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Differential-flow-induced transition of traveling wave patterns and wave splitting
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We have analyzed the differential flow-induced instability in the presence of diffusive transport in a reaction-
diffusion system following activator-inhibitor kinetics. The conspicuous interaction of differential flow and
differential diffusivity that leads to pattern selection during transition of the traveling waves from stripes to
rotating spots propagating in hexagonal arrays subsequent to wave splitting has been explored on the basis of a
few-mode Galerkin scheme.
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I. INTRODUCTION

Pattern formation, or self-organized structures in active
media, has been an interesting area of research over the past
few decades [1–4]. One of the fundamental mechanisms of
pattern formation under far-from-equilibrium conditions is
Turing instability, which arises due to interaction between
a chemical reaction and diffusion [5]. This instability can
occur in systems with activator-inhibitor kinetics where the
diffusion coefficient of the inhibitor exceeds that of the
activator leading to stationary patterns. The Turing pattern has
been observed experimentally [6–10] in chemical systems, and
it remains fundamental as a basis for biological morphogenesis
[11–13] and in several areas of physical and chemical sciences
[14–17]. In a related context, Rovinsky and Menzinger [18,19]
demonstrated an alternative mechanism of disengaging the key
species, namely the activator and the inhibitor, by making use
of differential flow rather than differential diffusivity. This
leads to differential flow-induced chemical instability giving
rise to spatiotemporal patterns.

The central theme of the paper concerns differential flow-
induced instability in the presence of diffusive transport. The
differential flow may be realized and controlled in a number of
ways. For example, in the case of ionic species, it is possible to
apply an external electric field of appropriate strength [20–24].
An electric field has been shown to have a profound influence
on the structure changes by induced flow from stationary to
time-dependent behavior [20]. A transition from stationary
hexagonal Turing patterns to spots moving parallel to the
direction of the applied field has been observed in a chlorine
dioxide-iodine-malonic acid system [21]. It has been shown
that waves can be reversed and even be subjected to splitting
in excitable media by an electric field [22]. Electrodiffusion in
the layer adjacent to the cell membrane has been modeled to
demonstrate dispersion instability and spatiotemporal pattern-
ing [23]. Spinning propagation of diffusively unstable planar
fronts has been demonstrated in an autocatalytic reaction-
diffusion-advection system with cubic kinetics [25]. Since
the biological cells and organs remain in the fluid stream,
differential flow can also be effected through convection. This
has been implemented in modeling the peroxidase-oxidase
enzyme reaction mechanism [26]. Differential shear flow can
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affect pattern formation in a cubic autocatalytic reaction [27].
Another way to implement differential flow is to use a pressure
gradient in the fluid medium, since by Darcy’s law velocity is
proportional to the pressure gradient so long as the gradient is
not too large [28,29]. As the spatiotemporal patterns in the form
of traveling waves underlie the transmission of information,
growth, and development processes as possible mechanisms
in living organisms and cells [30,31], differential flow and
differential diffusivity play an important role in determining
the nature of instability.

Although the scope of the various spatiotemporal scenarios
mentioned above is very broad, their primary emphasis lies
in linear stability analysis. It is well known that exponential
divergence of the unstable mode ultimately gets saturated
by the nonlinearity of the dynamics. As the principle of
superposition does not work in the nonlinear regime, the
dynamical system depending on the symmetry opts for the
choice of a few modes. These modes are actually responsible
for pattern selection. A major focus of the present paper is to
explore this nonlinear state when the homogeneous stable state
of the reaction-diffusion system is subjected to differential
flow-induced instability. As the analytical solution of the
reaction-diffusion-advection equation is impossible, one often
resorts to the amplitude equation technique [32,33], which is
widely used in related issues. That method, however, is limited
by weak nonlinearity and a near-threshold condition. A simpler
alternative is to employ the Galerkin model, in which the
partial differential equations are replaced by a set of ordinary
nonlinear differential equations for a few modes [34,35], in the
spirit of the Lorenz equations derived from the Navier-Stokes
equation in fluid mechanics [36,37]. The choice of these modes
and their stability conditions reflect the nature of the pattern.
In what follows, we consider a reaction-diffusion system with
activator-inhibitor kinetics due to the Gierer-Meinhardt model
in developmental biology [38,39]. We show that differential
flow-induced instability results in a traveling wave pattern
beyond a critical flow velocity and in wave splitting, yielding
propagating spots arranged as hexagonal arrays at higher flow
velocities. Specifically, our aim here is (i) to understand the
nature of the underlying nonlinear state with the help of
Galerkin analysis, (ii) to explore the transition of traveling
wave patterns from stripes to spots subsequent to wave
splitting, and (iii) to understand the conspicuous interaction
between differential flow and differential diffusivity in the
dynamics of wave splitting.
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The rest of the paper is organized as follows: In Sec. II,
we discuss the aspects of linear stability analysis of the
Gierer-Meinhardt model, followed by numerical simulation of
the associated reaction-diffusion equation in the presence of
differential flow. Galerkin analysis of the instability in dealing
with the nonlinear state is carried out in Sec. III. The paper is
concluded in Sec. IV.

II. DIFFERENTIAL FLOW-INDUCED INSTABILITY
IN THE PRESENCE OF DIFFUSIVE TRANSPORT

A. Gierer-Meinhardt model and linear stability analysis

We consider a simple activator-inhibitor kind of model
proposed by Gierer and Meinhardt [38] in the context of
morphogenesis. The activator (u) and inhibitor (v) species
undergo a chemical reaction and at the same time diffuse
without being subjected to any severe restriction of the Turing
condition for instability of the homogeneous steady state. In
addition, we assume that the species experience differential
transport due to the imposition of a flow term in the dynamics
of the activator. The reaction-diffusion-flow equations for the
system are given by

u̇ =
(

u2

v
− u + σ

)
+ D∇2u + V

∂u

∂x
, (2.1)

v̇ = μ(u2 − v) + ∇2v. (2.2)

Here, σ is the rate of formation of the activator, μ is the
rate of removal of the inhibitor due to interaction, D is
the ratio of the diffusivities of the activator to the inhibitor,
and V is the flow velocity of the activator. The dynamical
system (2.1) and (2.2) admits a homogeneous steady stable
state [u0 = (1 + σ ),v0 = (1 + σ )2]. The stability requires the
condition μ > μc, with μ = μc[= ( 1−σ

1+σ
)] referring to the Hopf

line, which separates the homogeneous steady state from the
unstable oscillatory state. Furthermore, it is also well known
from the linear stability analysis that in the absence of the flow
term, diffusion-driven instability comes into play when the
homogeneous steady state becomes unstable for the Turing

condition μ = 1
D

(
√

2
1+σ

− 1)
2
. In Fig. 1, we plot the Hopf

and Turing critical lines to depict the regions of instability that
separate out the homogeneous stable steady-state region from
the homogeneous oscillatory state and the inhomogeneous
patterned state. For further analysis, we have chosen the point
P in μ-D space (for V = 0) in the homogeneous steady-state
region for σ = 0.2.

Having identified the Hopf and Turing instability regions,
we now analyze the flow-induced instability of the steady state
P as shown in Fig. 1. Toward that end, linearization of the
system near this steady state (u0,v0) yields

(
δ̇u

δ̇v

)
= A

(
δu

δv

)
+

(
D 0
0 1

)(∇2δu

∇2δv

)

+
(

V

0

)(
∂x(δu)
∂x(δv)

)
, (2.3)
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FIG. 1. Phase diagram corresponding to linear stability analysis
of Eqs. (2.1) and (2.2) in the absence of the flow term; V = 0.0 (arb.
units). Hopf (solid blue) and Turing (dashed red) lines are shown
to divide the parametric space into a steady homogeneous region,
an oscillatory homogeneous region, and a stationary Turing pattern
region.

where

A =
(

a11 a12

a21 a22

)
=

⎛
⎝2u0

v0
− 1 −u2

0

v2
0

2μu0 −μ

⎞
⎠ (2.4)

and u = u0 + δu, v = v0 + δv. Considering our two-
dimensional (2D) system to be periodic, we use a spa-
tial Fourier expansion of the perturbations δu(−→r ,t) =
eλt

∫
δuKei

−→
K ·−→r d

−→
K and δv(−→r ,t) = eλt

∫
δvKei

−→
K ·−→r d

−→
K to

derive the eigenvalue equation with growth rate λ and wave
vector

−→
K ,

∣∣∣∣a11 + ikV − DK2 − λ a12

a21 a22 − K2 − λ

∣∣∣∣ = 0, (2.5)

where we have abbreviated K2 = k2
x + k2

y and kx = k. The
eigenvalues (λ±) of the system are given by

λ± = 1
2 [Tr(M) ±

√
Tr(M)2 − 4 | M |] (2.6)

with

Tr(M) = (a11 + a22) − (D + 1)K2 + ikV (2.7)

and

|M| = [Det(A) − (a11 + a22D)K2 + DK4

+ ikV (a22 − K2)]. (2.8)

The expression for the growth rate Re(λ±) is given by

Re(λ±)

= 1

2

[
a11 + a22 − (D + 1)K2 ± 1√

2

√
R +

√
R2 + S2

]
,

(2.9)

042223-2



DIFFERENTIAL-FLOW-INDUCED TRANSITION OF . . . PHYSICAL REVIEW E 94, 042223 (2016)

FIG. 2. Dispersion relation for flow-induced instability in the
presence of diffusion; plot of the real part of the eigenvalue Re(λ+)
vs ln(K) at different flow velocities for σ = 0.2 for the chosen
homogeneous steady state P of Fig. 1 with μ = 1.0, and D = 0.1
(arb. units).

where

R = [(a11 − a22) − (D − 1)K2]2 + 4a12a21 − k2V 2, (2.10)

S = 2kV [(a11 − a22) − (D − 1)K2]. (2.11)

In Fig. 2 we plot the growth rate Re(λ+) of perturbation
on the homogeneous stable steady state P (μ = 1.0,D = 0.1)
with σ = 0.2 against ln(K) for several values of the flow
velocity V . As the flow is considered to be present only in the
x direction, the wavelength along the y direction is too long
compared to the system size, so that ky ∼ 0. When V = 0.0,
Re(λ+) remains negative. As the flow velocity is increased,
the growth rate begins to increase. At V = 0.75, the critical
growth rate (solid black line) touches the zero line indicating
the flow-induced instability threshold. For V larger than its
critical value, we encounter an allowed range of K values
corresponding to a positive growth rate Re(λ+) indicating
spatiotemporal inhomogeneity, as represented by the four lines
above the solid black line.

B. Numerical simulations; traveling waves and wave splitting

To corroborate the above linear analysis, we carry out
a detailed numerical integration of Eqs. (2.1) and (2.2) in
two dimensions for several values of the flow velocities. The
explicit Euler method following discretization of space and
time is used. A finite system size of 30 × 30 dimensions with
periodic boundary conditions has been chosen. A cell size
�x = 0.2,�y = 0.2 and a time interval �t = 0.0025 are set
for the present purpose. The results are shown in Fig. 3. Below
the critical flow velocity (V = 0.75), the system remains
homogeneous. At V = 0.75, the traveling waves in the form of
vertical stripes start propagating along the x direction. Figures
3(a)–3(d) are comprised of four frames taken at an interval of
500 time units, as indicated. The last member (e) of the first
column of Fig. 3 exhibits the variation of u along the x direction
keeping y = 15.0, corresponding to each wave profile of the

four snapshots. In the second and third columns of Fig. 3,
we display the snapshots of traveling wave profiles of u for
higher values of flow velocity V = 2.0 and 4.0, respectively.
Figure 3 also shows that just at the threshold flow velocity V =
0.75, the amplitude of the traveling wave varies initially. Even-
tually it settles down at a constant amplitude for approximately
8500 time units. At a higher flow velocity beyond threshold,
i.e., for higher input energy, when the amplitude is very large
the attainment of constancy is observed at a much earlier time,
as shown. The relative position of a vertical stripe in the four
frames and the spatial gap between the stripes in each frame
clearly show that the waves move faster for higher velocities.
With a further increase of flow velocity, the stripes start getting
fragmented. Such prototypical behavior is shown in Figs. 4(a)
and 4(b) for V = 7.6. At V = 8.0, this wave splitting results in
moving spots arranging themselves in the form of a hexagonal
lattice. The relative movement of individual spots, which
appears like rotating spots, is shown by marking each of them
in the four snapshots of Figs. 4(c)–4(f). A pertinent point that
needs to be emphasized is that the spots numbered 1–6 do not
rotate around a central spot; rather, each of them travels with
the flow and also rotates. These rotating spots are reminiscent
of an earlier theoretical observation [25] of a spinning front
that emerges due to the periodic azimuthal boundary condition
on the reaction-diffusion-advection system. The origin of
the rotation of the spots in the present case, however, is
due to the resultant propagation of concentration flux in
the longitudinal and transverse directions. In the longitudinal
direction, both convective and diffusive flows operate, while
in the transverse direction we have only diffusive motion. In
the absence of any transverse diffusion, the rotating spots are
not observed.

We now discuss the effect of domain size and boundary
conditions on pattern selection. It is known [40] that there is
a linear relationship between the flow and the wavelength of
the traveling waves generated by the differential flow. Since
the wavelength has a crucial dependence on the boundary
or confinement of the system, the nature of the pattern is
expected to be determined by the boundary conditions. Our
numerical simulations of Figs. 3 and 4 are based on a small
domain and periodic boundary conditions. The latter implies
that the configuration of the quasi-1D-reactor is circular, as
considered by several authors [18,19,25,41]. In the circular
reactor, the perturbation of the uniform state was imposed
as a function of spatial coordinate with an amplitude equal
to roughly less than 1% of the steady-state value. In Fig. 5
we have extended our numerical simulations to two larger
domain sizes, e.g., with 120 × 120 (a)–(d) and 300 × 300
(e)–(h) for the same velocity V = 8.0. It has been observed
that a smaller grid size facilitates the breakup of traveling
waves, while for a larger domain size the traveling waves move
with a smaller amplitude and retain their form for the same
flow velocity. Application of the zero-flux boundary condition
does not lead to the observed phenomena. It is pertinent to
mention at this juncture that for reaction-diffusion-advection
systems, boundary conditions are often chosen so that at the
inlet of the reactor the conditions correspond to a steady state
in the feeding chamber, and at the outlet one uses zero flux
boundary conditions [42]. The Dirichlet boundary can also
be changed for a Danckwerts-type boundary in the inlet [43].
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FIG. 3. Numerical simulation of Eqs. (2.1) and (2.2): (a)–(d) Snapshots of traveling stripes of u resulting from instability of state P

(μ = 1.0, D = 0.1) for σ = 0.2 and V = 0.75 (flow-induced instability threshold as shown in Fig. 2) at time (a) t = 3500 t.u., (b) t =
4000 t.u., (c) t = 4500 t.u., and (d) t = 5000 t.u. (arb. units). The last member (e) of the first column represents the variation of u with x for a
fixed y at 15.0 for each snapshot. (f)–(i) Same as in (a)–(d) but for V = 2.0 (above the instability threshold). The last member (j) of the second
column shows that stripes become uniform and move fast. (k)–(o) Same as in (f)–(j) but for V = 4.0. Stripes become uniform.

We therefore emphasize that both the domain size and the
boundary conditions are important for the traveling waves and
their fragmentation. This observation may be rationalized as
follows. It is well known [43] that a periodic domain admits
a very large number (to be precise, an infinite number) of
coexisting periodic solutions with varying wave vectors. When
the domain size is relatively small, the waves with a larger
amplitude dominate and nonlinear saturation takes over. This
leads to the generation of spots after the breakup of traveling
waves with a higher amplitude. We shall return to the issue in
the next section on Galerkin analysis, which sheds more light
on pattern selection through nonlinear interaction.

The occurrence of differential flow-induced instability
leading to traveling waves is determined by the magnitude
of flow velocity |V |. In our numerical simulations, we have
maintained the ratio of diffusivities, D = 0.1, throughout. We
have extended our simulations for the cases in which the ratio
is kept at unity, and we observed that the traveling waves can be
generated beyond the critical flow velocity. Upon increasing
the flow velocity, the stripes undergo splitting in a similar
manner, but the fragmented spots do not arrange themselves in
regular arrays; rather, they assume randomly scattered irregular
structures in the medium. For the sake of brevity, we have not
reproduced the results here.
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FIG. 4. Wave splitting: (a) and (b) Same as in Fig. 3 but for V = 7.6 at time (a) t = 4500 t.u. and (b) t = 5000 t.u.; traveling stripes get
fragmented. (c)–(f) Same as in Fig. 3 but for V = 8.0; traveling spots move in hexagonal arrays. The movement of hexagons in time is shown
by marking each spot by numbers.

The splitting of traveling concentration waves is reminis-
cent of an interesting experimental observation of electric-
field-induced wave splitting in an excitable medium (the
one-dimensional Belousov-Zhabotinsky reaction) [22] by
Sevcı́ková et al. It is thus plausible that although the interaction
between the chemical reaction, diffusion, and transport of
species is important, fluid convection is very much involved in
the process of wave splitting, since this splitting was observed
only in the experiments in liquid systems in rectangular con-
finement, and concentration gradients appear in the direction of

flow [22]. In summary, we may conclude from our numerical
study that both differential flow and differential diffusivity
are important for the traveling waves to exhibit splitting
beyond a critical threshold velocity, leading to the formation
of spots moving in the direction of flow velocity, in hexagonal
arrays.

A closer look at the formation of traveling waves in the form
of vertical stripes moving along the direction of flow velocity
and their transformation to traveling spots subsequent to wave
splitting at high flow velocity clearly indicates that while the
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FIG. 5. Effect of domain size: (a)–(d) Same as in Fig. 3 but for V = 8.0 and domain size 120 × 120; traveling stripes get fragmented.
(e)–(h) Same as in (a)–(d) but for domain size 300 × 300 and �x = 2.0. No fragmentation is observed as the amplitudes of the waves are
small.

vertical stripes are due to the formation of spatial nodes along
the x direction, the spots are generated as a result of the
formation of nodes along both the longitudinal and transverse
directions. This transformation of stripes to spots is therefore
associated with a crossover of pattern types, and it depends on

the underlying nonlinear state of the system. We implement
Galerkin models used for exploring this state. In the next
section, we replace the reaction-diffusion-advection equations
(2.1) and (2.2) with a set of ordinary nonlinear differential
equations for a few judiciously chosen modes by inspection.
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The nature of the pattern formation can be ascertained by the
stability analysis of these modes.

III. GALERKIN ANALYSIS OF TRAVELING WAVES
AND WAVE SPLITTING

In general, inhomogeneity, whether it is stationary or
oscillatory, arises due to unstable modes of a given perturbation
on the initial stable steady state of the homogeneous system.
Depending on the unstable modes along any particular direc-
tion, we see stripes, spots, or any other pattern as the case may
be. The Galerkin method helps us to understand the nature of
these patterns by keeping the number of modes to a minimum.
We start with two exact concentration variables u and v, which
are expanded in terms of a series of orthogonal basis functions
representing the spatial structure of the concentration profile,
whereas the combining coefficients determine the relative
weight of the profile. The dynamics of the reaction-diffusion-
advection system thus reduces to the nonlinear dynamics
of these finite-number coefficients or modes. In our case,
for analysis of stripes and spots, we choose specifically the
following forms of expansions:

u(x,y,t) = a0 + a1 cos (kxx) + a2 sin (kxx)

+ a3 cos (kxx) cos (kyy) + a4 sin (kxx) cos (kyy),

(3.1)

v(x,y,t) = b0 + b1 cos (kxx) cos (kyy). (3.2)

For simplicity, we consider kx = ky = k. This choice is
guided by the following numerical consideration. At high flow
velocity V when the traveling waves undergo fragmentation
generating fully developed spots, as in Figs. 4(c)–4(f), the
nodes appear in the x and y directions almost in equal
proportion. Now, for a homogeneous state we would have
a1 = a2 = a3 = a4 = b1 = 0, so that the state (u,v) reduces to
(u0,v0). For a3 = a4 = b1 = 0 (but a1,a2 �= 0), nodes appear
only along the x direction. Therefore, we expect to observe
stripes in the x direction. To consider such stripe-patterned
states, we put this condition in Eqs. (3.1) and (3.2). The
resulting expansions in u and v are then used in Eqs. (2.1) and
(2.2). By equating the coefficients of the appropriate Fourier
terms on either side, we obtain the following equations of the
four coupled modes:

ȧ0 = a2
0

b0
+ a2

1

2b0
+ a2

2

2b0
− a0 + σ, (3.3)

ȧ1 = 2a0a1

b0
− (1 + Dk2)a1 + kV a2, (3.4)

ȧ2 = 2a0a2

b0
− (1 + Dk2)a2 − kV a1, (3.5)

ḃ0 = μ

(
a2

0 + a2
1

2
+ a2

2

2
− b0

)
. (3.6)

Interestingly, the unique steady state of the above four modes
is given by

a0s = (1 + σ ) = u0, b0s = (1 + σ )2 = v0, a1s = a2s = 0,

(3.7)

where the first two terms correspond to a homogeneous steady
state. Introducing infinitesimal perturbation δa0, δb0, δa1, and
δb1, where a0 = a0s + δa0, b0 = b0s + δb0, a1 = a1s + δa1,
and b1 = b1s + δb1 on the aforementioned steady state in
Eqs. (3.3)–(3.6), we obtain the following set of four linearized
dynamical equations, which are now decoupled into two sets:

˙δa0 =
(

1 − σ

1 + σ

)
δa0 −

(
1

1 + σ

)2

δb0, (3.8)

˙δb0 = 2μ(1 + σ )δa0 − μδb0, (3.9)

and

˙δa1 =
(

1 − σ

1 + σ
− Dk2

)
δa1 + (kV )δa2, (3.10)

˙δa2 = (−kV )δa1 +
(

1 − σ

1 + σ
− Dk2

)
δa2. (3.11)

The dynamics of δa0 and δb0 does not involve D or V and
thus represents the oscillatory state. The other set takes care of
both diffusion and flow velocity. Assuming δa1 and δa2 vary
as ∼eηt , we find the eigenvalues (or growth rate of the given
perturbation) as

η±(stripe) =
(

Dk2 − 1 − σ

1 + σ

)
± i(kV ). (3.12)

Spatiotemporal instability of the steady state arises when
Re(η±) > 0 for a finite V . When k2 = k2

c , i.e., for the critical
wave vector corresponding to V = 0.75, the homogeneous
system as shown in Figs. 2 and 3(a)–3(d) becomes unstable.
With k2 � k2

c(stripe) [=(1 − σ )/D(1 + σ )], the vertical stripes
move along the x direction as depicted in Figs. 3(a)–3(o). The
spatiotemporal instability leading to the formation of traveling
waves in the form of stripes is therefore clearly evident from
the eigenvalue η±(stripe). The appearance of both differential
flow (V ) and differential diffusivity (D) points toward the
interaction of convection and diffusion.

For a1 = a2 = 0, nodes appear in both the x and y

directions, so that one expects spots instead of stripes. To
consider this situation, we put this condition in Eqs. (3.1) and
(3.2) and proceed as before to obtain the following equations
of five coupled modes:

ȧ0 = a2
0

b0
+ a2

3

4b0
+ a2

4

4b0
− a0 + σ, (3.13)

ȧ3 = 2a0a3

b0
− (1 + 2Dk2)a3 + kV a4, (3.14)

ȧ4 = 2a0a4

b0
− (1 + 2Dk2)a4 − kV a3, (3.15)

ḃ0 = μ

(
a2

0 + a2
3

4
+ a2

4

4
− b0

)
, (3.16)

ḃ1 = 2μa0a3 − μb1 − 2k2b1. (3.17)

A further simplification can be made by observing that b1

decays much faster so that one can drop the mode b1 and
have a four-mode description that has the same structure.
The condition for spatiotemporal instability can be obtained
by stability analysis of the steady state corresponding to the
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FIG. 6. Variation of the critical wave number kc(spot) for spots as
a function of the ratio of the diffusion coefficients, D, for the set of
parameters mentioned in the text. A comparison of the theoretical
scheme based on Galerkin analysis [Eq. (3.18)] with numerical
findings is shown (arb. units).

dynamical system (3.13)–(3.16). This yields the eigenvalues

η±(spot) =
(

2Dk2 − 1 − σ

1 + σ

)
± i(kV ). (3.18)

The instability threshold appears at a critical wave vector
k2
c(spot) [= (1 − σ )/2D(1 + σ )]. This situation corresponds to

Fig. 4. In Figs. 4(a) and 4(b) the stripes start splitting, and
in Figs. 4(c)–4(f) the rotating spots arrange themselves in
hexagonal arrays and travel along the direction of the flow.
To describe the onset of wave splitting in terms of wave
instability in a more quantitative way, we make use of the
results of Galerkin analysis as follows: Eq. (3.18) suggests that
the critical wave number for spots is determined by the ratio
of diffusion coefficients D, which is varied over a small range
as in Fig. 6 for the fixed values of σ (=0.2) and μ (=1.0). We
then extend our simulation results for these parameter sets just
above the critical flow velocity to determine numerically the
critical wave number kc(spot) for spots. A comparison between
the theoretical and numerical estimates of the critical wave
number kc(spot) is shown in Fig. 6. The agreement is fair enough
to lend support to our heuristic fixation of transversal wave
numbers. The little discrepancy between theory and numerics
arises since we used flow velocity a little above the critical
flow velocity for the correct counting of nodes after spot
formation. The theoretical critical wave number, on the other
hand, depends precisely on the critical flow velocity for which
spot formation just starts. Finally, the role of differential flow
as well as differential diffusivity is quite transparent from the
occurrence of V and D in the expressions for the critical wave
vectors for spots and stripes. We emphasize two points: First,
although instability is flow-induced, differential diffusivity is

an important condition for wave splitting. Second, the origin
of the wave splitting is somewhat different from that observed
in the quasi-one-dimensional BZ reaction [22] as the splitting
in the latter case arises as an electric-field-induced effect on a
propagating Turing pattern. In the present case, on the other
hand, the Turing condition is not maintained.

IV. CONCLUSION

Differential flow-induced instability resulting in the initi-
ation of spatiotemporal pattern formation is based on linear
stability analysis of the reaction-diffusion-advection system.
The analysis, therefore, cannot capture the nature of patterns
and their crossover from one type to another since this depends
on the specific nonlinear characteristics of each dynamical
system, which becomes more pronounced beyond the critical
instability threshold in the long time scale. In the absence of
any suitable simple analytical technique, the Galerkin scheme
provides an immediate answer to this problem. The present
treatment relies on this scheme to ascertain the nature of the
nonlinear state responsible for the selection of a specific finite
number of modes for each pattern type. The replacement of
the partial differential equation, i.e., the reaction-diffusion-
advection equation, by a set of ordinary nonlinear differential
equations for a few modes corresponding to a definite pattern
is therefore worth pursuing. We summarize the main results of
this study as follows:

(i) We have analyzed the differential flow-induced insta-
bility in the Gierer-Meinhardt model of activator-inhibitor
kinetics to show how this instability gives rise to spatiotem-
poral patterns in the form of traveling waves beyond a critical
flow velocity. This is in good agreement with full numerical
simulations.

(ii) At a higher flow velocity, the propagating waves of stripe
patterns split up to generate spots moving in the direction of
flow. This is similar to but not the same as the wave splitting
experimentally observed earlier in a Belousov-Zhabotinsky
reaction medium in quasi-one-dimensional confinement.

(iii) It has been shown that flow-induced instability results
in traveling waves where the Turing restriction of unequal
diffusivities is lifted. On the other hand, it has been shown
that the conspicuous interplay of differential diffusivity and
differential flow is a precondition for wave splitting. The
stability analysis of the inhomogeneous Galerkin modes as
well as full numerical simulations support this notion.
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[40] R. Tóth, A. Papp, V. Gáspár, J. H. Merkin, S. K. Scott, and

A. F. Taylor, Phys. Chem. Chem. Phys. 3, 957 (2001).
[41] V. Z. Yakhnin, A. B. Rovinsky, and M. Menzinger, J. Phys.

Chem. 98, 2116 (1994).
[42] P. Andresén, M. Bache, E. Mosekilde, G. Dewel, and P.

Borckmanns, Phys. Rev. E 60, 297 (1999); M. Kærn and M.
Menzinger, ibid. 60, R3471 (1999); J. R. Bamforth, R. Tóth,
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