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Rough energy landscape and noisy environment are two common features in many subjects, such as protein
folding. Due to the wide findings of bursting or spiking phenomenon in biology science, small diffusions mixing
large jumps are adopted to model the noisy environment that can be properly described by Lévy noise. We
combine the Lévy noise with the rough energy landscape, modeled by a potential function superimposed by a fast
oscillating function, and study the transport of a particle in a rough triple-well potential excited by Lévy noise,
rather than only small perturbations. The probabilities of a particle staying in the middle well are considered
under different amplitudes of roughness to find out how roughness affects the steady-state probability density
function. Variations in the mean first passage time from the middle well to the right well have been investigated
with respect to Lévy parameters and amplitudes of the roughness. In addition, we have examined the influences
of roughness on the splitting probabilities of the first escape from the middle well. We uncover that the roughness
can enhance significantly the first escape of a particle from the middle well, especially for different skewness
parameters, but weak differences are found for stability index and noise intensity on the probabilities a particle
staying in the middle well and splitting probability to the right.
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I. INTRODUCTION

The transports of a random particle on an energy landscape
hold the key to understanding a wide range of molecular or
atom phenomena and can be considered historically important.
Usually in these problems the underlying potential profile is
considered to be constant or at least regular. However, a typical
example in protein folding shows that the potential surface
of a protein may have a hierarchical structure with potential
minima within potential minima, which means the underlying
energy landscapes can be spatially rough due to multiple
energy scales associated with the building blocks of proteins
[1,2]. Similar rough energy landscape structure has also been
found in many other fields like the activation gating of ion
channels [3,4], diffusions in structural glasses [5,6], and super-
cooled liquids [7,8]. In a seminal paper by Zwanzig [9], he first
modeled the rough energy landscape by superimposing a fast-
oscillating trigonometric function on the background energy
potential function, which is now widely adopted and applied in
protein dynamics by many scholars [10–13]. And thus a prob-
lem is raised that how roughness on a potential surface affects
the dynamical behaviors opening to a random environment.

Despite the broad applicability and importance of the rough
energy landscape, the overwhelming majority of studies of the
underlying stochastic dynamics have concentrated on smooth
potential models in subjects of stochastic resonance [14,15],
coherence resonance [16,17], stochastic bifurcations [18,19],
and noise-induced transitions [20,21], and it has several
applications [22–25]. As a result, there are surprisingly few
theoretical studies of this problem leading to little knowledge
about the effects of roughness at a quantitative level. In the
presence of rough potential, the transports of a particle may
become significantly different, because the multiple maxima
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and minima of roughness can provide temporary stopovers
on the steep potential wall for a short stay. Zwanzig obtained
an equivalent potential and an effective diffusion coefficient,
indicating that the roughness of a potential gives rise to a
dramatic slowing down of diffusion at low temperatures [9].
Mondal et al. found that an increase of roughness can lead
to a remarkable suppression of the probability current in a
one-dimensional ratchet potential for a Brownian particle [26].
Different from trigonometrically described roughness, another
universally used irregular potential is the random potential
[27–29]. The differences between a random potential and a
rough potential lie in the fact that the former has a disordered
potential and a single spatial scale, while the latter is relatively
regular but involves more than one distinct scale.

The dynamics of Brownian particles is already well un-
derstood since Einstein’s seminal paper, and has found appli-
cations in various fields [30–33]. However, evidences show
that random environment in gene regulation, laser gyroscope,
and millennial climate changes exhibits bursting phenomenon
[34–36], in which Gaussian noise is bounded on modeling
this kind of noise. A typical example in gene expression
shows that transcription often occurs in bursts rather than at a
constant rate, so Poisson noises are added into the genetic
circuit to make up the shortage of Gaussian perturbations
[37,38]. While Lévy noise consists of small perturbations and
large jumps, which turns out to be a relatively proper tool to
describe this environment, and some applications appear in the
investigations of Escherichia coli walk, light wave trajectories,
and some aspects of earthquake behaviors [39–41].

So we believe the combination of rough potentials and
Lévy noise will be inspiring and meaningful to the study of
protein-related dynamics. The main objective in this paper
is to explore the influences of roughness on the transports
of a particle (assume no interactions with other particles)
excited by Lévy noise in a triple-well system. As stated the
existence of roughness will provide particles with lots of small
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YONGGE LI, YONG XU, JÜRGEN KURTHS, AND XIAOLE YUE PHYSICAL REVIEW E 94, 042222 (2016)

−2 −1 0 1 2

0

1

2

3

4

x

V
(x

)

−2 −1 0 1 2

0

1

2

3

4

x

V
(x

)
ε=0.03 ε=0.1

FIG. 1. Diagrams illustrating of the rough potential Eq. (2) for different ε.

stopovers for a temporary stay, which definitely influences a
lot on the transport processes. As a result, we ask whether
the roughness will affect the probability distribution, how it
influences the barrier crossing process, and what will happen
under excitations mixing large jumps with small perturbations.

With the above questions, we arrange the paper as follows:
in Sec. II, we introduce a rough potential model subject to
Lévy noise. In Sec. III, the steady-state probability density
function is computed to examine the influences of roughness
and Lévy parameters. In Sec. IV, we explore how roughness
affects the mean first passage time (MFPT) under different
Lévy parameters. Section V is devoted to investigating the
splitting probability under the rough potential. The paper is
concluded in Sec. VI.

II. THE MODEL

Consider a particle unaffected by other particles embedded
in a triple well potential V (x) in the presence of Lévy stable
noise, and the Langevin equation of the particle takes the
following form:

ẋ(t) = −V ′(x) + L̇(t), (1)

where the overdot is the derivative of time and the prime
denotes the spatial derivative. V (x) contains a general smooth
background V0(x) on which a rapidly oscillating perturbation
V1(x) is superimposed, so that V (x) = V0(x) + V1(x). In this
work we analyze

V0(x) = x2(0.5x2 − 2)2, V1(x)

= ε(sin ω1x + cos ω2x), ε � 1, (2)

where ε is a measure of the amplitude of roughness on the
potential. The frequencies ω1 and ω2 control the density of
roughness. An illustration is shown in Fig. 1, we set ω1 = 173
and ω2 = 119, which holds in the whole context. V0(x) is
a smooth symmetric triple well potential, with two maxima
x±

max = ±1.1547 and three minima at xmin = 0, x±
min = ±2.0.

The potential becomes rugged when the roughness is superim-
posed, with potential minima within potential minima, which
is stronger with the increase of ε.

L(t) is a Lévy stable motion, for 0 < α � 2, α �= 1 the
characteristic function of L(t) takes the form

E[eikL(t)] = exp
[
−tD|k|α

(
1 − iβsgnk tan

πα

2

)]
, (3)

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ζ

P
D

F

(a) α=1.0

α=1.2

α=1.5

α=2.0

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

ζ

P
D

F

(b) β=0

β=−0.7

β=0.7

FIG. 2. The probability density functions (PDFs) of Lévy noise. (a) β = 0, D = 0.5, (b) α = 1.2, D = 0.5.
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FIG. 3. The PDFs for different Lévy parameters. (a) β = 0, D = 0.3, the larger is α the fatter is the PDF. (b) α = 1.5, β = 0, the changes
are similar with α, but PDFs for different D are always slim. (c) α = 1.5, D = 0.3, for β > 0 the PDFs are right-skewed, for β < 0 the PDFs
are left-skewed.

where α is the stability index, β(−1 � β � 1) is the skewness
parameter, and D = cα denotes the noise intensity, and c is the
scale parameter [42]. A set of Lévy distributions with respect
to different parameters are presented in Fig. 2 to illustrate their
heavy-tailed and skewed properties. Obviously, α affects the
thickness of the tail (the distribution is Gaussian for α = 2),
that smaller α generate heavier tails and more large jumps. β

is used to measure the symmetry of the noise, when β = 0 the
distribution is symmetric. Under the condition of 1 < α < 2,
for β > 0 the PDF is left-skewed with a heavy right tail to
balance the mean value zero, while for β < 0 it is right-skewed.
In this paper, we restrict our interest on the region 1 < α � 2
throughout the paper.

III. STEADY-STATE DISTRIBUTIONS

The PDF is one of the most popular mathematic tools
to describe stochastic dynamics. During the past several
decades, analytical theories, such as FPE, Smoluchowski
equation, and stochastic Liouville equation [43], have been
proposed under the background of Gaussian noise to derive the
PDFs. The efficiency was affirmed by numerical simulations
from analytically solvable cases. However, FPE corresponding

to Lévy-noise-induced systems is fractional-order on the
diffusion term, with the form

∂

∂t
p = ∂

∂x
(V ′p) + D

∂αp

∂|x|α , (4)

corresponding to system Eq. (1), where ∂α/∂|x|α is the
fractional Riesz derivative [44]. When α = 2 it reduces to the
normal FPE. However, although the form of fractional FPE
can be given, rare types can be solved analytically even for
one-dimensional systems, except some special cases, which
is further difficult for rough potential systems. So in this
manuscript, Monte Carle simulations are applied directly.
Before addressing the results, we present the numerical
discrete form, at times tn = n�t, n = 0, 1, 2, . . . for a
sufficiently small time step �t ,

xn+1 = xn − V ′(xn)�t + (�t)1/αξα, β,D(n), (5)

where ξα, β,D(n) is the Lévy random number with triple
(α, β, D). To highlight the influences of the roughness, we
set the integration step time �t smaller than 10−4 and the
stochastic averages reported below over 2 × 105 trajectories
with initial locations at the bottom of the middle well.
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FIG. 4. The PDFs for different amplitudes of roughness in the potential under the parameters α = 1.5, D = 0.3. (a) Plots of PDFs for ε

varying from zero to 0.15. (b) Compasions of the PDFs in the region (1.5, 2.3) for ε = 0 and ε = 0.05 corresponding to their potentials.

PDFs in the absence of roughness are given in Fig. 3. We
show that when β = 0 the variation of α and D will not break
the symmetry of the PDFs. For small α the PDFs are slim
and high, with the increase of α the shapes of the PDFs
become fatter, and tend to the dumpy state like Gaussian
noise α = 2. This is because, when there is no noise, a
particle will stay at the bottom of the middle well and tend
to x = 0 with xn − V ′(xn)�t ≈ 0. When noise is added in
the system, after one step iteration xn+1 ≈ (�t)1/αξα, β,D(n),
then if the system happens to encounter a large Lévy noise
|(�t)1/αξα, β,D(n)| > x+

max, the particle will jump to other wells
easily, but if it is a small excitation, several more homodromous
excitations are needed to jump to other wells. So for small
α, large jumps play a leading role, but as α increases small
fluctuations overtake slowly. So we see heavier-tailed Lévy
noises induce slimmer PDFs, while larger α induce fatter
PDFs. The effects of the intensity D can be seen in Eq. (5),
which influences the dynamics by linearly increasing the noise
part: (�t)1/αξα, β,D(n) ∼ D1/α[(�t)1/αξα, β,1(n)].

Different from α and D, β affects the symmetry. It is clearly
shown in Figs. 3(c) and 3(d) that for β > 0, the PDFs are
right-skewed, while for β < 0, they are left-skewed, which
is exactly opposite to the right-skewed distribution of Lévy
noise stated above. Because for β > 0, although the Lévy
distribution is left-skewed, it has a heavy tail in the right-hand
side, then vast numbers of positive large jumps make it much
easier for a particle to transfer from the middle well to the
right well. In addition, when a particle jumps to the right well,
for the lack of minus large excitations, it is difficult for it to

return back to the middle or left well, so we see the right well
occupies the most parts of the probability.

When roughness is imposed on the smooth potential V0(x),
the direct influences on the PDFs are shown in Fig. 4. In
intuitional senses, the PDFs change from smooth to rugged
and the phenomenon becomes intenser with the increase of ε.
Region (1.5, 2.3) is shown in detail to compare the fluctuations
of PDFs corresponding to the rough potential. In the smooth
case, particles can hardly stay on the potential wall for a while,
but thanks to the small minima within the steep wall, they are
able to stay on the wall and oscillate in these small rough wells
for a short time, and so the PDFs become rugged.

Despite the visual results, we are concerned about the quan-
titative influences on the probability in each well. Therefore,
without loss of generality, we measure the probability that a
particle stays in the middle well by integrating the PDF:

Pmid =
∫ x+

max

x−
max

p(x)dx. (6)

It should be claimed that although roughness changes the
maximum and minimum of the potential, we define the middle
well as region (x−

max, x+
max) to keep coincident with the smooth

case.
Figure 5 shows how ε and α, β, D affect Pmid. For α

and D, we find that the differences keep small for different
ε in Figs. 5(a) and 5(b), which means that the influences of
roughness on Pmid are not significant with respect to α and
D. However, it is very different for β. With an increase of β
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FIG. 5. Pmid for different amplitudes of roughness with respect to α, D, and β, (a) β = 0, D = 0.3, Pmid increases with α, but the differences
between different roughness are small. (b) α = 1.5, β = 0, Pmid decreases along with the noise intensity D in the absence of roughness, when
ε = 0.15 Pmid tends to relatively stationarily for large D. (c) α = 1.5, D = 0.3, Pmid is almost symmetric around β = 0, and the roughness
decreases Pmid significantly.

from -1 to 1 Pmid goes through increasing and decreasing two
stages. When |β| is close to 1, Pmid is very small, which says
a particle hardly stays in the middle well. This phenomenon
can be explained as follows: taking the right axis, for example,
when β > 0 the heavy right tail of Lévy distribution can easily
kick particles out of the middle well, when they try to go
back to the middle well, numerous large positive excitations
will probably pull them back. Fixing β, the decreasing of
Pmid, resulting from the increase of ε, clearly shows significant
effects of roughness with respect to β. Compared with α and
D, we find that a skewed Lévy noise is more sensitive to the
roughness, which can amplify the effect of skewness parameter
β, and the larger ε is, the stronger this effect is. In the next
section, we will see how ε enhances the phenomenon.

IV. MFPT FROM THE MIDDLE TO THE RIGHT

A particle inserted into the middle well will spend a random
time within this well until it encounters a large spike or several
continuous small one-direction diffusions and kicks it out of
the well, which can be described as the FPT to measure the
duration of a particle escaping from the potential well. An
average imposed on FPT is the MFPT in the statistical sense.
In this part we study the MFPT from the middle well to the
right well (the regime is the same with the left well), and both

cases ε = 0 and ε �= 0 are computed to illustrate the influences
of the roughness. In these simulations, a particle starts from
the bottom of the middle well and proceeds until it reaches
or crosses the boundary defined at the bottom of the right
well, x = 2.0, and then restarts Eq. (5) until the procedure is
performed more than 2 × 105 times for one fixed point. To
ensure particles really transfer to the right well, we define the
FPT as follows:

τ (xright) = inf{t : x(t) > x+
min}. (7)

Taking an average on the FPT generates the MFPT:

MFPT = 〈τ (xright)〉. (8)

When ε = 0 in Fig. 6, with the increase of α particles
need more time to escape from the middle well, while β

and D perform oppositely. Because larger α means less large
Lévy excitations, while larger |β| indicates more large biased
excitations, and it is obvious that the increase of D will promote
particles to escape from the middle well.

Figure 7 clearly shows how the roughness affects the
MFPTs for different α, β, and D. It is an interesting
phenomenon that the roughness does not prevent particles from
crossing barriers but promotes the process. This phenomenon
attributes to the fact as follows. When a particle starts from the
bottom of the middle well, if it wants to cross the right barrier
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YONGGE LI, YONG XU, JÜRGEN KURTHS, AND XIAOLE YUE PHYSICAL REVIEW E 94, 042222 (2016)

1.2 1.4 1.6 1.8
0

50

100

150

200

α

M
P

F
T

(a)

 

 

β=−0.3

β=0.3

β=0.7

0.1 0.2 0.3 0.4
0

100

200

300

400

500

D

M
F

P
T

(b)

 

 

α=1.8

α=1.5

α=1.2

−1 −0.5 0 0.5 1
0

50

100

150

200

250

300

β

M
F

P
T

(c)

 

 

D=0.2
D=0.3
D=0.4

FIG. 6. MFPTs in the absence of roughness (ε = 0) with respect to α, D, and β. (a) D = 0.3, with the increase of α particles need more
and more time to escape. (b) β = 0, large D will decrease the MFPT of particles. (c) α = 1.5, the increase of β can promote the escape of
particles.

and reach the right well bottom x+
min at one shot, it at least needs

an excitation (�t)1/αξα, β,D(n) � x+
min. But if a particle is able

to stay at the halfway xsw on the potential wall for a while and
starts from there, it just needs an excitation (�t)1/αξα, β,D(n) �
(x+

min − xsw). In fact, the roughness produces a ladder-like
platform, leading particles a short stay at somewhere on the
steep walls, and wait for excitations relatively much smaller
than x+

min to kick particles out, while in the smooth potential
case, particles will return to the bottom quickly if there are
no continuous positive excitations. So the roughness enables
particles to use a wider band of Lévy excitations and decreases
the recovery rate to the bottom, which probably helps particles
to get enough time to wait for a critical excitation. In addition,
despite those one-shot crossings, when excitations are small,
the process likes a relay race, in which the ladders provide lots
of temporary relay points and enable one after another small
excitation to transfer particles to other points, and finally small
excitations step-by-step accomplish crossing work by two,
three, or more hits as illustrated in Fig. 8. During the process,
particles from xmin = 0 to x+

min = 2.0, should experience the
uphill and downhill stage, which will accelerate and retard
particles to get to another well, respectively. In the smooth
case, particles will slide down to the right bottom quickly
when they cross x+

max, but when roughness is imposed the
process slows down. However, the downhill distance is x+

min −

x+
max = 0.8453, which is smaller than the climbing distance

x+
max − xmin = 1.1547. So in one sense, the total effect is that

MFPTs decrease under the interference of roughness. On this
basis, we see roughness is indeed beneficial to the crossing.

Furthermore, it seems that large α and small D induce a
larger accelerating range. To illustrate these effects, we define
a tool to measure the degree of roughness upon MFPTs,

ρ = var(τ )

τε=0
, (9)

where var(τ ) measures how far the set of computed MFPTs
spread out, and the denominator τε=0 describes the level of
MFPT in the absence of roughness. Then we get ρα=1.2 =
0.002, ρα=1.5 = 0.098, ρα=1.8 = 0.509 in Fig. 7, which means
that larger α get more influences. This is because small pertur-
bations need to take advantage of these rugged barriers, while
large excitations can kick particles out by one or two hits and
thus benefit less from the roughness, so more small excitations
get more influences. As shown in Sec. II, large α have fat
inverse bell-like distributions of which small excitation takes
up the most percent, so they get more influences on the
MFPTs. Because D is to adjust the amplitude of noise linearly,
D1/α[(�t)1/αξα, β,1(n)], so D generates similar phenomena as
α under the roughness, like ρD=0.1 = 0.466, ρD=0.2 = 0.201,
and ρD=0.4 = 0.057.
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FIG. 7. MFPTs with respect to different amplitudes of the roughness in the potential. (a) β = 0, D = 0.3, when α = 1.2 the MFPT is
almost unchanged for varying ε, but when α is large the roughness can decrease the MFPT significantly. (b) α = 1.5, β = 0, contrary to the
case of α, the MFPTs of small D acquires more influences from the roughness and decrease obviously. (c) α = 1.5, D = 0.3, for β > 0,
roughness will decrease the MFPTs, but for β < 0, it is the opposite.

Different from α and D, for β < 0, roughness does not
accelerate the right crossing process as expected but prevents

FIG. 8. The schematic illustration of the transitions for particles
from rough potential well.

it. As stated above, small perturbations benefit more from the
roughness, while large jumps benefit less. For β < 0, most
large excitations are on the left side leading to frequently
negative excitations, which makes particles probably first jump
to the left well at the beginning, except some special cases.
When roughness is imposed, the match of large negative
excitations and small minus noises will be much more powerful
than positive small perturbations alone, resulting in more
opportunities for particles to transfer from the middle well
to the left well than smooth case, and thus it becomes even
difficult to reach the right well. So we see roughness plays
negative role for β < 0. For β > 0, Lévy distribution has a
heavy right tail, so large positive excitations matching small
perturbations makes it much easier to jump to the right well,
as a result, roughness decreases the MFPTs.

V. SPLITTING PROBABILITY

The splitting probability is another important issue to
describe the transition phenomenon. In a triple-well potential,
when a particle starts from the middle well it may jump to either
the left well or the right well. We use the splitting probability,
which is the probability of a first escape from the middle well
to the right or left, to elucidate the asymmetry of the first
escape. So our aim in this section is to explore the laws of
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FIG. 9. The splitting probabilities from the middle well to the right well with respect to different amplitudes of roughness and α, β, D.
(a) β = 0, D = 0.3, spr for different α change only a bit. (b) α = 1.5, β = 0, it is similar with α, little change happens on different D. (c)
α = 1.5, D = 0.3, the influences of roughness with respect β is significant, for β > 0, roughness will accelerate particles to jump to the right
well, while for β < 0, roughness will weaken the process.

splitting from the middle well due to the interference of Lévy
noise and roughness. Without loss of generality, we illustrate
the splitting probability to the right side spr , defined by

spr = lim
N→∞

1

N

N∑
i=1

IAi
(xi),

(10)
Ai = {xi(inf{t : xi(t)〈x−

min OR xi(t)〉x+
min}) � x+

min},
in which IA(·) is an indicator function.

In Figs. 9(a) and 9(b), we see the differences of spr due
to different roughness with respect to α and D are within
the order of 10−3, which is such a small number that it can
almost be neglected. However, it is a strong difference for
β in Figs. 9(c1) and 9(c2). In the absence of roughness,
spr (ε = 0) increases almost linearly, but when roughness
is imposed, spr (ε) becomes totally nonlinear. We find that
spr (ε) < spr (ε = 0) for β < 0, almost equal for β = 0, and
spr (ε) > spr (ε = 0) for β > 0. A qualitative explanation of
this phenomenon is similar to that of MFPTs under different
β. As shown in Fig. 2, for β < 0, smaller β generate heavier
left tails, which make it easier for particles to jump to the left,
so that spr becomes smaller and smaller. Due to the roughness,
small perturbations are activated to cooperate with large
excitations leading to an even larger splitting rate to the left,
and thus suppresses spr . While for β > 0, the match of small
perturbations and large positive excitations further promotes

particles to jump to the right, so we see larger spr in rough
cases. The effects is very significant near β = 0, that a small
change of β leads to a large difference �spr = 0.58 between
β = ±0.1 for ε = 0.15. Along with the transformation of
the sign of β is the inverse of which side has more large
excitations, it is a small change but makes a big difference.
Figure 9(c2) shows that the sign of roughness hardly changes
spr , but with the increase of ε, the effects of roughness become
more obvious.

VI. CONCLUSION

Our study has demonstrated that a simple superimposed
roughness on the smooth potential can produce lots of
significant features in a triple-well system under Lévy noise.
We have calculated the probability of a particle staying in
the middle well, MFPT, and the splitting probability under
different ε and Lévy parameters. We have shown that Pmid

becomes remarkably smaller when roughness is introduced
in the potential under the parameter of β, but very small
differences occur under parameters α and D, which says
that skewed noises benefit much more from the roughness.
Furthermore, we find that the roughness has an important
enhancement effect on the transport of particles, that the
easy become easier, the hard become harder. For the MFPT,
we see larger roughness leads to less time to escape from
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the middle well when β > 0, while it is opposite for β < 0
that larger roughness lead longer MFPT. So we see if it is
originally hard to cross the barriers it will be harder in the
presence of roughness like β < 0, but if it is originally easy
to escape, crossing will be easier under the interference of
roughness like β > 0 or common cases of α and D. What’s
more, for large α and small D, the enhancement effect on
MFPT is more significant than small α and large D. This
is because small fluctuations get more advantages from the
roughness than large jumps when particles try to escape from
the middle well. Finally, for the splitting probability, it appears
that small differences occur for parameters α and D, because
the enhancement effect on the transport is the same on both the
right and left side, so when the noise is symmetric, although

roughness enhances the transport, there is no bias on both sides.
But for asymmetric noise, when β > 0 roughness speeds up the
transport to the right, while when β < 0 roughness slow down
the right-side transport, so we see similar enhancement effect
phenomenon for the splitting probability with different β.
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