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We study symmetric and asymmetric optical multipeak solitons on a continuous wave background in the
femtosecond regime of a single-mode fiber. Key characteristics of such multipeak solitons, such as the formation
mechanism, propagation stability, and shape-changing collisions, are revealed in detail. Our results show that
this multipeak (symmetric or asymmetric) mode could be regarded as a single pulse formed by a nonlinear
superposition of a periodic wave and a single-peak (W-shaped or antidark) soliton. In particular, a phase diagram
for different types of nonlinear excitations on a continuous wave background, including the unusual multipeak
soliton, the W-shaped soliton, the antidark soliton, the periodic wave, and the known breather rogue wave, is
established based on the explicit link between exact solution and modulation instability analysis. Numerical
simulations are performed to confirm the propagation stability of the multipeak solitons with symmetric and
asymmetric structures. Further, we unveil a remarkable shape-changing feature of asymmetric multipeak solitons.
It is interesting that these shape-changing interactions occur not only in the intraspecific collision (soliton mutual
collision) but also in the interspecific interaction (soliton-breather interaction). Our results demonstrate that each
multipeak soliton exhibits the coexistence of shape change and conservation of the localized energy of a light
pulse against the continuous wave background.
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I. INTRODUCTION

Nonlinear waves on a continuous wave background in op-
tical fibers have recently become a subject of intense research
in both theory and experiment [1–8]. In particular, significant
progress has been made in the experimental verification of
some unique nonlinear wave structures, including Peregrine
rogue waves [9], Kuznetsov-Ma breathers (KMBs) [10],
Akhmediev breathers (ABs) [11], as well as their shape-
unchanging interactions such as the AB collision [12] and
the superregular breather [8,13] (i.e., the quasi-AB collision
with a π/2 phase shift) in the picosecond regime. These
picosecond pulses are well described by the standard nonlinear
Schrödinger equation (NLSE), which accounts for the second-
order dispersion and self-phase modulation. Specifically, these
unique waves appear as a result of the modulation instability
(MI) [5–8,14], and in turn the common features and differences
among wave manifestations enrich the MI understanding of
the nonlinear stage. It should be emphasized that a crucial
precise link between rogue waves and the zero-frequency MI
subregion has recently been unveiled [15,16], although the
exact relations between various types of nonlinear waves on
a background and MI still remain largely unexplored. On the
other hand, the utility of these waves based on their special
properties in generating high-quality pulse trains [17], high-
power pulses [18], breatherlike solitons [19], nonlinear Talbot
effects [20], and the Peregrine comb [21] has been revealed.

In the present work, we extend nonlinear waves on a
continuous wave background in the femtosecond regime,
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since ultrashort pulses are tempting and desirable to improve
the capacity of high-bit-rate transmission systems. How-
ever, in this case higher-order effects such as higher-order
dispersion and self-steepening play an important role and
become non-negligible [22–24]. The resulting models of
the higher-order NLSE thus describe nonlinear waves on a
continuous wave background with higher accuracy than the
standard NLSE. Recent studies demonstrated that nonlinear
waves on a continuous wave background in the femtosecond
regime exhibit structural diversity beyond the reach of the
standard NLSE [25–39]; in particular, some interesting types
of nonlinear waves on a background have been unveiled that
are completely different from the known breathers and rogue
waves [31–39]. The underlying mechanism can be qualita-
tively but quite explicitly interpreted by the corresponding MI
features [31,34,35]. Here, we report and discuss a family of
multiparametric symmetric and asymmetric multipeak solitons
on a continuous wave background in the femtosecond regime.
One key characteristic of this soliton is that it exhibits both
localization and periodicity along the transverse distribution on
a background; the corresponding periodicity and localization
for (symmetric or asymmetric) solitons are well described by
a periodic wave and a single-peak (W-shaped or antidark)
soliton, respectively. We focus our attention in particular on
the important properties of these multipeak solitons, including
the generation mechanism, propagation stability, and the
shape-changing interaction feature of asymmetric multipeak
solitons. For special parameter values (the continuous wave
background frequency vanishes), part of our general multipeak
soliton solution (i.e., the symmetric case) reduces to results
reported quite recently [37].

The rest of the paper is structured as follows. In Sec. II,
we obtain the exact solution with a unified form describing

2470-0045/2016/94(4)/042221(9) 042221-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.042221


LIU, YANG, ZHAO, DUAN, YANG, AND YANG PHYSICAL REVIEW E 94, 042221 (2016)

symmetric and asymmetric multipeak solitons on a back-
ground of the higher-order NLSE. The consistency between the
symmetric and asymmetric solitons is revealed by the optical
intensity against the background. Section III shows that the
periodicity and localization for (symmetric or asymmetric)
solitons are well described by a periodic wave and a single-
peak (W-shaped or antidark) soliton. In Sec. IV, the phase
diagram for different types of nonlinear excitations is presented
on the continuous wave frequency and the perturbed frequency
plane. Time-efficient numerical simulations were performed to
confirm the propagation stability of the multipeak solitons in
Sec. V. Section VI unveils the striking shape-changing feature
of asymmetric multipeak solitons that occurs not only in the
intraspecific collision (soliton mutual collision) but also in
the interspecific interaction (soliton-breather interaction). The
final section presents our conclusions.

II. THE MODEL AND MULTIPEAK SOLITONS
ON A CONTINUOUS WAVE BACKGROUND

Femtosecond pulse (i.e., the duration is shorter than 100 fs)
propagation in optical fibers with higher-order physical effects
such as third-order dispersion, self-steepening, and delayed
nonlinear response is governed by the following higher-order
NLSE [22,23]:

iuξ + 1
2αuττ + γ |u|2u − iβuτττ − is(|u|2u)τ − iδu(|u|2)τ

= 0, (1)

where u is the envelope of the electric field, ξ is the
propagation distance, τ is the retarded time, α and γ are
second-order dispersion and self-phase modulation, β is the
third-order dispersion, s is the self-steepening coefficient, and
δ is the delayed nonlinear response. All quantities have been
normalized.

To study nonlinear waves in the femtosecond regime
exactly, we shall consider a special parametric condition for
the higher-order terms, i.e., s = 6β, s + δ = 0, with α = γ .
As a result, the model (1) reduces to the integrable Hirota
equation [40]. The latter has been studied in a number
of papers [27,34,37,40–45], which involve mainly standard
bright solitons [41–44], breathers [45], and rogue waves [27].
In contrast to the aforementioned results, we introduce, in
the following, an interesting family of multiparametric non-
linear wave solutions describing symmetric and asymmetric
multipeak solitons on a continuous wave background in the
femtosecond regime.

By means of the Darboux transformation method [46,47],
multipeak solitons on a continuous wave background with
symmetric and asymmetric amplitude structures can be de-
scribed by the analytical unified solution with a general and
concise form,

u1,2 =
[

	1,2 cosh(ϕ + δ1,2) + �1,2 cos(φ + ξ1,2)


1,2 cosh(ϕ + ω1,2) + �1,2 cos(φ + γ1,2)
+ a

]
eiθ ,

(2)
where the continuous wave background has the following
expression: u0 = aeiθ , θ = qτ + [αa2 − αq2/2 + β(6qa2 −
q3)]ξ , and u1,u2 stand for the symmetric and asymmetric mul-
tipeak solitons, respectively. It is evident that the solution (2) is
formed by a nonlinear superposition of the hyperbolic function

cosh ϕ and the trigonometric function cos φ on the background
u0. This unique nonlinear superposition signal exhibits the
characteristics of the nonlinear structures on the nonvanishing
background, which are expressed as

ϕ = 2ηi(τ + vξ ), φ = 2ηr (τ + vξ ),

v = β
(
2a2 + 4a2

1 − q2
1

) − (q1 + q)(qβ + α/2),

ηr + iηi = √
ε + iε′, ε = a2 − a2

1 + (q − q1)2/4,

ε′ = a1(q − q1), q1 = −α/(4β) − q/2, (3)

with the corresponding amplitude and phase notations:

	1 = −4aa1

√
ρ + ρ ′, 	2 = −4a2a1,

�1 = 2a1

√
χ2 − (2a2 − χ )2, �2 = 4aa1

√
2(iε′ − ε),


1 = ρ + ρ ′, 
2 =
√

ρ2 − ρ ′2,

�1 = −2a(ηi + a1), �2 =
√

�2 + �′2,

δ1 = arctanh(−iχ1/χ2),

δ2 = arctanh[i2(ηi + iηr )/(q − q1 − 2ia1)],

ξ1 = −arctan[i(2a2 − χ )/χ ],

ξ2 = −arctan[i2(ηi + iηr )/(q − q1 − 2ia1)],

ω1 = 0, ω2 = arctanh(−ρ ′/ρ),

γ1 = 0, γ2 = −arctan(�′/�),

and ρ = ε + 2a2
1 + η2

i + η2
r , ρ ′ = ηr (q − q1) + 2ηia1, � =

ε + 2a2
1 − η2

i − η2
r , �′ = ηi(q1 − q) + 2ηra1, χ = χ2

1 + χ2
2 +

a2, χ1 = ηr + (q − q1)/2, and χ2 = ηi + a1.
The above expressions depend on the continuous wave

background amplitude a, frequency q, the real constant a1

(without loss of generality we let a1 � 0), the real parameter
α describing the group-velocity dispersion and the self-phase
modulation, and the real parameter β (a small value), which is
responsible for the higher-order terms. Note that the existence
condition q1 = −α/(4β) − q/2 [see Eq. (3)] implies that
this nonlinear mode is induced by the higher-order effects
(β �= 0), and therefore it has no analogy in the picosecond
regime governed by the standard NLSE. Additionally, the
background frequency q plays a key role in the properties
of nonlinear modes, since it cannot be ignored by the Galilean
transformation. Indeed, the nonlinear modes exhibit prolific
structures depending on the value of q (see, e.g., Figs. 1 and 2).

The key property of this solution is that it features both
hyperbolic and trigonometric functions with the same velocity
v [see the hyperbolic function (cosh ϕ) and the trigonometric
function (cos φ)]. This implies ηr �= 0,ηi �= 0 [thus q �= q1,
i.e., q �= −α/(6β)]. As a result, the hyperbolic functions
and trigonometric functions describe the localization and the
periodicity of the transverse distribution τ of the localized
waves, respectively. The corresponding typical optical ampli-
tude [I = √|u1,2(ξ,τ )|2] profiles are well displayed in Fig. 1.

Remarkably, the pulse features a localized solitonlike
multipeak structure propagating in the ξ direction. Or, strictly
speaking, this interesting solitary mode exhibits both localiza-
tion and periodicity along the transverse distribution τ . This
indicates that the characteristics of this wave come from a
mixture of a soliton and a periodic wave. Specifically, this pulse
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FIG. 1. Optical amplitude distributions |u| of multipeak solitons
on a continuous wave background with (a) symmetric u1 and
(b) asymmetric u2 structures. The setup is q = 3qs , a = 1, a1 = 0.7,
β = 0.1, and α = 1, with qs = −α/(6β).

possesses a main peak and several subpeaks, and the latter are
distributed on both sides of the main peak in a symmetric
or asymmetric way. Although the maximum optical intensity
is different, the interesting connection is that the optical
intensity against the background of the two solitons with
symmetric and asymmetric profiles turns out to coincide with
each other, i.e.,

∫ +∞
−∞ (|u1|2 − a2)dτ = ∫ +∞

−∞ (|u2|2 − a2)dτ . It
should be noted that the solution (2) includes, as a special
case, the symmetric solution u1 with q = 0 that was reported
in Ref. [37].

III. FORMATION MECHANISM
FOR MULTIPEAK SOLITONS

Next, to further understand the formation mechanism of the
localized multipeak structure on a background, our attention

FIG. 2. Periodic waves and single-peak solitons extracted from
the multipeak solitons. Periodic waves: (a) up1 and (b) up2 with
a1 = 0.7, given by Eqs. (4); single-peak solitons: (c) us1 and
(b) us2 with a1 = 1.4, given by Eqs. (5). Other parameters are a = 1,
β = 0.1, and α = 1.

is then focused on extracting separately the periodic wave
(periodicity) and soliton (localization) from the mixed state.

Toward that end, the nonlinear excitation signal possesses
a single modulated function (hyperbolic or trigonometric
functions). In this interesting case, the background frequency
q plays a key role and should be chosen as q = −α/(6β)
(thus q �= 0). Specifically, the periodic wave exists on its own
when ηi = 0 vanishes (thus a1 < a), while the soliton exists
in isolation when ηr = 0 vanishes (thus a1 > a). The unified
explicit expressions read, for the periodic wave,

up1,2 =
[

2η2

a − eiσ a1 cos[2η(τ + vξ ) − μ]
− a

]
eiθ , (4)

where η = ±
√

a2 − a2
1 , σ = σ1,2 = {0,π}, with μ = μ1,2 =

{0, arctan(−ηr/a1)}, and for the soliton

us1,2 =
[

2η′2

eiσ a1 cosh[2η′(τ + vξ ) + μ′] − a
− a

]
eiθ , (5)

where η′ = ±
√

a2
1 − a2, σ = σ1,2 = {0,π}, with μ′ = μ′

1,2 =
{0,arctanh(−ηi/a1)}.

Figure 2 depicts the typical optical amplitude profiles of
the periodic waves and solitons extracted from the localized
modes u1,u2, respectively. As is shown, the periodic waves
possess the same profile feature (the same W-shaped structure
of periodic units and the same intensity), but for a slight
phase shift. Surprisingly, the single-peak solutions display
completely different structures depending on the phases: one
is a W-shaped soliton with one peak and two symmetric
valleys whose central position is located at (ξ,τ ) = (0,0),
extracted from the symmetric multipeak soliton u1; the another
is an antidark soliton (a bright soliton on a nonvanishing
background) with a slight phase shift, extracted from the
asymmetric multipeak soliton u2. We note that the optical
intensity against the background of the two types of solitons
is consistent with each other. It is worth pointing out that the
rational W-shaped soliton reported before is only the limiting
case of us1 and up1 with a1 = a [34].

An analysis of the above results, shown in Figs. 1 and 2,
implies that a formation mechanism of the localized periodic
modes may be interpreted as a nonlinear superposition of a
periodic wave and a single-peak soliton. The W-shaped and
antidark solitons with periodic modulation give rise to the
symmetric and asymmetric multipeak modes, respectively.

IV. PHASE DIAGRAM AND TRANSITIONS

A. Phase diagram

The next step of interest and significance is to understand
the multipeak structures on a background via MI. Toward
that end, we turn our attention first to the standard linear
stability analysis of the continuous wave u0 via adding small-
amplitude perturbed Fourier modes p, i.e., up = [a + p]eiθ ,
where p = f+ei(Qτ+ωξ ) + f ∗

−e−i(Qτ+ω∗ξ ),f+,f ∗
− are small am-

plitudes, Q represents perturbed frequency, and the parameter
ω is assumed to be complex. In this case, by comparing
the perturbed modes p with the unique exact nonlinear
superposition signal in u1,2, the nonlinear modes, Eq. (2),
shall be regarded as the nonlinear perturbation signal on
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FIG. 3. (a) Characteristics of the modulation instability growth
rate on the perturbed frequency and the background frequency (Q,q)
plane with higher-order effects, and (b) the explicit correspondence
of the phase diagram for different types of nonlinear excitations
on a continuous wave background. In (a), the notations “MI”
and “MS” denote modulation instability and modulation stability
regions, respectively. In (b), “RW” (Peregrine rogue wave), “KMB”
(Kuznetsov-Ma breather), and “AB” (Akhmediev breather) are cast in
the MI region with corresponding exact perturbed frequencies Q = 0,
Q = 0, and |Q| < 2a (Q �= 0), respectively. “WSS” (W-shaped
soliton), “ADS” (antidark soliton), and “PW” (periodic wave) are
mapped in the MS line q = qs ; specifically, W-shaped and antidark
solitons exist at (q,Q) = (qs,0) (the blue dot), and periodic waves
exist at q = qs with |Q| � 2a (Q �= 0). The “MPS” (multipeak
soliton), whether the structure is symmetric or asymmetric, is
displayed in the same orange “X-shaped” region, which is depicted
via the explicit perturbed frequency expression 2ηr with different
values of a1, from a1 = 0 to a1 � a. Here the solid blue, black, and
red lines in the orange region correspond to the cases with a1 = 0,
a1 = a, and a1 � a, respectively. The setup is β = 0.1, α = 1, and
a = 1.

background u0 with the explicit perturbed frequency Q = 2ηr .
Different perturbed frequencies correspond to different types
of nonlinear excitations [48]. In this regard, we can establish an
explicit correspondence between various nonlinear excitations
and MI on the (Q,q) plane. The corresponding characteristic
outcomes are displayed in Fig. 3.

Figure 3(a) depicts the typical characteristics of MI growth
rate G = −Im{ω}, and Fig. 3(b) shows the explicit corre-
spondence between MI and various nonlinear excitations.
Remarkably, there is a modulation stability (MS) region
[dashed line in Fig. 3(a)], i.e., G = 0, in the low perturbed
frequency region (|Q| � 2a), resulting from the higher-order
effects, which is given analytically by q = qs = −α/(6β).
Hence MI is always present in the region |Q| � 2a (q �= qs).
Instead, the MS regions contain the whole higher perturbation
frequency region (|Q| > 2a) and a special MS region q = qs

in a low perturbation frequency region (|Q| � 2a).
An interesting finding is that the MS condition q = qs is

consistent with the existence condition of a periodic wave
and a single-peak soliton, Eqs. (4) and (5). According to
their perturbed frequencies, the W-shaped/antidark solitons
are located at (q,Q) = (qs,0), and periodic waves exist at the
q = qs line with |Q| < 2a,Q �= 0.

Next, we map the whole distribution region of mul-
tipeak solitons on the MI plane. Toward that end, the
modulated parameter a1 of the perturbed frequency 2ηr is
considered as a continuous variable from a1 = 0 to a1 � a.

The corresponding marginal condition can be found analyti-
cally: Q = ±{4a2 + 9�2/4}1/2 (when a′ = 0 with � = q −
qs), Q = ±3|�|/2 (when a1 � a). Thus, the existence range
of the multipeak solitons is identified in the orange “X-shaped”
region between the two marginal lines [see Fig. 3(b)].

Remarkably, this unique “X-shaped” region involves both a
MS subregion with higher perturbation frequency (|Q| > 2a)
and a MI subregion with low perturbation frequency (|Q| <

2a). Further, the solid black line in the “X-shaped” region
represents the intermediate condition with a1 = a, which
can be given analytically as Q = ±{[(9�2/8)2 + 9a2�2]1/2 +
9�2/8}1/2. It is interesting to note that, if q = qs , the region
a1 � a [i.e., the range from red line to black line] reduces to the
point (q,Q) = (qs,0), where multipeak solitons are converted
into W-shaped/antidark solitons, while another region 0 �
a1 < a [i.e., the range from black line to blue line] reduces
to the q = qs line with |Q| � 2a,Q �= 0, where multipeak
solitons are translated into periodic waves. We stress that this
finding coincides with the transition condition for nonlinear
waves in Eqs. (4) and (5).

B. Transitions

On the other hand, it is also worth pointing out that
the generation mechanism of the periodic waves and W-
shaped/antidark solitons can be interpreted as the transitions
when the AB and KMB evolve and reach the MS region q = qs ,
respectively. This can be anticipated visually by the phase
diagram above, and proved strictly via the general exact AB
and KMB solutions with different phases (σ = 0,π ) presented
in the Appendix. Specifically, as q → qs , the AB has its
ξ -direction localization gradually decreasing, which corre-
sponds exactly to the MI growth rate attenuation. The AB is
eventually translated into the periodic wave with the vanishing
growth rate, i.e., q = qs . Please note that the different phase
parameters have no substantial influence on the AB-to-periodic
wave transition (see Fig. 4). For the KMB, its breathing period
Dξ = π/[η′a1α(1 − q/qs)] increases, and the fundamental
unit becomes more elongated as q → qs (see Fig. 5). It
is noteworthy to observe KMB-to-W-shaped/antidark soliton
transitions resulting from the KMBs with different phase
parameters. The KMB can be transformed into a W-shaped
soliton when σ = 0 [its peak is located at the central position
(ξ,τ ) = (0,0)], whereas it becomes an antidark soliton on the
MS line.

V. STABILITY FOR MULTIPEAK SOLITONS

As is well known, the stability plays an irreplaceable role
in nonlinear wave realization and application in experiment.
On the other hand, one should keep in mind that the multipeak
solitons reported above are on a continuous wave background.
The latter, in general, displays the feature of MI, namely, a
small perturbation may distort the wave profiles formed on
top of it. In this regard, we shall test the stability of multipeak
soliton propagation on a continuous wave background. We
perform direct numerical simulations of Eq. (1) by the split-
step Fourier method with the initial condition u1,2(0,τ ), i.e.,
the exact solution (2) at ξ = 0.
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FIG. 4. Transitions from the Akhmediev breathers to the periodic waves with q = 0, qs/2, and qs , from left to right. Top and bottom rows
display the modes with different phases σ = 0,π . Other parameters are a = 1, β = 0.1, and a1 = 0.7.

Nevertheless, it should be pointed out that the analytical
solution (2) u1,2 obtained here is confined to the case
with special parameters, i.e., the Hirota model. Thus, it
is crucial to conform the sensitivity of the exact solution.
Toward that end, we numerically simulate the evolution of
the multipeak solitons under the condition departing from the
validity of the Hirota case. Namely, we choose the condition
s + δ = 0, s = (6 + ε)β, with ε 	 1, which is beyond the
Hirota case. Figures 6 and 7 show the stability of the
symmetric and asymmetric multipeak solitons by comparing

the analytical solution (2) u1,2 with the numerical simulations
of Eq. (1).

In Fig. 6, we first show the propagation stability of a
typical symmetric multipeak soliton u1 with ε = 0 and 0.1.
Interestingly, our results indicate no collapse arising from the
MI, numerical deviations, and in particular the unavailability
of the Hirota condition. Instead, stable propagation over tens of
propagation distances is observed. In particular, we compare
the numerical results with the analytical solution by the
corresponding amplitude profiles at different ξ . It shows in

FIG. 5. Transitions from the Kuznetsov-Ma breathers to the single-peak solitons with q = 0, qs/2, and qs , from left to right. Top and bottom
rows display the localized modes with different phases σ = 0,π . Other parameters are a = 1, β = 0.1, and a1 = 1.5.
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FIG. 6. Numerical stability confirmation for the symmetric mul-
tipeak solitons |u1(ξ,τ )| with (a) ε = 0, i.e., the Hirota case, and
(b) ε = 0.1. Parts (c) and (d) show the comparison of amplitude
profiles of the analytical solution (black solid line), the numerical
result in (a) (red circle), and the numerical result in (b) (green cross)
at ξ = 2,8. The setup is q = 3qs/2, a = 1, α = 1, β = 0.1, and
a1 = 0.5.

Figs. 6(c) and 6(d) that the numerical results (red circle and
green cross) are in good agreement with the analytical solution
(solid line).

Next, we test the stability of the asymmetric multipeak
soliton. Here, we keep the same parameters as in Fig. 6, but
the initial state is chosen as u2(0,τ ). As shown in Fig. 7,
we observe that the asymmetric multipeak soliton can also
propagate in a stable manner. Namely, the asymmetric feature

FIG. 7. Numerical stability confirmation for the asymmetric
multipeak solitons |u2(ξ,τ )|. The setup is the same as in Fig. 6,
but the initial state is u2(0,τ ).

FIG. 8. (a) Shape-changing collision between two multipeak
solitons (incident solitons S1,S2; the outgoing solitons S ′

1,S
′
2) with the

conditions qj = (3qs − q)/2, q �= qs , j = 1,2. (b) The corresponding
intensity profiles |u|2 at ξ = −20 (orange) and ξ = 20 (yellow). The
setup is q = 4qs , a1 = 1, a2 = 1.5, a = 1, α = 1, and β = 0.1.

of the transverse amplitude distribution seems to have no
effect on the propagation stability of the multipeak solitons. It
should be pointed out that although here we have demonstrated
the results of the stability only for the multipeak solitons in
Eq. (1), similar conclusions hold for other types of nonlinear
waves as well, provided propagation distances are kept within
reasonable values.

VI. SHAPE-CHANGING FEATURE OF ASYMMETRIC
MULTIPEAK SOLITONS

In this section, we focus our attention on the characteristics
of the interaction between nonlinear waves reported above. In
fact, we find that rich intraspecific and interspecific interac-
tions do exist in this system via extracting explicit existence
conditions from Table I in the Appendix. However, our interest
is confined to a different kind of shape-changing interaction.
Specifically, we find that the asymmetric multipeak soliton u2

exhibits shape-changing characteristics before and after inter-
actions. Interestingly, this shape-changing interaction involves
mutual collisions of multipeak solitons as well as interactions
between multipeak solitons and other types of nonlinear waves.
In particular, it is found that the shape-changing feature is
specific to the multipeak solitons.

We first study the mutual collision of two multipeak
solitons with the coexistence condition qj = (3qs − q)/2,
q �= qs , j = 1,2. As shown in Fig. 8, two incident multipeak
solitons S1,S2 with different features of peak distributions
move from ξ → −∞ and approach each other; they undergo
collision around (ξ,τ ) = (0,0) and form a higher peak. They
then separate with a small phase shift and propagate to
ξ → +∞. It is evident that the multipeak features of outgoing
multipeak structures S ′

1,S
′
2, including the peak numbers and

peak intensity distributions, are changed significantly after
the collision (see the intensity profiles in Fig. 8). This
indicates that the collision is shape-changing. For details,
by comparing the intensity profiles S1,S2 with S ′

1,S
′
2, we

find that, for each soliton, the maximum intensity decreases
while the subpeaks increase. We infer that this fascinating
shape-changing collision could stem from the intensity transfer
from subpeaks to main peaks of the multipeak soliton itself,
rather than the intensity transfer between solitons.
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To prove the validity of the conjecture above, we then
analyze the localized energy of a light pulse against the
background of multipeak solitons with the expression Ie =∫ τ2

τ1
{|u(ξ,τ )|2 − a2}dτ . As a result, the localized energy

of multipeak solitons before and after the shape-changing
collision can be investigated via the optimal numerical method
at different propagation distances ξ . The total localized energy
of these two solitons [Ie(s1) + Ie(s2)] is conserved, which can
be verified directly when τ1 = −∞,τ2 = +∞. The localized
energy of the each multipeak soliton [Ie(s1),Ie(s2)] is obtained
by the appropriate choice for τ1,τ2. For a selected initial
propagation distance, i.e., ξ < 0, we calculate Ie(s1) and Ie(s2)
by

∫ τ0

−∞ {|u|2 − a2}dτ and
∫ +∞
τ0

{|u|2 − a2}dτ , respectively.
Note that the transverse position τ0 is located between S1,S2,
leading to |u(ξ,τ0)| = a, and vice versa for positive ξ . Then the
interesting finding is that each multipeak soliton preserves its
localized energy before and after the collision. Namely, after
multipeak solitons collide, the shape change and localized
energy conservation of each multipeak soliton coexist. It is
noted that this shape-changing feature is completely different
from the known shape-changing collisions between standard
solitons in the coupled NLS systems that describe a process of
energy transference between solitons in one component [49].

For a better understanding of this shape-changing charac-
teristic of multipeak solitons, we next explore interspecific
interactions, i.e., the interactions between multipeak solitons
and other types of localized nonlinear waves (breathers). Our
aim is to demonstrate that after the interspecific interaction
occurs, the multipeak solitons exhibit intensity redistribution,
but the characteristic of breathers remains invariant.

Figure 9 illustrates the interaction between multipeak
solitons and breathers for the choice of the parameters q1 =
(3qs − q)/2, q �= qs , q2 �= (3qs − q)/2. One can see from
Fig. 9 that an incident multipeak soliton S propagating along
ξ collides with a breather near ξ = 0; after that, the outgoing
soliton S ′ shows a typical shape-changing characteristic, but
the breather remains the original feature. An analysis of the
intensity profiles and the localized energy of S and S ′ shows
that, after the interspecific interaction with a breather occurs,
the single multipeak soliton allows the intensity redistribution
between their peaks, and preserves strictly the localized energy
of the soliton.

FIG. 9. (a) Shape-changing interaction between a breather and a
multipeak soliton (the incident soliton S and breather B; the outgoing
soliton S ′ and breather B ′) with the conditions q1 = (3qs − q)/2,q �=
qs ; q2 �= (3qs − q)/2. (b) The corresponding intensity profiles |u|2 of
multipeak solitons at ξ = −8 (orange) and ξ = 8 (yellow). The setup
is q = 3qs , a1 = 1.4, a2 = 0.8, q2 = 1.6, a = 1, α = 1, and β = 0.1.

FIG. 10. (a) Shape-unchanging interaction between a breather
and an antidark soliton (the incident soliton S and breather B;
the outgoing soliton S ′ and breather B ′) with the conditions q1 =
(3qs − q)/2,q = qs,a

2
1 > a2; q2 �= (3qs − q)/2. (b) The correspond-

ing intensity profiles |u|2 at ξ = −8 (orange) and ξ = 8 (yellow).
The setup is the same as in Fig. 9, but q = qs .

Finally, we illuminate that the unique shape-changing
characteristic is specific to the multipeak solitons. Toward that
end, we consider the limiting case of the interaction shown
in Fig. 9, i.e., the collision between antidark solitons and
breathers. The corresponding interaction structure is displayed
in Fig. 10 with the limiting condition q = qs . It is evident that
this collision exhibits a completely shape-unchanging feature,
although the waves are two distinct types of localized waves.
As a result, a comparison of Figs. 9 and 10 indicates that the
shape-changing feature is specific to asymmetric multipeak
solitons and is not available for antidark solitons.

VII. CONCLUSION

In summary, symmetric and asymmetric multipeak solitons
on a continuous wave background in the femtosecond regime
have been investigated analytically and numerically. Key prop-
erties of such multipeak solitons as the formation mechanism,
propagation stability, and shape-changing collisions have been
revealed in detail.

This intriguing multipeak soliton exhibits both localiza-
tion and periodicity along the transverse distribution on a
background. The corresponding periodicity and localization
for multipeak (symmetric or asymmetric) solitons are well
described by a periodic wave and a single-peak (W-shaped or
antidark) soliton, respectively.

Although the maximum optical intensity is different, the
interesting connection is that the optical intensity against the
background of the symmetric and asymmetric solitons turns
out to coincide under the same initial parameter condition, i.e.,∫ +∞
−∞ (|u1|2 − a2)dτ = ∫ +∞

−∞ (|u2|2 − a2)dτ .
In particular, a phase diagram for different types of nonlin-

ear excitations on a continuous wave background, including a
breather, a rogue wave, a W-shaped soliton, an antidark soliton,
a periodic wave, and a multipeak soliton, is established based
on the explicit link between the exact nonlinear wave solution
and MI analysis. Numerical simulations were performed to
confirm the propagation stability of the multipeak solitons.

Finally, the remarkable shape-changing feature of asym-
metric multipeak solitons, occurring not only in the in-
traspecific collision (soliton mutual collision) but also in
the interspecific interaction (soliton-breather interaction), was
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unveiled. It is demonstrated that each multipeak soliton
exhibits the coexistence of shape change and conservation
of the localized energy of a light pulse against the continuous
wave background. The shape-changing interaction between
nonlinear waves on a continuous wave background will
enrich our understanding of localized wave collision in (1+1)-
dimensional scalar nonlinear wave evolution systems.
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APPENDIX

A general nonlinear wave solution on the background
u0 of the higher-order NLSE (1), which describes optical
femtosecond pulse propagation in a single-mode fiber, is
present as follows:

u1,2 =
[

	1,2 cosh(ϕ + δ1,2) + �1,2 cos(φ + ξ1,2)


1,2 cosh(ϕ + ω1,2) + �1,2 cos(φ + γ1,2)
+ a

]
eiθ ,

(A1)

where

ϕ = 2ηi(τ + V1ξ ), φ = 2ηr (τ + V2ξ ),

V1 = v1 + v2ηr/ηi, V2 = v1 − v2ηi/ηr ,

v1 = β
(
2a2 + 4a2

1 − q ′2) − (q1 + q)(qβ + α/2),

v2 = a1[α + 2β(q + 2q1)], ηr + iηi = √
ε + iε′,

ε = a2 − a2
1 + (q − q1)2/4, ε′ = a1(q − q1).

TABLE I. Types of nonlinear excitations and corresponding
explicit existence conditions.

Nonlinear wave type Existence condition

Breather and rogue wave qj �= 3qs−q

2 (qs = −α

6β
,j = 1,2)

Multipeak soliton qj = 3qs−q

2 ,q �= qs

W-shaped/antidark soliton qj = 3qs−q

2 ,q = qs,a
2 < a2

j

Periodic wave qj = 3qs−q

2 ,q = qs,a
2 > a2

j

Rational W-shaped soliton qj = 3qs−q

2 ,q = qs,a
2 = a2

j

Here we remark that if V1 = V2, implying v2 = 0 [thus q1 =
−α/(4β) − q/2], the solution (A1) describes the dynamics
of multipeak solitons in Eq. (2). Instead, if V1 �= V2, implying
v2 �= 0, the solution (A1) displays the properties of the breather
and the rogue wave. Specifically, with the condition 0 < a1 <

a,q = q1, the Akhmediev breather solution is given by the
form

u1,2 =
[

2η2 cosh(κξ ) + i2ηa1 sinh(κξ )

a cosh(κξ ) − eiσ a1 cos[2η(τ + v1ξ ) − μ]
− a

]
eiθ ,

(A2)

where v1 = β(2a2 + 4a2
1 − q2) − 2q(qβ + α/2), κ = 2ηv2,

v2 = a1α(1 − q/qs), qs = −α/(6β), and σ = σ1,2 = {0,π},
with μ = μ1,2 = {0, arctan(−ηr/a1)}. The AB is periodic
along the distribution direction τ , and the period is
Dτ =π/

√
a2−a2

1 . On the other hand, the Kuznetsov-Ma breather
is obtained with the condition a1 > a,q = q1,

u1,2 =
[

2η′2 cos(κ ′ξ ) + i2η′a1 sin(κ ′ξ )

eiσ a1 cosh[2η′(τ + v1ξ ) + μ′] − a cos(κ ′ξ )
− a

]
eiθ ,

(A3)

where κ ′ = 2η′v2, σ = σ1,2 = {0,π}, with μ′ = μ′
1,2 =

{0,arctanh(−ηi/a1)}. Note that if q = qs , the AB and KMB are
converted to the periodic wave and W-shaped/antidark soliton
described by Eqs. (4) and (5). For clarity, various types of
nonlinear excitations extracted from the general solution on a
background are classified in Table I.
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