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Randomness evaluation for an optically injected chaotic semiconductor laser
by attractor reconstruction
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State-space reconstruction is investigated for evaluating the randomness generated by an optically injected
semiconductor laser in chaos. The reconstruction of the attractor requires only the emission intensity time
series, allowing both experimental and numerical evaluations with good qualitative agreement. The randomness
generation is evaluated by the divergence of neighboring states, which is quantified by the time-dependent
exponents (TDEs) as well as the associated entropies. Averaged over the entire attractor, the mean TDE is
observed to be positive as it increases with the evolution time through chaotic mixing. At a constant laser noise
strength, the mean TDE for chaos is observed to be greater than that for periodic dynamics, as attributed to
the effect of noise amplification by chaos. After discretization, the Shannon entropies continually generated by
the laser for the output bits are estimated in providing a fundamental basis for random bit generation, where a
combined output bit rate reaching 200 Gb/s is illustrated using practical tests. Overall, based on the reconstructed
states, the TDEs and entropies offer a direct experimental verification of the randomness generated in the chaotic
laser.
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I. INTRODUCTION

Fast physical random bit generation (RBG) is crucial for a
range of applications in cryptography, computation, and secure
communication [1–9]. As photonic devices support signals of
wide bandwidths, they are applicable to generating signals
with high-speed fluctuations. The signals with subnanosecond
fluctuations have enabled fast RBG at bit rates exceeding
hundreds of gigabit per second through various approaches.
Different approaches have utilized different physical phenom-
ena, including quantum fluctuations [7], noisy spontaneous
emissions [10–12], nonlinear optical instabilities [13–15], op-
toelectronic oscillations [16–18], and chaos in semiconductor
lasers [19–28]. In particular, with inherently nonlinear and fast
responses, chaotic semiconductor lasers have been actively
investigated for RBG [1–3]. Semiconductor laser chaos-based
RBG offers a unique combination of advantages for RBG
such as the possibilities of achieving high bit rates [19–22],
monolithic integration [26–28], synchronizable consistent
responses [8,29], and effective amplification of noise [4–6].
With combinations of different schemes of optical feedback
[19–21], optical injection [30–32], distributed feedback [33],
mutual coupling [22], and intracavity interactions [25,34], a
number of experimental investigations have been thoroughly
reported for semiconductor laser chaos-based RBG.

To verify the randomness for semiconductor laser chaos-
based RBG, practical tests such as those from the National
Institute of Standards and Technology (NIST) can be adopted
[1–3], but passing these tests do not fundamentally guarantee
randomness. There are examples that pseudorandom bits
obtained from properly designed digital algorithms can pass
these practical randomness tests, even though the bits are not
truly random [35]. Fundamentally, the randomness in laser
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chaos-based RBG is attributed to the nonlinear dynamical
mixing that originates from the diverging trajectories of
neighboring states in the attractor [6]. The expansion rates
of the separation distances between neighbors are quantified
by the Lyapunov exponents, which are time-averaged in the
limit of infinitesimally small initial separations [9,36–40].
By numerically simulating noisy perturbations on the initial
states, the Lyapunov exponents have been comprehensively
estimated for lasers under optical feedback along with injection
[9,36–38]. Alternatively, by reconstructing the states from a
numerically simulated time series, the Lyapunov exponents
have been estimated for a laser under feedback without
injection in some recent works [40]. However, it remains
interesting to estimate the divergence of the states of the
chaotic lasers experimentally.

Besides the divergence of states, the randomness in laser
chaos-based RBG can also be evaluated by the Shannon en-
tropy [4–6]. The Shannon entropy refers to the unpredictability
of a bit generated from a discretized detection of the laser state.
As the evolution time increases, initially neighboring states
diverge, causing the bit to become increasingly unpredictable,
which in turn increases the Shannon entropy [4–6]. Recently,
a theoretical linkage is established between mixing and
ergodicity that illustrates entropy generation in a chaotic
laser with feedback [4]. By numerical perturbations using
different noise series on an initial state, the Shannon entropy
of the output bits for a laser under optical feedback has been
estimated using a rate-equation model [5], where extensions
to a pair of lasers with feedback and a solitary vertical
cavity surface-emitting laser have been simulated [24,28]. By
experimenting on a mirror-integrated semiconductor laser, the
Shannon entropy has also been estimated through switching
the optical feedback off and on periodically [6]. When the
feedback was off, the laser was reset to the free-running state.
When the feedback was on, the laser was forced to evolve away
from the free-running state according to the chaotic dynamics
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with noisy perturbations. After many repetitions, the statistics
of the output bits was used to estimate the transient Shannon
entropy generated immediately after switching the feedback.
However, in practice, a laser for RBG normally stays chaotic
without being periodically interrupted by any switching of
the operating parameters [2,19,21,28]. The laser does not
periodically return to a single free-running state, but rather
continuously evolves within the chaotic attractor to different
states. So it is of interest to experimentally estimate the
continuously generated Shannon entropy for laser chaos-based
RBG without the interruptions.

In this paper, the randomness generated from an optically
injected chaotic semiconductor laser for RBG is evaluated
through state-space reconstruction. The reconstruction is ap-
plied to both numerical simulations and experiments using the
emission intensity time series of the laser. The reconstructed
attractor contains neighboring states that diverge over time
as governed by the time-dependent exponents (TDEs), which
are estimated for the observations below. First, the mean TDE
averaged over the entire attractor is observed to be positive in
signifying the divergence of states for randomness generation.
It increases with the evolution time at a rate that provides
an estimation of the largest Lyapunov exponent. Second, the
mean TDE for the chaotic dynamics is observed as being
greater than that for a periodic dynamics under the same
noise strength. This verifies the effect of noise amplification by
chaotic mixing. Third, Shannon entropies associated with the
output bits are experimentally estimated based on an ensemble
of the reconstructed states. The continually generated Shannon
entropies fundamentally enable RBG. With the evaluation of
randomness by the TDEs and Shannon entropies, RBG at a
combined output bit rate of 200 Gb/s is verified using the
practical randomness tests from NIST.

The approach of state-space reconstruction offers some
interesting advantages for randomness evaluation. It is appli-
cable to experiments because only the measurable intensity
time series is required. It is comprehensive in revealing the
divergence of different initial states through obtaining a dis-
tribution function of all TDEs. It experimentally estimates the
Shannon entropies that are based on the entire attractor instead
of just one initial state. The Shannon entropies are calculated
without interrupting the laser, thereby directly confirming
the continuous generation of randomness in the chaotic
laser.

Also, instead of the more common scheme of optical
feedback [41–44], optical injection is employed here for
inducing chaos [30,31]. The optical feedback scheme often
generates a chaotic signal with an observable time-delay
signature, which is defined as the nonzero autocorrelation of
the signal when the lag time equals the round-trip delay time of
the feedback loop [41,42]. The time-delay signature indicates
partial repetition of the signal and is thus undesirable in the
generation of randomness [33]. The optical injection scheme
does not have any feedback loop, so it offers the advantage of
generating chaotic signals without any time-delay signatures
[30,31,45]. Nonetheless, the approach of attractor reconstruc-
tion for randomness evaluation is not limited to the injected
lasers as it is applicable to schemes associated with different
dimensions [3,46–49]. After this introduction, Sec. II describes
the procedure of evaluating randomness through state-space

reconstruction, while Sec. III presents the numerical model
and experimental setup of chaos generation by optical in-
jection. Numerically, the TDEs for the divergence of states
are estimated in Sec. IV. Experimentally, the continuously
generated Shannon entropies are estimated with the TDEs in
Sec. V. Results of the practical NIST tests are discussed in
Sec. VI, which is followed by a conclusion in Sec. VII.

II. STATE-SPACE RECONSTRUCTION

Although the dynamics of a semiconductor laser involves
the intracavity optical field and charge carrier density, only
the emission intensity of the laser is measured in most
experiments [30,31]. So the state of the laser has to be
reconstructed using embedding techniques [46–51]. The scalar
time series of the emission intensity I (t) is first recorded and
normalized to its free-running value when the laser is solitary
[52]. It is then used to construct a time-varying state vector
x(t) = [I (t),I (t + τe), . . . ,I (t + (me − 1)τe)], where me and
τe are the embedding dimension and delay time, respectively
[53,54]. Practically, I (t) is recorded only at t = iτs with a fixed
sampling period τs for i = 1,2, . . . ,N , where N is the total
number of intensity samples [48]. The embedding delay time τe

has to be chosen as a multiple of τs. The ith reconstructed state
is notated by xi = x(iτs) for i = 1,2, . . . ,N − (me − 1)τe/τs.
These states altogether form the attractor when the laser is in
chaos.

Expressing the evolution time as kτs for an integer k.
When treating any xi as an initial state, the corresponding
trajectory of evolution is xi+k . Likewise, when treating a pair
(xi , xj ) as two initial states, their separation distance is dij (k) =
‖xi+k − xj+k‖, where ‖ · ‖ denotes the Euclidean norm in the
state space. The exponent of the time-dependent increment of
the separation is

�ij (k) = ln
dij (k)

dij (0)
, (1)

which is called the TDE of the initial states (xi , xj ) [49–51].
Here, the TDE is a unitless quantity that describes the
divergence of the trajectories of the two states. It is noted that,
for initial states lying along an eigendirection of the dynamical
evolution, �ij (k)/(kτs) approximates a finite-time Lyapunov
exponent when dij (0) becomes infinitesimally small [49,55].

Define an ensemble E as the collection of all possible
pairs of neighboring states (xi , xj ) with initial distances
dij (0) lying within [r,(1 + δ)r] for some small r and δ. A
probability distribution function p(�,k) is used to describe
the occurrences of different values of �ij (k) for all state pairs
(xi , xj ) in E [51]. As a result, the mean TDE is expressed as

�0(k) =
∫ ∞

−∞
p(�,k)�d�, (2)

which is an ensemble average of the TDEs of all neighboring
states collected in E [48–51,53,54,56,57]. Its rate of change
�0(k)/(kτs) is denoted as λ, which approximates the positive
largest Lyapunov exponent of the dynamics [5,49,51]. It can
also be regarded as an integral form of the scale-dependent
Lyapunov exponent (SDLE), which is applicable to both clean
and noisy chaotic signals [58–60]. The mean TDE has been
calculated for an injected laser using numerical simulations
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[53,54], although the distribution of TDEs as well as the
extension to experiments need to be further explored.

As for RBG, the state x(t) of the laser is mapped to a
binary bit B of either 0 or 1. The mapping is typically done
by detecting and discretizing the intensity signal using an
analog-to-digital converter (ADC) along with bit selection
[19–24], where a specific realization is detailed in Sec. V C. A
probability Pi(B,k) governs the value of B as an initial state
xi evolves over time kτs. The Shannon entropy of the bit from
initial state xi is

Hi(k) = −
1∑

B=0

Pi(B,k)log2Pi(B,k), (3)

which maximizes to unity if Pi(0,k) = Pi(1,k) = 0.5
[4–6,16]. For estimating Hi(k), consider a subset of pairs
(xi , xj ) in E that share a common xi . This gives a group
of neighboring states xj locating within a small shell centered
at xi with inner and outer radii of r and (1 + δ)r , respectively.
At the beginning, all states xj are nearly identical and so they
give a same value of B. After time kτs, the evolved states
xj+k generally diverge to different parts of the attractor, so
the resultant values of B become diversified. The ratios of
occurrences of B = 0 and 1 are used to respectively estimate
the probabilities Pi(0,k) and Pi(1,k), which in turn give Hi(k)
through Eq. (3). The accuracy of the estimation obviously
improves when the shell becomes infinitesimally small, but
it requires increasing the length of the recorded time series
in order to maintain a sufficient number of neighbors for
the statistics. Nonzero shell radii are useful as long as they
are much smaller than the size of the attractor [49,51]. Also,
different from the previous experiments that periodically reset
the laser to the free-running initial state [6], the estimation
using Eq. (3) is applicable to any reconstructed state xi on the
attractor.

Subsequently, by averaging Hi(k) over a collection of
states xi on the attractor, the mean Shannon entropy H0(k) is
estimated. The estimation of entropy through reconstructions
is applicable to not only semiconductor lasers but also
other photonic systems [16,17]. The entropy is continuously
monitored without interrupting the laser chaos-based RBG.
The above evaluation of randomness through the TDEs and
Shannon entropies are based on state-space reconstruction,
which requires merely the intensity time series from either
simulations or experiments.

III. OPTICALLY INJECTED LASER

Optical injection is adopted to induce chaos for obtaining
randomness in a semiconductor laser. As shown schemati-
cally in Fig. 1, two lasers are arranged in a master-slave
configuration. The master laser ML is in continuous-wave
operation. Its emission is amplified by an erbium-doped fiber
amplifier EDFA and transmitted through a circulator for
optically injecting the slave laser SL, which is a single-mode
semiconductor laser. The normalized injection strength ξi is
controlled by the EDFA gain, while a polarization controller
PC is set to match the polarizations of the injection and SL.
The operating point of ML determines its detuning frequency
fi with respect to the free-running optical frequency of SL.

FIG. 1. Schematic of an optically injected semiconductor laser
for chaos-based RBG. Continuous-wave light from a master laser ML
is injected into the slave laser SL for inducing nonlinear dynamics.
The emission intensity time series I (t) from SL is measured by a
photodetector PD for recording by an oscilloscope OSC. The mth
MSB is then selected in yielding a bit stream Bm(t) that is further
digitally processed into an output bit stream B ′

m(t).

By adjusting the optical injection parameters (ξi, fi), SL
can be driven into different nonlinear dynamics such as
stable locking, period-one (P1) oscillation, and chaos [52,61].
Similarly to most experiments on laser chaos-based RBG, only
the emission intensity I (t) from the slave laser is measured
using a photodetector PD in Fig. 1, where an oscilloscope
OSC subsequently records the time series with a sampling
period τs over a long time span for state-space reconstruction.

As for RBG, the oscilloscope essentially acts as an ADC
for discretization. The ADC outputs 8 bits for each intensity
sample, but only the mth most significant bit (MSB) is selected
to yield a bit stream Bm(t). The bit stream Bm(t) is further
digitally processed by an exclusive-or (XOR) operation with
a replica of Bm(t) that is delayed by a fixed amount of
time. This yields the output bit stream B ′

m(t). The selection
of bits and the XOR operation are commonly employed to
reduce autocorrelations and nonuniformities in distributions
of the output bits [14,21,30,62]. Nonetheless, since the digital
processing is a deterministic procedure, the output bits cannot
be random unless there is a nonzero entropy contained in I (t)
of the laser.

A. Numerical model

For all numerical simulation results, the optically injected
semiconductor laser in Fig. 1 is described by a complex
intracavity field amplitude a(t) and a real excess charge
carrier density ñ(t), which are normalized with respect to their
free-running values [53,63]. The emission intensity time series
is then calculated as I (t) = |a(t)|2 [52,53]. Due to the optical
injection, the rate-equation model for (a(t), ñ(t)) are expressed
as [52,64]

da

dt
= 1 − ib

2

[
γcγn

γsJ̃
ñ − γp(|a|2 − 1)

]
a

+ ξiγcexp(−i2πfit) + fsp, (4)

dñ

dt
= −(γs + γn|a|2)ñ − γsJ̃

(
1 − γp

γc

|a|2
)

(|a|2 − 1), (5)

where γc = 5.36 × 1011 s−1 is the cavity decay rate, γs =
5.96 × 109 s−1 is the spontaneous carrier relaxation rate,
γn = 7.53 × 109 s−1 is the differential carrier relaxation rate,
γp = 1.91 × 1010 s−1 is the nonlinear carrier relaxation rate,
b = 3.2 is the linewidth enhancement factor, and J̃ = 1.222
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is the normalized bias current above threshold. The laser has a
relaxation resonance frequency of (2π )−1(γcγn + γsγp)1/2 =
10 GHz. The values of the parameters were reported for
a commercial semiconductor laser [65]. Additionally, the
rate-equation model in Eqs. (4) and (5) incorporates a Langevin
term fsp, which represents spontaneous emission noise in the
slave laser. The real and imaginary parts of fsp at different
time instants are mutually independent, in which ergodicity is
observed as detailed in the following averages [64,66]:

〈fsp(t)f ∗
sp(t ′)〉 = 4π	ν

1 + b2
δ(t − t ′), (6)

〈fsp(t)fsp(t ′)〉 = 0, (7)

〈fsp(t)〉 = 0, (8)

where 	ν = 10 MHz is the free-running optical linewidth of
the slave laser. Introduced in the early works on laser dynamics,
the Langevin term fsp models the noisy disturbances on the
complex laser field a(t), resulting in mutually independent per-
turbation on the amplitude and phase of the laser light [66–69].
The noisy disturbance has a zero mean as Eq. (8) shows. It
is also memoryless so that fsp at different time instants are
unrelated as Eqs. (6) and (7) show [67]. Although noise can
also be contained in the injection light and bias current, only
the spontaneous emission noise is considered because it is
inherent to the slave laser. The noise strength is thus fully
controlled by the value of 	ν.

Using second-order Runge-Kutta integration on Eqs. (4)
and (5), the intensity I (t) is recorded with a sampling period
of τs = 2.38 ps, where a finer integration time step of τs/4 is
adopted for ensuring accuracy. The injection parameters are
chosen as (ξi, fi) = (0.05, 6.26 GHz) for driving the laser into
chaos [63,64].

Numerically, the simulated chaotic intensity I (t) is shown
by the black curve in Fig. 2(a), followed by the power spectrum
in Fig. 3(a). The time series contains chaotic fluctuations faster
than 100 ps, which is comparable to the reciprocal of the
relaxation resonance frequency of the laser [42]. The time
series I (t) is detected by the ADC into 256 digitization values,
which observe the probability density function as shown by the
black curve in Fig. 2(b). The corresponding power spectrum
is shown in Fig. 3(a-i) by applying Fourier transform on I (t).
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FIG. 2. (a) Chaotic emission intensity time series I (t) of the op-
tically injected semiconductor laser. (b) Probability density functions
for the digitized values of I (t) measured after the ADC. The data are
recorded from numerical simulations (black) and experiments (red).
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FIG. 3. (a) Power spectra and (b) autocorrelation functions of the
chaotic emission intensity time series. The data are recorded from (i)
numerical simulations and (ii) experiments.

The broadband spectrum is enhanced near 10 GHz due to
relaxation resonance [31]. The autocorrelation function of the
simulated I (t) is shown in Fig. 3(b-i). It reduces from unity
to about 0.5 when the lag time increases from zero to beyond
5τs.

Moreover, Fig. 4 shows the trajectory of the state vector
x(t) that is reconstructed from I (t). The reconstruction uses
embedding dimension me = 8 and embedding delay time
τe = 5τs, which are consistent with the choices in previous
works on optically injected lasers [53,54]. The time-varying
vector x(t) is projected to the first three dimensions for
visualization, so only its first three components I (t),
I (t + τe), and I (t + 2τe) are plotted. For clarity, the trajectory
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FIG. 4. Reconstructed state trajectory based on the numerically
simulated I (t) of the chaotic laser. The time-varying state vector is
reconstructed as x(t) = [I (t),I (t + τe), . . . ,I (t + (me − 1)τe)] with
embedding dimension me = 8 and delay time τe = 5τs. Only the first
three components of x(t) are plotted.
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is shown for only less than 10 ns. The optically injected
laser follows a period-doubling route to chaos, so the chaotic
trajectory contains reminiscent structures of periodic loops
[52,53]. However, the chaotic trajectory does not repeat and so
never forms closed loops. Section IV presents the numerical
simulation results regarding the TDEs on the divergence of
chaotic trajectories for RBG.

B. Experimental setup

For all experimental results, the setup of optical injection in
Fig. 1 is implemented using a 1.55-μm distributed-feedback
semiconductor laser (Nortel LC111-18) as the slave laser
SL. The laser is packaged with a fiber pigtail, temperature-
stabilized at 20◦C for a stable wavelength, and biased at
60 mA, which is above the threshold of 25 mA. The laser
gives an emission power of 2.2 mW with a relaxation resonance
frequency of 7 GHz when it is free-running. A tunable laser
(HP 8168A) is then used as the master laser ML. It emits
continuous-wave light that is detuned by fi = 4 GHz from the
free-running frequency of SL. The injection light from ML
goes through optical amplification by the EDFA (Amonics
AEDFA-23-B-FA), polarization controller, and circulator for
injecting the slave laser SL, where the injection optical power
is adjusted to 0.75 mW for invoking chaotic dynamics [31,70].
Subsequently, the emission from the slave laser passes through
the circulator to the photodetector PD (Newport AD-10ir),
which measures the time-varying intensity I (t) for recording
by a digital real-time oscilloscope OSC (Agilent 81304B).
Though the electronic bandwidth of the measurement is
limited by the oscilloscope to 13 GHz, it is sufficiently higher
than the relaxation resonance frequency of the laser, which
roughly corresponds to the chaotic bandwidth [42,71]. The
experimental recording of I (t) adopts a sampling period of
τs = 25 ps. The value is larger than that for the simulations in
Sec. III A, although it is already the smallest available value
for the oscilloscope.

Experimentally, the recorded intensity I (t) is shown by
the red curve in Fig. 2(a). The time series again contains
fast and chaotic fluctuations, as in the numerical results in
black. The probability density function measured at the ADC
for the experimental intensity time series is shown by the
red curve in Fig. 2(b), where the maximal probability of
9 × 10−3 corresponds to a min-entropy of 6.8 for the ideal
case of uncorrelated samples [23]. The corresponding power
spectrum is shown in Fig. 3(a-ii). It is again broadband with
an enhancement near the relaxation resonance frequency of
7 GHz in the experiments [31]. The autocorrelation function
of the experimental I (t) is shown in Fig. 3(b-ii). It reduces
to about 0.3 when the lag time increases from zero to τs. The
magnitudes of the autocorrelation functions in Fig. 3(b) stay
less than 10−2 when lag time is much greater than 1 ns, which
is because of the use of optical injection instead of feedback
for chaos generation in avoiding the time-delay signatures.

Due to the increased τs in the experiments, embedding
dimension me = 5 and delay time τe = τs are adopted for
reconstruction of experimental data. Section V presents the
experimental results of the TDEs for the divergence of
chaotic trajectories, where the Shannon entropies based on
the reconstructed states are directly estimated for RBG.

IV. NUMERICAL RESULTS

Based on the rate-equation simulations in Sec. III A, a time
series I (t) is recorded for reconstruction with me = 8 and
τe = 5τs, which equals 11.9 ps, as the sampling period is
fixed at τs = 2.38 ps. States xi at time t = iτs are formed as
detailed in Sec. II, constituting the chaotic attractor as Fig. 4
shows. Any pair of states (xi , xj ) are regarded as neighbors if
their separation distance dij (0) falls between r and (1 + δ)r ,
where small values of r = 0.04 and δ = 50% are adopted [53].
Though the states are initially close to each other, they diverge
to (xi+k , xj+k) as quantified by the TDE �ij (k) of Eq. (1) when
the evolution time kτs is varied by index k.

A. Distribution of numerical TDEs

Figure 5 shows the probability distribution function p(�,k)
of the simulated TDEs. From Sec. II, p(�,k)d� is the relative
occurrence for the estimated TDEs that are within � and
� + d� when all neighboring pairs of initial states over the
entire attractor are considered. In Fig. 5(a), the evolution time
is 2.38 ps for k = 1. The time is too short for any pair of
neighbors to diverge, so most TDEs are concentrated at around
zero. In Fig. 5(b), the evolution time increases to about 0.05
ns for k = 21. The distribution of the TDEs peaks at 0.4 and
spreads beyond 3 because most neighbors diverge through the
chaotic dynamics. For any pair of initial states (xi , xj ) aligned
along an eigendirection of the dynamics, their TDE has a
rate of change of �ij (k)/(kτs), which approximates a finite-
time Lyapunov exponent [36,51,55]. Neighboring states along
different eigendirections lead to different Lyapunov exponents
that cause the spread of p(�,k) in Fig. 5(b). Interestingly, not
every exponent is positive, so a small portion of neighboring
pairs actually converge over time, as the negative TDEs below
the dashed line in Fig. 5(b) show.

Then, in Fig. 5(c), the evolution time further increases to
about 0.1 ns for k = 42. The vast majority of the neighbors
keep diverging so that most TDEs continue to increase. In

0.05 ns 0.1 ns 0.2 ns 0.5 ns 0.6 ns
(a) (b) (c) (d) (e) (f)
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Probability Distribution Function, p(Λ, k)
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1
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−1

2.38 pskτs:

FIG. 5. Numerical probability distribution function p(�,k) of the
TDEs estimated from the reconstructed chaotic attractor. The initially
neighboring states evolve over time kτs for k = (a) 1, (b) 21, (c) 42,
(d) 84, (e) 210, and (f) 252. The sampling period is τs = 2.38 ps in
the simulations.
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Fig. 5(d), as the evolution time increases to around 0.2 ns for
k = 84, the TDEs keep increasing in reaching values beyond
4. Due to the sufficiently long evolution time, it is very unlikely
for a pair of states to be always aligned to a converging
eigendirection throughout their trajectories, so negative TDEs
are no longer observed. Now moving on to Fig. 5(e), when the
evolution time increases to 0.5 ns for k = 210, the distribution
function p(�,k) shows that the TDEs merely increase slowly.
There is almost no change for p(�,k) when the evolution time
is further increased to 0.6 ns at k = 252 in Fig. 5(f). In fact,
for any initially neighboring states (xi , xj ), their evolved states
(xi+k , xj+k) are now randomly and independently located on
the chaotic attractor. The initial states are completely mixed by
the chaotic dynamics in conforming to an invariant probability
density for the states [4,27]. So the probability distribution
function p(�,k) for the TDEs also becomes invariant when k

is large in Figs. 5(e) and 5(f). In addition, according to Eq. (1),
the size of the attractor is roughly comparable to r exp(�) for
� = 4.2 at the peak of the invariant distribution in Figs. 5(e)
and 5(f), so the attractor size is confirmed as being significantly
greater than r . Therefore, despite the existence of a small
portion of neighbors with negative TDEs at short evolution
times, Fig. 5 generally shows the increment of TDEs when
most neighboring states diverge with chaotic mixing as the
evolution time increases.

B. Evolution of numerical mean TDE

For the ensemble of neighbors on the entire attractor, the
overall behavior of the TDEs can be examined by averaging
them to �0(k) using p(�,k) through Eq. (2). The mean TDE
�0(k) varies with the evolution time kτs, as the black solid
curve in Fig. 6 shows. When kτs increases from zero, �0(k)
also increases from zero as most neighbors start to diverge
according to Figs. 5(a)–5(d). The initial increment of �0(k)
in Fig. 6 is linear due to the dominance of the positive largest
Lyapunov exponent on the divergence. The mean TDE has
a slope λ defined by �0(k)/(kτs), which provides a rough
estimation of the largest Lyapunov exponent [49,51,57]. Such
a TDE slope quantifies the mixing speed of the states and is
estimated as λ ≈ 15 ns−1 at kτs = 0.2 ns in Fig. 6. When kτs

further increases, �0(k) increases less quickly and reaches a
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FIG. 6. Numerically estimated mean TDE �0(k) versus evolution
time kτs. The laser is injected into chaotic dynamics (black) and P1
dynamics (gray). The simulations are conducted with and without
noise for the solid and dashed curves, respectively.

saturated value of 3.9, corresponding to the invariant p(�,k)
in Figs. 5(e) and 5(f). With the sufficiently long evolution
time, the dynamics completely mixes the states and scatters
them on the chaotic attractor of a finite size. The average
separation between the states no longer expands, which
explains the saturation of �0(k). Incidentally, �0(k) reaches
half of its saturated value at kτs = 0.1 ns that corresponds
to the reciprocal of the relaxation resonance frequency of the
laser, which is typically comparable to the chaotic bandwidth
[42,71].

Besides the chaotic dynamics, however, noise of the slave
laser can also contribute to the divergence of neighboring
states. The fast increment of �0(k) for the black solid curve
in Fig. 6 is in fact obtained as the laser states are continually
mixed by the chaotic dynamics and constantly perturbed by
noise. The noise is in the form of spontaneous emission
modeled using fsp in Eq. (4) at a strength specified by 	ν =
10 MHz. In order to examine the effect of noise without chaotic
mixing, the gray solid curve in Fig. 6 is obtained by simulating
the slave laser in P1 dynamics instead of chaotic dynamics. The
P1 dynamics is obtained by adjusting the injection strength
ξi to 0.10, while keeping all other parameters unchanged
[63,64,66,72]. The laser state follows a trajectory that loops
at a frequency of 16 GHz, so the emission intensity oscillates
periodically instead of chaotically. The noise strength is kept
at 	ν = 10 MHz in perturbing the states, leading to a gradual
diffusion of the trajectory and its phase. This causes the
eventual separation of neighbors as indicated by the small
increase of �0(k) as kτs increases, though the increment is
slow with λ of less than 5 ns−1 due to the lack of chaotic
mixing in P1 dynamics. By contrasting the two solid curves in
Fig. 6, chaotic dynamics is clearly preferred over P1 dynamics
for large TDEs.

In contrast to noise without chaotic dynamics, the effect of
the dynamics without noise is also investigated in Fig. 6, as the
dashed curves show by setting 	ν = 0 for the simulations. On
one hand, the black dashed curve is obtained when the laser
is in chaos. The chaotic dynamics alone causes the mixing of
the neighboring states even without the perturbation of noise.
Chaos causes �0(k) to quickly rise to its saturated value,
though the rise is not as quick as that assisted by noise. At
kτs = 0.2 ns, the TDE slope λ is slightly reduced to about
12 ns−1, which is an improved estimation for the largest
Lyapunov exponent of chaos due to the absence of noise.
It is possible to calculate the Lyapunov exponents without
noise by examining the evolution of small deviations from the
trajectory of the state [73,74]. The evolution of the original
trajectory is governed by Eqs. (4) and (5), while the evolutions
of the deviations are governed by a set of linearized equations
around the original trajectory [9,55]. Orthogonalization and
normalization are incorporated when the linearized equations
are numerically solved for yielding the evolution of the
deviations [9]. The exponential growth rates of the deviations
then give the Lyapunov exponents, where the largest Lyapunov
exponent is found to be about 11.2 ns−1 in close agreement
with the TDE slope in Fig. 6 for chaos. On the other hand,
the gray dashed curve is obtained when the laser is driven into
P1 dynamics. The reconstructed trajectory for the noiseless P1
dynamics is exactly a closed loop of a limit cycle [66]. Any
neighboring states are actually just at different phases of the
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FIG. 7. Numerical TDE slope λ as a function of the free-running
laser linewidth 	ν. The slope is evaluated at kτs = 0.2 ns. The laser
is injected into chaotic dynamics (black) and P1 dynamics (gray).

loop, so they neither converge nor diverge on average, forcing
�0(k) to always stay very close to zero. Thus, while chaos
provides a positive �0(k) without noise, P1 dynamics does not
provide randomness at all.

For completeness, Fig. 7 shows the TDE slope λ as the
noise strength is varied by 	ν, while the laser is driven into
the chaotic and P1 dynamics for the black and gray curves,
respectively. The TDE slope λ is evaluated at kτs = 0.2 ns in
Fig. 7 to quantify the divergence speed. As noise strengthens,
the increasing 	ν always causes λ to increase, which is
consistent with the reduction of memory time in related works
[5]. As chaos provides mixing, λ for chaotic dynamics is
always significantly greater than that for P1 dynamics, which
verifies the effect of chaotic noise amplification [4,75].

In short, as Figs. 6 and 7 show, the reconstruction enables
the observation of the increase of a positive �0(k) over time.
Chaos is found to be essential in quickly yielding a large
�0(k) for generating randomness, which is achieved by the
dynamical mixing of states.

C. Parameters of reconstruction

Reconstruction of the states in Figs. 5–7 adopts embedding
dimension me = 8 and delay time τe = 5τs, which equals 11.9
ps. These embedding parameters are chosen to be consistent
with previously reported simulations of optically injected
lasers [49,53,54]. However, other choices of the embedding
parameters are allowed as long as the reconstructed chaotic
attractor is not overwhelmed by false neighboring states [49].
The consideration of false neighbors is among the approaches
for choosing the embedding parameters [49,59,76,77]. False
neighbors appear as being close to each other only in
the reconstructed space. They follow drastically different
trajectories that can lead to an unrealistically large TDE
slope λ. So the embedding parameters can be determined by
minimizing λ. In this connection, Fig. 8 plots the result of λ

as the embedding parameters are varied, where r and δ are
kept unchanged. The simulation is conducted for the laser
in chaos without noise for simplicity, while λ is evaluated
at a very short kτs of 0.02 ns. In Fig. 8(a), the embedding
dimension me is varied for τe = 11.9 ps. At me = 2, the
TDE slope λ of 68 ns−1 is much overestimated because the
reconstructed space certainly lacks the dimensions to describe
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FIG. 8. Numerical TDE slope λ for the chaotic dynamics as a
function of (a) embedding dimension me and (b) embedding delay
time τe. The slope is evaluated at kτs = 0.02 ns. The simulations are
conducted without noise.

the original laser state, which comprises of the complex field
and carrier density. As me increases, λ reduces monotonically
and approaches a constant value asymptotically. Adopting an
excessively large me only gives redundantly interdependent
dimensions and is thus unnecessary [40,49]. So the choice
of me = 8 in the simulations is acceptable under practical
computational considerations. In Fig. 8(b), the embedding
delay time τe is varied in steps of τs = 2.38 ps for me = 8. The
reconstruction of a state involves samples of I (t) over a time
window of (me − 1)τe. At a small τe, λ is large because the time
window is too small to gather much information other than an
instant value of I (t) for each reconstructed state. At a large
τe, λ is also large because the state can undergo considerable
evolution during the large time window [40,49]. Minimization
of λ is possible by optimizing τe to around 11.9 ps, as is chosen
for the results in Figs. 5–7.

Summarizing Sec. IV, the estimations of TDEs are en-
abled by state-space reconstruction with proper embedding
parameters when a laser is simulated in chaos. The TDEs
for different neighboring states are generally positive, though
negative TDEs are found for a small portion of states at very
short evolution times. The divergence of states is shown by
the positive mean TDE �0(k) that increases with the evolution
time. Chaotic dynamics always yields a greater �0(k) than P1
dynamics, illustrating noise amplification by chaotic mixing
for generating randomness.

V. EXPERIMENTAL RESULTS

Based on the experimental settings in Sec. III B, I (t) is
recorded by the oscilloscope in Fig. 1 using its minimal
sampling period of τs = 25 ps. The experimental reconstruction
adopts me = 5 and τe = 25 ps, as any higher multiple of
τs cannot yield proper reconstruction in reference to Fig. 8.
In the experiments, neighboring states are identified using
r = 0.04 and δ = 20%. The inner radius of a shell of neighbors
corresponds to about 1.5 mV at the oscilloscope, which has a
full range of about 250 mV. The TDEs and Shannon entropies
are calculated using Eqs. (1) and (3), respectively, as the
evolution time index k varies.

A. Distribution of experimental TDEs

Figure 9 shows the probability distribution function
p(�,k) of the TDEs estimated by reconstruction using the
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FIG. 9. Experimental probability distribution function p(�,k) of
the TDEs estimated from the reconstructed chaotic attractor. The
initially neighboring states evolve over time kτs for k = (a) 1, (b) 2,
(c) 4, (d) 8, (e) 20, and (f) 40. The sampling period is τs = 25 ps in
the experiments.

experimental I (t). In Fig. 9(a), p(�,k) is shown at the shortest
practical evolution time of 25 ps for k = 1. The distribution
function peaks only at � = 0.08 because the evolution time
is relatively short, but the time is already sufficient for some
neighbors to diverge with � spreading beyond 3. In Fig. 9(b),
the evolution time increases to about 0.05 ns for k = 2. The
peak of the distribution function is up-shifted to � = 1.4
when most neighbors continue to diverge. The divergence
is attributed to the chaotic dynamics with a positive largest
Lyapunov exponent, which amplifies the effect of the noise
in the slave laser. However, similarly to the numerical results
in Fig. 5(b), the existence of negative TDEs is experimentally
unveiled below the dashed line in Figs. 9(a) and 9(b). The
negative TDEs correspond to a small portion of neighbors
that converge according to negative Lyapunov exponents. The
output bits for RBG need to be sampled slower than 0.05 ns
for strictly guaranteeing randomness, though some practical
randomness tests still allow sampling at a shorter period.

Then, in Fig. 9(c), the evolution time further increases to
0.1 ns for k = 4. Most neighboring states diverge and so the
TDEs generally increase. In Fig. 9(d), with the increase of
the evolution time to 0.2 ns for k = 8, the TDEs continue
to increase in reaching values beyond 4. Again, similarly to
the numerical results in Fig. 5(d), the experimental results in
Fig. 9(d) no longer contain negative TDEs. This is because a
pair of states cannot be continuously aligned to a converging
eigendirection when the evolution time is now sufficiently
long. Ultimately, as for Fig. 9(e), the evolution time increases
to 0.5 ns for k = 20, the general increase of the TDEs is slowed
down. The distribution function p(�,k) becomes invariant as
the evolution time increases beyond 1 ns for k = 40 in Fig. 9(f),
where the peak stays at around � = 4.4. Such an independence
of p(�,k) on k is consistent with the numerical result in
Fig. 5(f), which is expected as chaos mixes the states and
scatters them according to an invariant probability density on
the attractor. The invariant probability density of the states has
been theoretically predicted [4] and experimentally verified by
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FIG. 10. Experimentally estimated mean TDE �0(k) versus
evolution time kτs. The laser is injected into chaotic dynamics (black)
and P1 dynamics (gray).

resetting a laser to the free-running state periodically [6]. The
results in Figs. 9(e) and 9(f) further provide a verification
of the invariance of p(�,k) on large k, while all initially
neighboring states on the entire reconstructed attractor are
considered without resetting the laser. Therefore, in good
qualitative agreement with the numerical results in Fig. 5, the
experimental results in Fig. 9 illustrate the overall increment
of the TDEs with the evolution time, directly verifying the
divergence of states for RBG.

B. Evolution of experimental mean TDE

For the ensemble of experimentally reconstructed neigh-
bors, their mean TDE �0(k) is again estimated by Eq. (2) using
the distribution function p(�,k). As a function of the evolution
time kτs, the mean TDE �0(k) for the chaotic dynamics is
shown by the black curve in Fig. 10. When kτs increases from
zero, �0(k) also increases from zero as the neighboring states
diverge in general. Evaluated at kτs of 0.2 ns, the TDE slope
λ = �0(k)/(kτs) is about 15 ns−1, which quantifies the speed
of the chaotic mixing and provides an estimation of the largest
Lyapunov exponent in the experiments [49,51]. When kτs

continues to increase up to 1 ns, �0(k) increases and reaches
a saturated value of about 4, as p(�,k) becomes increasingly
invariant according to Fig. 9. In good qualitative agreement
with the numerical results in Fig. 6, the quick increase of the
mean TDE from the experiments in Fig. 10 verifies the fast
divergence of states by chaos.

Along with the dynamics, the experiments as detailed in
Fig. 1 inevitably contain noise from the detection electronics,
injection, and spontaneous emission in the slave laser, which
corresponds to its free-running optical linewidth on the order
of 10 MHz. The fast increment of �0(k), as shown by the
black curve in Fig. 10, is actually contributed by both chaos
and noise. In order to observe the effect of noise without chaos,
the gray curve in Fig. 10 is obtained by driving the slave laser
into P1 dynamics. The P1 dynamics is obtained simply by
changing the injection power to 1.6 mW, causing the laser
emission intensity to oscillate at 9 GHz periodically instead
of chaotically, while keeping nearly the same oscillation
amplitude [70]. Noise is manifested as amplitude and phase
fluctuations of the intensity oscillation, resulting in the increase
of �0(k) over time. However, by comparing the two curves in
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FIG. 11. Mean Shannon entropy H0(k) versus evolution time kτs

estimated from experimental state-space reconstruction. The laser is
injected into chaotic dynamics (black) and P1 dynamics (gray). The
entropy is calculated for the mth MSB Bm from the ADC for m = (a)
1 to 3 and (b) 4 to 6.

Fig. 10, �0(k) is much greater for the chaotic dynamics than
for the P1 dynamics. It merely increases slowly for the P1
dynamics and does not reach the saturated value even after
evolving for over 50 ns.

In short, from Figs. 9 and 10, the experimental reconstruc-
tion verifies the role of chaos in attaining a large positive �0(k)
over a short time, which implies the divergence of states for
providing entropy in RBG.

C. Evolution of Shannon entropy

According to the RBG scheme in Fig. 1, the state of the slave
laser determines the intensity I (t). The intensity is discretized
by the ADC of 8-bit resolution. Only the mth MSB from
the ADC, denoted by Bm(t), is selected. As an initial state
evolves, the value of Bm becomes increasingly unpredictable.
The uncertainty can be quantified by the Shannon entropy
that is associated with the initial state. Averaged over different
initial states in the experiments, the mean Shannon entropy
H0(k) of the bit Bm as a function of the evolution time is
plotted in Fig. 11.

Figure 11 is obtained through tracing different evolutions
of different initial states in the experiments following the
procedure in Sec. II. For an initial state xi , a group of 500
neighboring states xj are identified with initial distances
dij (0) falling within r and (1 + δ)r . Basically, these nearly
identical neighbors initially give the same value of Bm, though
they eventually diverge according to their positive TDEs in
giving different values of Bm. Within the group of the 500

initially neighboring states, the proportion of states having
Bm = 1 approximates the probability Pi(1,k), whereas the
proportion of Bm = 0 approximates Pi(0,k) at evolution time
kτs. Then, using Eq. (3), the Shannon entropy Hi(k) of
bit Bm associated with the one initial state xi is estimated.
Subsequently, in order to cover the reconstructed space, 500
initial states xi are considered, where the corresponding values
of Hi(k) are averaged to the mean Shannon entropy H0(k) as
Fig. 11 shows. Based on the entire reconstructed attractor, the
nonzero H0(k) observed in Fig. 11 illustrates the continuously
generated randomness through semiconductor laser dynamics
and fundamentally implies the possibility of RBG that is not
deterministic.

In Figs. 11(a) and 11(b), the mean Shannon entropy H0(k)
is shown for the bit Bm at m = 1 to 3 and 4 to 6, respectively.
The black curves are obtained when the laser is injected into
chaos. The chaotic mixing of states always causes H0(k) to
quickly increase with kτs and saturate at unity for maximal
randomness. The saturation of H0(k) normally requires much
less than 1 ns, as consistent with the behavior of �0(k)
in Fig. 10. Increasing the evolution time from zero allows
complete mixing of the laser states by the chaotic dynamics.
The laser intensity becomes uncorrelated with its initial value
according to Fig. 3(b). The intensity ultimately follows the
steady-state probability density function in Fig. 2(b), which
corresponds to the asymptotic H0(k) for large k [5,14,78].
Also, as m increases, the black curves in Fig. 11 shows a
progressive increment of H0(k). At m = 1 in Fig. 11(a),
the entropy is measured for the MSB that is least sensitive
to changes of states. So H0(k) is the lowest for m = 1. At
m = 6 in Fig. 11(b), the bit has a much higher sensitivity to
the states and so contains the highest H0(k), which reaches
above 0.995 within an evolution time of merely 25 ps. The
increase of entropy by increasing m is consistent with some
experiments that realized spectral broadening and scrambling
by discarding a number of MSBs in RBG [14,21,33]. Besides,
for comparison, the gray curves in Fig. 11 are obtained
when the laser is injected into the P1 dynamics. Although
experimental noise enables the generation of entropy, the P1
dynamics is periodic in providing no fast mixing of states. Its
entropy is always less than that of the chaotic dynamics at
any given m. Therefore, given the same strength of noise, the
experiments illustrate the effectiveness of chaotic dynamics
for continuously generating Shannon entropies for RBG.

Summarizing Sec. V, the experimental state-space recon-
struction is used for evaluating the randomness associated
with the laser in chaos. The diverging chaotic trajectories
are observed by estimating the positive mean TDE �0(k)
that increases with the evolution time kτs. The mean TDE
is observed to increase more quickly for chaotic dynamics
than for P1 dynamics. The Shannon entropy H0(k) estimated
from the reconstructed states is observed to be continuously
generated over time for enabling RBG.

VI. DISCUSSIONS

Based on the state-space reconstruction, the continuous
generation of entropy is verified in Fig. 11. This implies the
possibility of RBG passing practical randomness tests such as
those stipulated by NIST Special Publication 800-22 [31,33].
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period is τs = 25 ps.

The procedure of RBG starts from the detection of the intensity
signal I (t) in Fig. 1. The signal is discretized by the ADC into
8 digital channels that correspond to the most significant to the
least significant bit, where only the single channel of the mth
MSB is selected in Fig. 1 for m = 1, 2, . . . , or 8. The channel
gives the bit stream Bm(t), which is subsequently processed
through an XOR operation with its 1-ns delayed replica into
the output bit stream B ′

m(t). Such a delayed XOR operation in
Fig. 1 is a standard procedure to suppress any bias of the bits
[31,32,62].

Although Fig. 1 shows only one channel of B ′
m(t) for a

single value of m, multiple channels for different values of
m can be aggregated for boosting the output bit rate [19,32].
In fact, RBG in Fig. 12 adopts a direct way of sequentially
aggregating B ′

m with m = M + 1 to 8 into a combined output
bit stream [26,30], where the channels of m = 1 to M are
ignored. Here, M denotes the number of MSBs discarded so
that the combined output bit rate is (8 − M)/τs for τs = 25 ps.
Such a discarding of MSBs is commonly employed in RBG
[14,21,33]. The discarding of bits of small m is useful for RBG
because they have small entropies, as Fig. 11 shows.

Figure 12 shows the results of the 15 standard NIST tests for
the combined output bit stream for different choices of M . The
NIST tests examine the combined output bit streams in batches
of 1000 sets of 106 consecutive bits at a significance level of
0.01 [31,33]. For chaotic dynamics, all the 15 tests are passed
as long as M is at least 3, which corresponds to a combined
output bit rate of 200 Gb/s. By contrast, for P1 dynamics, the
combined output can only pass the tests when M is at least
6, which corresponds to retaining only 2 least significant bits.
Hence, consistent with the evaluation of TDEs and entropies
in Figs. 10 and 11, chaotic dynamics is certainly preferred over
P1 dynamics for high-speed generation of random bits.

Besides the standard NIST tests, the output bit stream can
also be statistically examined by calculating the bias of the
bits μ and the correlation coefficient ck as a function of a lag
k of the bits [23]. Figure 13 summarizes the results calculated
when keeping the length of the output bit stream at L = 109,
where the ideal statistical standard deviations for μ and ck

are σμ = 0.5/
√

L and σc = 1/
√

L, respectively [23]. The
combined output bit rate is varied in Fig. 13 by varying M , as in
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FIG. 13. Magnitude of bias |μ| and maximum correlation
max(|ck|) of the output bit stream versus the combined output bit
rate. The length of the output bit stream is 109 for the calculation.

Fig. 12. The closed symbols in Fig. 13 show the magnitude of
bias |μ|, which increases with the combined output bit rate. The
magnitude of bias is less than 3σμ = 4.7 × 10−5 for M � 4,
while it marginally exceeds 3σμ at M = 3. The open symbols
in Fig. 13 plot the maximum correlation coefficient, which is
denoted by max(|ck|) as obtained from amongst the correlation
coefficients ck for lag k covering 1 to 300. The maximum cor-
relation coefficient is less than 3σc = 9.5 × 10−5 for M � 4,
while it marginally exceeds 3σc at M = 3. Such comparisons
with three times the standard deviations are often empirically
considered as a set of more stringent criteria beside the NIST
tests [23,79,80]. In other words, for fulfilling the criteria in
addition to the NIST tests, Fig. 13 illustrates that M can be
simply increased from 3 to 4, which is equivalent to reducing
the combined output bit rate from 200 Gb/s to 160 Gb/s in
practice.

Though these practical tests provide a practical quan-
tification of randomness, the Shannon entropies and TDEs
estimated from the state-space reconstruction offer a more
fundamental evaluation of the randomness for the chaotic laser.
The entropy H0(k) in Fig. 11 quantifies the unpredictability
of output bits based on the information of the initial states
rather than merely the information of the previous output bits,
as in most practical randomness test suites [31,33]. Besides,
the entropy H0(k) is based on a set of initial states rather
than only one free-running initial state [6], thereby illustrating
the continuous generation of randomness by laser chaos.
In addition, the experimental estimation of the entropy and
TDEs complements some related works based on simulations
[4,5,14,24,28]. Thus, the reconstruction provides a funda-
mental and experimental confirmation of the continuously
generated randomness in the chaotic laser for RBG.

VII. CONCLUSION

In summary, state-space reconstruction is investigated for
evaluating the randomness generated by an optically injected
chaotic semiconductor laser. The TDEs are first estimated to
quantify the divergence of neighboring states due to chaotic
mixing, in which the experimental and numerical results are
of good qualitative agreement. The mean TDE �0(k) of
the entire attractor is found to be positive as it increases
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with the evolution time kτs, while the existence of negative
TDEs is unveiled at short kτs. Moreover, �0(k) for chaotic
dynamics is confirmed to be always greater than that for
P1 dynamics, illustrating the effect of noise amplification
by chaotic mixing of the states. Furthermore, the mean
Shannon entropy H0(k) that quantifies the unpredictability of
the output bits is estimated experimentally, where different
states of the entire attractor are considered. While RBG
at a combined bit rate reaching 200 Gb/s is verified by
the practical NIST tests, the continuous generation of the

Shannon entropy is fundamentally and experimentally verified
by the reconstruction. Based on reconstruction, the approach
of randomness evaluation using the TDEs and entropies is
readily extended for different chaotic RBG experiments.
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