiard it leads to an intermittent character of particle
motion.

The presence of a handle raises a natural question about
the possibility of unbalanced, directional motion of billiard
particles through it. In a pure billiard the occurrence of
such flow is impossible. However, such flow may occur
after addition to the system of a small border site having
almost anything but a specular law of reflection. Billiards with
modified reflection laws are also currently under consideration
[22,23] and are of interest because such laws of light reflection
are doable. For example, the method provided in the paper
[24] allows creation of surfaces with structure (metamaterials
essentially) which can have almost any preset law of reflection.

We consider both the collisionless case, corresponding to
the motion of light rays, and the case of colliding particles.
Rare-enough collisions, with a mean free path being an order
of magnitude greater than the system’s size, have no essential
influence on macroscopic flow.

Such a system with a nonspecular border site and stationary
flow of particles is far enough from usual billiards. As there is
no visible acting force supporting the flow, it may be consid-
ered as a ratchet of a new type. Currently, ratchets have been
intensively studied both theoretically and experimentally, due
to many promising applications in such areas as Brownian and
molecular motors [25–27], atomic and optical ratchets [28,29],
organic-electric ratchets [30], and many others. The effects
associated with the spontaneous appearance of directional
motion are experimentally observed in many biological [31]
and just micro- and nanodimensional systems.

II. CENTRAL BILLIARD

Let us consider a billiard with mixed phase space, propitious
for maximization of effects related to the islands of stability.
The geometry of this billiard is shown at Fig. 1. Its boundary
consists of four smooth parts, joined together at the points
with coordinates (±ax,±ay). The top and bottom parts are
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FIG. 1. General view of a billiard with parameters ax = 80, ay =
12, a = 100. Parametrization of its boundary and a part of typical
trajectory of central island are shown.

parabolic arcs,

y = ±
(

ay + a2
x − x2

2a

)
, x ∈ [−ax,ax], (1)

where ax,ay,a are the billiard’s parameters; parameter a

determines the curvature of parabolas. Two lateral parts of

the boundary are circle arcs of radius r =
√

a2
y + ( axay

a
)2 with

centers at the points ±(ax − axay

a
,0). They are chosen so that

their cross linking with two other border parts was of a
smooth C1.

Such a billiard can be regarded as a generalization of
Bunimovich billiard [32], since it transfers to it at a → ∞. This
billiard will be obtained from a stadium billiard, if the strait
border sides between circle arcs are replaced with parabolic
segments.

Phase portraits of the considered billiard, built in Birkhoff
coordinates (si, sin �i) for different parameter values, are
shown in Fig. 2. The position of a point on the billiard’s
boundary is determined by the coordinate s. It is measured
along the boundary of the billiard as shown at Fig. 1 and is
normalized by the length of the billiard’s perimeter. In other
words, 0 � s < 1. The coordinate �i is an angle of incidence
for reflection from a boundary point si .

The phase portrait of a billiard consists of a chaotic sea and
islands, among which the central one may be distinguished.
The share of phase-space volume, occupied by the system
of islands, can vary depending on parameters a,ax,ay from
zero to almost the entire phase-space volume. Trajectories
belonging to the chaotic sea have a positive Lyapunov
exponent.

The configuration of the islands of stability depends on
the choice of the billiard’s parameters. For their certain
choice, a significant part of the phase space is occupied by
the only one central island of stability, as shown at Fig. 2.
Trajectories corresponding to this island of stability collide
only with parabolic sites of the billiard’s border. A part of
the typical trajectory belonging to the central island is shown
at the Fig. 1. This simple phase-space organization makes
the proposed billiard most convenient for the consideration of
effects associated with the presence of islands of stability. A
single large-size island makes them well distinguishable.
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FIG. 2. Phase portraits of billiards with parameters (a)
ax = 80, ay = 12, a = 100 and (b) ax = 80, ay = 34, a = 100 in
Birkhoff coordinates.

III. ADDITION OF A HANDLE TO A BILLIARD

Let us make two holes of sizes d1 and d2 in the boundary
of the original billiard so that it becomes open. Through these
holes particles can enter and leave the billiard. Let the hole of
size d1 be in the upper half of the central billiard and the one
of size d2 be in the left half. Now we connect these holes with
a handle of two concentric circles, so that the system becomes
closed again, as shown at Fig. 3. The hole’s sizes will be chosen
to be much lesser than the length of the billiard’s perimeter.
The handle parameters are unequivocally determined by the
choice of the holes’ sizes. Further, we assume to be not valid a
choice where the handle appears to be lying inside the central
billiard.

The phase portrait makes it easy to understand the impact
of the handle on billiard trajectories. Indeed, the presence of
a hole means that trajectories entering the strip [sd,sd + d] in
the phase space would get into the handle. Here d is the size
of a hole and sd is the coordinate of the beginning of the hole
in billiard’s boundary. The geometry of the handle guarantees
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d1

d2

FIG. 3. General view of the considered billiard; it consists of a
central billiard and a handle connecting holes. Also shown is a part
of typical trajectory, consisting of the motion on the island up to hole
d1, passage through the handle, and further motion in the chaotic sea.
Billiard parameters are a = 100, ax = 80, ay = 9.5, d1 = 1.45, and
d2 = 2.9.

that there will be no reversal of the trajectory during motion
in it. In fact, this is the main property of a handle, owing to
which its specific parameters are of no importance. Trajectory
will definitely return to the billiard through the first hole in the
case of leaving through the second.

Hole d1 is at the top of the billiard and its opening destroys
the central island of stability, because the trajectories of
the island were partially falling on the removed part of the
border. Now the trajectories of the chaotic sea and island
of stability ceased to be separated from each other. Particles
from the chaotic sea can now get into the handle and come
out on a trajectory that for a closed billiard belongs to the
island of stability, and vice versa, as shown in Fig. 3. As
a result, a much larger part of phase space is available for
a single trajectory. Such a trajectory in the phase portrait
fulfills previously inaccessible parts of the phase space so
that the result looks like a single chaotic sea. From this point
of view, all trajectories appear like chaotic ones. However, the
properties of the trajectories still strongly depend on the char-
acteristics of the destroyed island of stability. Thus, before the
opening of holes there were only chaotic and regular trajec-
tories. After the holes’ opening, all the trajectories passing
them change their type to intermittent. Each such trajectory
repeatedly transfers from the chaotic sea to the area of regular
motion and backwards.

A typical view of emerging intermittent trajectories is
shown in Fig. 4. It should be emphasized that the quasiperiod
of motion on the destructed island exactly coincides with
the quasiperiod of the corresponding trajectory belonging to
this island in the closed billiard. The duration of periodicity
preservation depends on the characteristics of the island and
the size of input window and can be long enough. Thus,
with the help of a handle it is possible to connect some islands
with the chaotic sea, making their trajectories intermittent.

Intermittent trajectory consists of chaotic and laminar
phases of motion. Let us consider what part of the trajectory is
chaotic and, accordingly, what is the average share of laminar
phases in the intermittent trajectory. As it turned out, the share
of chaotic component in the trajectories depends only on the
parameters of the billiard and does not depend on the holes
sizes d1, d2. However, the sizes of holes determine the average
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FIG. 4. Typical view of intermittent trajectory si(i) for a billiard
with parameters a = 100, ax = 80, ay = 3, d1 = 0.03, and d2 = 0.08.
The gaps correspond to the trajectory being outside the billiard during
its motion through the handle.

duration of laminar and chaotic trajectory phases. The smaller
are the holes’ sizes, the less frequent are transitions through the
handle, and the greater are the times a trajectory spends on the
island before leaving it or in the chaotic sea before returning to
the island. However, the ratio of average durations of chaotic
and laminar phases remains constant.

The value of this ratio can be estimated, assuming that
average durations of laminar and chaotic phases of motion
are proportional to the volumes of corresponding regions in
phase space. Generally, it is extremely difficult to calculate
analytically the volume of phase space under islands of
stability. However, the considered billiard has a region of
parameters where the structure of the islands is simplified.
In particular, when a = 100, ax = 80, and ay ∈ (20,34) there
is only one island in the phase space, and its size is limited
by the periodic “bird” orbit, which is unstable [21]. When
ay > 34 or ay < 20 the island’s size is limited by the parabola
end points and determination of the island’s shape becomes
complicated. For ay ∈ (20,34) in Birkhoff coordinates it has
the form of a rhombus [see Fig. 2(b)], whose parameters can be
determined from the simple bounding unstable periodic orbit.
Appropriate calculation results in the following formula for
the island’s volume:

sisl = xmax
xmax

√
a2 + x2

max + a2arcsinh
(

xmax
a

)
aLper

√
a2 + x2

max

, (2)

where

xmax =
√

2
(
2aay + a2

x − a2
)
,

Lper = 2

√
1 + a2

x

a2

[
ax + 2ay arcsin

(
a√

a2 + a2
x

)]

+ 2aarcsinh

(
ax

a

)
.

The value xmax has the meaning of maximum possible
deviation of the island’s trajectories from the origin along the x

axis, and Lper is the length of billiard’s perimeter. Comparison
of the chaotic sea share in the phase space, calculated according
to the formula 1 − sisl, with a share of chaotic components in
the intermittent trajectory, is shown at Fig. 5. It is obvious that
they are in good agreement.
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FIG. 5. Dependence of the share of the chaotic component in
intermittent trajectory on the billiard’s parameter ay for a = 100,
ax = 80, and hole sizes d1 = 1.45 and d2 = 2.9. The trajectory was
constructed until N = 0.5 × 105 chaotic sites was achieved. The solid
line is a plot of the share of chaotic sea in the phase space 1 − sisl.

Therefore, the considered billiard allows the construction of
intermittent trajectories with predetermined average duration
and share of chaotic and laminar phases. The average duration
of phases is controlled by the holes’ sizes, and their ratio is
controlled by the billiard parameters.

IV. MODIFICATION OF A BILLIARD NONSPECULAR
REFLECTION SITE

After the addition of a billiard’s handle, a question naturally
arises about the possibility of unbalanced flow of particles
through the handle. In a certain sense, it could be regarded as a
question about the possibility of a modified Maxwell’s demon.
It is clear that the emergence of a flow is impossible for an
ideal gas in the state of equilibrium. However, the question
remains for nonequilibrium states. Let us consider in more
detail the structure of billiard’s trajectories and possibilities to
make unbalanced the numbers of passages through the handle
in forward and reverse directions.

The positions of holes d1 and d2 were chosen so that through
hole d1 the trajectories would mostly get onto the central
island and rarely into the chaotic sea, and through the d2 the
trajectories would only get into the chaotic sea and never on
the island. All the trajectories leaving the island would pass
through hole d1. All trajectories that enter through hole d2 are
in chaotic sea and may leave the billiard through any hole,
mostly through d2. The distribution of leaving-chaotic-sea
trajectories between holes d1 and d2 depends on the size of the
central island and, accordingly, the parameters of the billiard.
For a sufficiently large island, the number of particles leaving
through hole d2 is much greater than that through hole d1 of
equal size.

For some parameters of the billiard, trajectories of its central
island are arranged in such way that if the trajectory starts in
the vicinity of hole d1, then after the half period of the island’s
motion it gets to the border site, opposite hole d1. In other
words, as shown in Fig. 6, the island focuses on some border
site d3 all passing hole d1 trajectories. This is due to a regular
character of motion on the island. We can replace a site d3 with
some special border site, which will transfer the trajectories

d1

d2

d3

FIG. 6. The position of special site d3 and the property of the
central island to focus trajectories on it.

from the island to the chaotic sea. Then most of the trajectories
entering the billiard through hole d1 will first get to the island,
then through this special site into the chaotic sea, and from
there, mainly through hole d2, into the handle and back to hole
d1. Thus, there may occur a circular flow of particles entering
the billiard through hole d1 and leaving through d2.

For the above-described mechanism to work, it is necessary
for the number of particles passing through a special site from
an island to a chaotic sea to be greater than the number of
particles passing through that site in the opposite direction,
from the chaotic sea to the island. At first glance this is
expected to be, regardless of the particular arrangement of this
site. Because the island due to its regularity rapidly focuses
trajectories on this site, it is in a certain sense of a large effective
size and is easy to be found, whereas for a chaotic sea that
little border site does not differ. However, it appeared that if
a special site is organized as some scattering irregularity of a
border, in the form of a beak, semicircle, etc., reflection from
each point of which is specular, the flow through the handle
does not occur. The reason for this is that the billiard’s motion
preserves the phase volume, and the trajectories in a chaotic
sea are evenly distributed over the phase volume. If there is
a trajectory that starts in the chaotic sea, passes successively
holes d1 and d2, and returns into chaotic sea, there also is
a reverse trajectory. The rate of getting a long trajectory in
some equal phase-space volumes surrounding such forward
and reverse trajectories is the same. Therefore, the appearance
of a stationary flow in a pure billiard is impossible.

Let a special border site be a straight site, as shown at
Fig. 7 with a modified law of reflection. As a replacement of
the specular reflection law we choose for this site the next

d3

V

V'

FIG. 7. The replacement of a small part of the border by a special
flat site d3 and its law of reflection.
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simple law of reflection:

v′
x = sgn(vx)|vy |,

(3)
v′

y = |vx |.
In invariant form it also can be written as

V ′
n = Vτ , V ′

τ = ±Vn. (4)

Here the prime denotes the velocity of a particle after
reflection, Vn is the velocity component normal to the boundary
at a point of incidence, and Vτ is tangential component.
Geometrically, this law corresponds to the reflection at a right
angle to the initial direction of particle motion. It is easy to see
that this law of reflection preserves some important properties
of specular reflection (Vn = −Vn, V ′

τ = Vτ ). Such reflection
does not violate the reversibility of trajectories and energy
conservation law. However, every single reflection act does
not retain a particle’s momentum.

Let us discuss the possibility of implementing such a law of
reflection. First, we note that a specular reflection of light, for
example, generally speaking, is an abstraction. Upon reflection
of a beam of electromagnetic waves from a flat surface, there
is a shift of the beam in the plane of incidence, corresponding
to the reflection from a certain effective surface lying below
the real one. This shift depends on the angle of incidence of
the beam. For total reflection of polarized light in addition
there is a shift relative to the plane of incidence, called the
Fedorov effect [33]. It is therefore of some interest how
robust the results obtained for an idealized case of specular
reflection.

Apart from some natural nonspecularity, surfaces with a
nonmirror law of reflection can be created artificially. For
example, the method of creation of surfaces with structure
(essentially, a metamaterial), proposed in the paper [24], allows
them to have almost any preset law of reflection. In the paper
[34] nonspecular reflection of electromagnetic waves from an
array of short-circuited coaxial-sector waveguides has been
studied, in particular the mode of orthogonal reflection from a
two-dimensional periodic lattice, which implements the law of
reflection close to our law (3) with complete transformation of
energy of incident wave into the energy of the wave reflected
in orthogonal direction.

It should be noted that, apart from the law (3), we also
consider other laws of reflection, including those violating
the reversibility and the conservation of particle’s energy. In
all cases, a macroscopic flux of particles of greater or lesser
intensity also appeared through the handle.

V. DIRECTED FLOW OF PARTICLES

Let us now consider the behavior of an ideal gas of non-
colliding particles placed inside the above-described system
with a handle and a special border site. As the particles do not
collide with each other, the behavior of the gas can be reduced
to the behavior of a single particle provided that its initial data
do not belong to the remaining intact islands of stability. Since
the system is not ergodic, it is essential that we consider long
single trajectories of individual particles, but not uniformly
distributed over the phase volume short trajectories. Some
time after the beginning of a particle’s motion, a stationary
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FIG. 8. Pressure on the walls of a central billiard, created by the
trajectory of length N = 109 collisions (a) for the billiard without
site d3 and with parameters a = 100, ax = 80, ay = 12, d1 = 1.45,
d2 = 2.9, and (b) for the billiard with the same parameters and with
scattering site d3 = 1.45. Vertical dashed lines indicate the holes and
special site positions. (c),(d) Analogous distributions for the same
billiard with parameter ay = 3.

state would be established. The establishment of equilibrium
in the case of nonergodic gas behavior is considered in detail
in the paper [35].

Let us consider the distribution of pressure which gas exerts
on the walls of billiard. The local pressure sets stationary and
does not depend on the initial data of a trajectory, provided that
it is not a trajectory belonging to an intact island. Figures 8(a)
and 8(c) show the pressure distributions in the billiard with no
special site d3. In this case there is no flow of particles through
the handle. The case of ay = 12 corresponds to the only one
central island in the phase space, and with its destruction the
entire phase space become available for any trajectory. In this
case the pressure in the system appears practically uniform.
If ay = 3, in addition to the central island there are smaller
islands of stability in the phase space, part of them remains
intact for the open-holes case. As a consequence, the pressure
in the system is uneven.

Figures Figs. 8(b) and 8(d) show the same distributions
for the billiard with the same parameters, but with site d3

added. It is evident that its introduction radically changes the
distribution of pressure in the system. Pressure on those parts
of the border where there was a significant contribution of
the central island’s trajectories had decreased significantly.
This is due to the efficient transition of trajectories from
the broken island to chaotic sea, where, correspondingly, the
pressure increases. In this way there appears a difference of
pressure between holes, which causes the appearance of a
flow in the handle. It is interesting to note that the pressure
inside the handle is uniform, because the particle’s motion is
regular during any single transition through the handle and the
frequency of collisions is constant along the handle’s border.
Each passage creates additional pressure, the same for all
border sites and not depending on the direction in which the
handle was passed. Therefore, the pressure gradient inside the
handle cannot occur regardless of the presence or direction of
a flow.
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The direction of motion of a particle in the billiard’s handle
is constant. If the particle enters the handle, for example,
through hole d1, then moving regularly it will, for certain,
reach hole d2 and leave the handle through it. This gives the
possibility to assign a certain direction to each passage through
the handle. We will count as positive a clockwise direction of
motion in the handle, from hole d2 to hole d1, and the reverse
direction, respectively, as negative. As a value characterizing
the emergence of directed flow in the handle w will use the ratio
of imbalance in the number of passages n+ − n− to the total
number of passages in both positive and negative directions
P = n+−n−

n++n−
.

Before addition of a special site d3 the flow in the system
was absent for all possible parameter values. The addition of
this site results in the occurrence of a flow of some value P >

0, which remains constant over time. Transitions through the
handle in the positive direction are more frequent. The reason
for this can be understood from the simple considerations.
Indeed, without a special site, the numbers of passes through
both holes being equal, there is no flow. With the addition
of special site, trajectories began to move through this site
from the chaotic sea to the island and more frequently in the
opposite direction. Transfers from the island to chaotic sea
are more frequent as a consequence of the choice of reflection
law leading to such special site’s property. Therefore, there is
an excess of particles in the chaotic sea, and they leave the
billiard mostly through hole d2, leading to the excess of the
handle’s passages in the positive direction. Thus, the direction
of emerging flux depends on the choice of a law of reflection
from the special site and (in case of law (3)) is positive.

The dependence of a flow intensity on the size of special
site d3 has been obtained, having all other system parameters
fixed (see Fig. 9). It is visible that with increase in the length
of site d3, flux, starting from zero for d3 = 0, increases in
a linear manner until the size of site d3 reaches the size of
hole d1. With the further increase in d3, the flow intensity also
continues to rise approximately linearly, but at a smaller angle
of inclination.

There were also built dependencies of a flow magnitude on
holes sizes d1 and d2; they are shown in Fig. 9. It is seen that for
dependence on d1 the largest value of the difference of number
of passages in positive and negative directions is achieved at
small d1 sizes. This is due to the fact that for a small hole d1 the
trajectories are more effectively focused on the relatively large,
in comparison with hole d1, special site d3. With the increase
of size d1 having d3 fixed, the magnitude of flow through the
handle decreases significantly. The dependence of the flow
on hole d2, as can be seen from Fig. 9, is quite insignificant.
Probably, it appears because the change of the hole’s size
d2 leads to the change in the geometry of the handle. This
changes the conditions under which the approaching particle
would enter the handle. The overall effect of hole d2 on the
flow is negligible. The dependence was built starting from the
values of d2 ≈ 1.2, since for lower values it is impossible to
build the handle properly.

It is interesting to note the complexity of influence of
the central billiard’s geometry. We consider the dependence
of the magnitude of flow through the handle on the central
billiard’s parameter ay (Fig. 10). It is seen that this dependence
is complicated, not monotone, oscillating with considerable

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 d3

P

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0.0 0.5 1.0 1.5 2.0 2.5 d1

P

0.00

0.05

0.10

0.15

0.20

1.5 2.0 2.51.2 d2

P

(c)

(b)

(a)

FIG. 9. The dependencies of intensity of a flow through the handle
(a) on d3 at d1 = 1.45 and d2 = 2.9, (b) on d1 at d2 = 2.9 and d3 =
1.45, and (c) on d2 at d1 = 1.5 and d3 = 1.45. Parameters of the
billiard with handle are a = 100, ax = 80, ay = 9.5. The trajectories
were built up to the number n+ = 0.5 × 105 of passes through the
handle in a positive direction was reached.
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FIG. 10. The dependence of magnitude of flow through the
handle on parameter ay . Billiard parameters are a = 100, ax = 80,
d1 = d3 = 1.45, d2 = 2.9. The trajectory was constructed up to the
achievement of n+ = 0.5 × 105 passages through the handle in a
positive direction.
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amplitude. The values of the flux magnitude in the vicinity of
local minimum and maximum are several times different. This
is due to the fact that with the change of parameter ay there
is a reconstruction of the entire phase portrait of the system.
In particular, it changes the size of central island of stability
and characteristics of its regular motion, including focusing of
trajectories on site d3.

VI. THE INFLUENCE OF COLLISIONS
BETWEEN PARTICLES

Let us now consider the influence of collisions on the
occurrence of directed flow in the handle. The introduction of
collisions between particles qualitatively changes the system;
it now cannot be reduced to the motion of one particle in
the considered billiard. It should be noted that a reduction to
the motion of a single particle in the billiard is still possible,
but the dimensions and shape of this billiard will be totally
different from those described above (see, for example, [36]).
With interparticle collisions turned on, there are two additional
parameters of the system: the number of particles in the billiard
N and, assuming all particles are circles of equal size, the
particle’s radius r . Of course, the size of the particles will
be smaller than the thickness of the handle. The frequency of
collisions between particles depends on both these parameters.
We assume all collisions to be perfectly elastic. In the case of
a billiard with collisions it is necessary to monitor not only
the position and direction of the particle’s motion, but also its
velocity. In an ordinary billiard a trajectory does not depend on
it. Collisions require complete knowledge of particle velocities
to determine whether there will be a collision.

Let the gas of such particles be placed in the above-
described billiard with handle. For unpointlike particles it
is convenient to monitor the positions of the centers of the
particles, and we assume that they move like those placed in
our billiard. This means that for billiard with collisions its
actual border is at a distance r from that described above.
The main issue to clarify is the dependence of flux value
P on the frequency of collisions pcoll = Npar

Npar+Nbnd
between

particles, where Npar is the number of collisions between
particles and Nbnd is the number of collisions of particles with
the billiard’s boundary. The frequency of collisions may vary
in the range 0 < pcoll < 1, where pcoll = 1

3 means that each
particle has on average one collision with another particle per
one collision with billiard’s boundary (two particles collide
once with each other and once each with a border). As a
result of collisions, a particle may change the direction of its
motion in the handle. We then define a quantity characterizing

a flow as Pc = n
(2)
in −n

(2)
out+n

(1)
out−n

(1)
in

n
(1)
in +n

(1)
out+n

(2)
in +n

(2)
out

, where n(1)
in is the number of

particles entering billiard through hole d1, n
(1)
out is the number

of particles leaving billiard through that hole, and n(2)
in and n

(2)
out

are the numbers of particles entering and leaving, respectively,
hole d2. In the absence of collisions, the value Pc coincides
with the value P introduced above.

Using numerical simulation, we calculate the dependence
of the flux Pc on the frequency of collisions between particles
pcoll. In the case of a billiard without a special site it appears
that a flow still does not occur. This is quite natural, since
elastic collisions between particles lead to the establishment

~ ~
~ ~

0.1 0.40.30.20.0 0.8 pcoll

0.10

0.20

0.15

0.05

0.00

Pc

~ ~

FIG. 11. Dependence of flow intensity on frequency of collisions
between particles. The parameters of the billiard are a = 100,
ax = 80, ay = 3, d1 = d3 = 1.45, d2 = 2.9; the width of handle
corresponding to these parameters is d = 1.376. Frequency of
collisions between particles is varied from pcoll = 0 to pcoll = 0.42
via having the radius of N = 50 particles changed from r = 0 to
r = 0.64. The trajectories were constructed up to the achievement
of n

(1)
out = 0.5 × 105 passes through hole d1. To verify that the flow

completely disappears, two additional points were built for the
numbers of particles N = 300 and N = 400 at r = 0.5.

of an equilibrium state of gas. The appearance of a directional
flow in this case would be in conflict with the laws of
thermodynamics. For a billiard with a special site, the obtained
dependence is shown at Fig. 11. Except the last two points,
the frequency of collisions is increased via increased particle
radius without a change in their number. It is seen that at
low collision frequencies, when reflections from the border
of a billiard dominate, the flow rate is almost the same as
in the collisionless case. Collisions between particles make it
necessary to consider the system of many particles in a high-
dimensional phase space. In fact, collisions open a new channel
of additional chaotization in the system. Within the framework
of a single-particle approximation it can be expected that each
particle during the laminar phase of its motion remains on an
island for a long-enough time, so even the small frequency
of collisions, in principle, could significantly affect the flow
rate. Apparently, the loss of particles is compensated by their
arrival on an island from the chaotic sea. With increase in the
frequency of collisions between particles, the magnitude of
flow through the handle diminishes to complete disappearance.
The magnitude of flow decreases quickly enough until the
particles start to collide with each other at the same frequency
as with billiard’s border. The flow at this point is of a
small but nonzero magnitude, and with further increase in
collisions rate decreases very slowly. To ensure it diminishes
to zero, there were built two separate points in the vicinity of
pcoll ≈ 0.8.

Thus, collisions have little effect on the behavior of the
system in the case of mean free path of particles being an
order of magnitude higher than a characteristic system size.
Unlike many other effects associated with islands of stability,
the flow through the handle is resistant to the appearance of
rare collisions between particles in the system. If the mean free
path becomes of the same order or smaller than the system
size, a significant flow of particles through the handle is no
longer observed. Thus, the obtained results are relevant for
collisionless or thin-enough gas, where particles collide with
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the boundary an order of magnitude more frequently than
with other particles. Such a gas can have density and pressure
comparable to atmospheric, but be located, for example, in a
gas-filled nanopore in a material.

VII. CONCLUSIONS

In this paper we consider an open billiard with two holes,
connected by a handle. It is shown that the holes destroy
islands of stability, which leads to almost all trajectories of
the system appearing to be interleaved. The dependence of
the share of chaotic component in interleaved trajectories on
system parameters was built. It is shown that, by changing
system parameters, it is possible to control an average duration
and a ratio of chaotic and regular components, varying a level
of chaos in a wide range.

It is shown that an unbalanced flow of particles through
the handle occurs only after the addition of a special border
site to the system. Without this site with a modified law of
reflection, such flow cannot occur. Obtained are dependencies
of a magnitude of flow through the handle on the parameters
of a billiard, the sizes of holes, and the size of a special border
site. Distribution of the pressure in the system before and
after addition of special site was built. It was shown that the
occurrence of a flow through the handle was accompanied by
the occurrence of a pressure difference in the vicinity of the
holes. Along with this, a pressure gradient inside of the handle
for sure does not exist.

The case of colliding particles was considered. It was shown
that, for lengths of particles’ free path being an order of magni-
tude higher than the characteristic size of the system, collisions
do not affect the system’s behavior significantly. For lengths
of free path of the same order or less than the system size,
there is no considerable flow of particles through the handle.
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