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Stable and unstable periodic orbits in the one-dimensional lattice φ4 theory
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Periodic orbits for the classical φ4 theory on the one-dimensional lattice are systematically constructed by
extending the normal modes of the harmonic theory, for periodic, free and fixed boundary conditions. Through
the process, we investigate which normal modes of the linear theory can or cannot be extended to the full
nonlinear theory and why. We then analyze the stability of these orbits, clarifying the link between the stability,
parametric resonance, and Lyapunov spectra for these orbits. The construction of the periodic orbits and the
stability analysis is applicable to theories governed by Hamiltonians with quadratic intersite potentials and a
general on-site potential. We also apply the analysis to theories with on-site potentials that have qualitatively
different behavior from the φ4 theory, with some concrete examples.
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I. INTRODUCTION

Periodic motion is truly a classic topic in classical me-
chanics, with the harmonic oscillator being a typical example.
Periodic motions are ubiquitous in nature, and physical
systems, such as a pendulum, often also contain anharmonicity
at some level. Therefore, linear and nonlinear oscillations have
been studied for a long time [1]. For systems with many degrees
of freedom, the harmonic theory is well understood and can
be analyzed in terms of normal modes of the theory, by using
their linear combinations. However, when the system has many
continuous degrees of freedom and is anharmonic, there is
still some progress to be made in the systematic study of their
periodic orbits.

In this work, we systematically construct periodic orbits
in nonlinear lattice models by extending normal modes of
the harmonic theory. The class of models we study are
conservative, Hamiltonian systems, with quadratic intersite
potentials and general on-site potentials. In these models,
the origin of the nonlinearity is contained in the localized
on-site potentials. In particular, we investigate the φ4 theory,
with periodic, fixed, and free boundary conditions, in some
detail. The main purpose of this work is to explicitly work
out how the various aspects of the nonlinear dynamics come
together in generalizing the normal modes to these class of
models. Through the construction of the periodic solutions in
the nonlinear theories, we clarify which modes in the linear
theory can and cannot be extended. We then analyze their
stability from a dynamical systems viewpoint. In the process,
we compute the Lyapunov spectra along these periodic orbits
and show quantitatively how they are related to the stable and
unstable modes that appear, as the energy corresponding to
the periodic orbit is changed. Furthermore, a general method
of finding extensions of normal modes in lattice theories with
quadratic intersite and general on-site potentials is constructed
and explained with examples.

While the dynamics of the theories we study here are
of interest on their own, these theories arise naturally as
discretized versions of the continuum field theory, of which
φ4 theory is a typical case. φ4 theory has been studied from
various points of view on the lattice: Classically, the transport
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properties of the theory have been investigated from statistical
mechanics viewpoint at finite temperatures [2,3] and their
relation to dynamical systems aspects of the theory, including
the Lyapunov spectrum and dimensional loss [4], with ther-
mostats. The on-site potentials of the models we study destroy
the shift symmetry properties of the fields (cf. Sec. II) that exist
in well-studied models such as the FPU model [5], leading to
qualitatively different dynamical behavior, such as the bulk
behavior of transport coefficients [6]. The chaotic properties
and the Lyapunov exponents of the nonthermostatted φ4

theory as well as some of its periodic orbits have also been
investigated [7]. The φ4 theory, including quantum effects, has
been studied in such topics as triviality [8], and nonperturbative
aspects of particle physics phenomenology [9], since the φ4

theory is a part of the Standard Model. While the physics of the
φ4 theory investigated in this work is classical, understanding
of the classical theory is also important to the understanding of
the quantum theory, and furthermore, classical solutions can
be an important contributing factor in quantum theories.

The periodic orbits we study are so-called “nonlinear
normal modes” of the class of nonlinear models. Nonlinear
normal modes have been studied extensively for some time,
and various general properties have been established [10–15]
and investigated in models such as the FPU model [16–18].
Most of the explicit work conducted so far seems to focus on
theories with nonlinear intersite couplings. These properties
can, for instance, represent nonlinearity in the elastic response
of materials and can be of practical importance. Accordingly,
much applied research has been performed on the subject [19].
We believe that our work, which concentrates on models with
quadratic intersite potentials, with nonlinear couplings that
are local, contributes results complementary to the current
research in the dynamics of nonlinear systems with many
coupled degrees of freedom.

II. LATTICE φ4 THEORY IN ONE SPATIAL DIMENSION

Let us review the φ4 theory on an one-dimensional
lattice with N sites, in brief, partly to fix the notation. The
Hamiltonian of the theory is

H =
N∑

j=1

p2
j

2
+

N−1∑
j=1

(qj+1 − qj )2

2
+ HB +

N∑
j=1

q4
j

4
, (1)
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where the potential terms at the ends, HB, depend on the
boundary conditions as

HB = 1
2 (qN − q1)2 (periodic bc),

HB = 1
2

(
q2

N + q2
1

)
(fixed bc),

HB = 0 (free bc). (2)

The nonlinearity of the system is provided by the quartic on-
site potential or the tethering potential. The on-site potential
destroys the shift symmetry (shifting all qj by a constant),
which exist in other well-studied nonlinear models such as
the FPU model, leading to a different dynamical behavior for
them. The system has a quartic coupling of essentially one and
is not a weakly coupled theory, in general. The equations of
motion for the theory are accordingly

q̇j = pj , ṗj = qj+1 + qj−1 − 2qj − q3
j

j = 1,2, . . . ,N. (3)

The boundary conditions may be specified as

q0 = qN,qN+1 = q1 (periodic),

q0 = qN+1 = 0 (fixed),

q0 = q1,qN+1 = qN (free). (4)

We note the fixed boundary condition by itself also breaks the
shift symmetry. The two boundaries may also have different
conditions, which shall not be considered here.

III. SYSTEMATIC CONSTRUCTION OF PERIODIC
ORBITS IN φ4 THEORY

In this section, we construct a class of periodic solutions
in the φ4 theory on the lattice, based on the normal modes
of the harmonic theory. A more general study of periodic
solutions using powerful group theoretical methods have been
conducted [15,20,21] and have been applied to models such as
the FPU model [18]. Here we briefly explain a more elementary
approach to the solutions, which hopefully provides some
different insight, and derive the results needed later. The class
of solutions we study are sometimes called nonlinear normal
modes or one-dimensional bushes [15,20,21].

Suppose that the N linearly independent normal modes of
the harmonic chain are

yj = a
(m)
j cos ω(m)t, m = 0,1, . . . ,N − 1. (5)

These normal modes satisfy the linear equations of motion:

ÿj = yj+1 + yj−1 − 2yj = (
a

(m)
j−1 + a

(m)
j+1 − 2a

(m)
j

)
cos ω(m)t

= −(ω(m))2a
(m)
j cos ω(m)t. (6)

The solutions to these linear equations of motion may be
found using the coefficients of the form, a

(m)
j = Re [const ×

exp(ik(m)j )], and the harmonic frequencies can be found as

ω(m) = 2

∣∣∣∣ sin
k(m)

2

∣∣∣∣. (7)

The values of k(m) depend on the boundary conditions.
We shall analyze which of these solutions extend to the φ4

theory, for general N . Specifically, we look for solutions of

the nonlinear theory, in which all the coordinates undergo the
same motion, except possibly the amplitudes of the motion.
Using the ansatz,

qj = a
(m)
j f (m)(t), (8)

the equations of motion reduce to

a
(m)
j f̈ (m)(t) = −(ω(m))2a

(m)
j f (m)(t) − (

a
(m)
j

)3
[f (m)(t)]3. (9)

These equations are consistent if and only if the nontrivial
equations are independent of j . This is satisfied when the
square of nonzero coefficients, a

(m)
j , are independent of j ,

(
a

(m)
j

)2 = C when a
(m)
j �= 0, (10)

in which case the equations of motion reduce to an ordinary dif-
ferential equation for a nonlinear oscillator, z(t) = a

(m)
j f (m)(t):

z̈ = −(ω(m))2z − z3. (11)

The solutions to these equations are periodic in time. Though
seemingly simple, the procedure has reduced the nonlinear
coupled 2N first order differential equations to just one
second order differential equation. While there seem to be
a few definitions of the “nonlinear normal modes”, periodic
orbits constructed above are nonlinear normal modes in the
strict sense [10]. The motion of the coordinates is “similar”
and synchronous: they all undergo identical motion with
respect to time, except for their amplitudes. It is important
to note that the periodic orbits we have found here exhaust
all the synchronous oscillations that can have arbitrary
overall amplitudes, because all such modes should still be
synchronous when the overall amplitude goes to zero. In this
limit, the dynamics become harmonic, and the motions need
to reduce to the standard linear normal modes. Obviously,
changing the overall amplitude of a motion is equivalent to
changing its energy. The nonlinearity of the theory manifests
itself in the motions themselves; the shapes and the periods
of the orbits depend on their energy, which is a qualitatively
different behavior from the linear theory.

Clearly, this kind of construction is valid for any equations
of motion, in which the couplings between the sites lead
to linear terms in the equations of motion, and the only
nonlinearities are due to the on-site potential. In particular,
this construction works for any boundary condition, since
the boundary conditions change only the linear parts of the
equations of motion. Another point evident in the above
derivation is that this construction can be generalized to a
theory with any on-site potential. We shall investigate the
dynamics of on-site potentials other than the φ4 theory in
Sec. V.

Let us consider some simple examples.
a. Symmetric orbit for periodic boundary conditions, for

any N . In the harmonic theory, when the boundary condition is
periodic, a trivial solution with an arbitrary shift by a constant
is a solution to the equations of motion, with ω2 = 0. This
satisfies the condition, Eq. (10), so that this solution qe, which
we shall call “symmetric”, can be extended to the nonlinear
φ4 theory, with the equations of motion [7]

q̈e = −q3
e . (12)
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FIG. 1. Periodic orbits and their perturbations for N = 2: The
symmetric trajectory for E/N = 8 (brown), antisymmetric trajec-
tories for E/N = 2 (green), 8 (magenta), and their perturbations
(cyan, red, blue, respectively). Smaller E/N leads to trajectories
in a smaller region in phase space. Antisymmetric trajectory for
E/N = 8 is dynamically unstable, while others are not, which are
visible. All trajectories, (q1,q2,p1), were started with q1 = q2 = 0
and were followed for the same amount of time, �t = 40. Perturbed
orbits were obtained by increasing the initial p1 value by 10%.

While the original solution of the harmonic theory was just
a constant shift, it should be noted that this equation is a
nonlinear equation and hardly trivial. This contrasts with other
models with nonlinearities only in the intersite couplings, such
as the FPU model. In such models, these solutions are trivial.

b. Antisymmetric orbits for periodic boundary condition,
when N is even. Without the on-site potential, the “antisym-
metric” normal mode q2j = −q2j+1 = qo,p2j = −p2j+1 =
po (any j ) exists. This satisfies the condition [Eq. (10)] so
that the equations of motion can also be extended to the φ4

theory as [7]

q̈o = −q3
o − 4qo. (13)

While these constructions might seem simple, not all
normal modes can be extended to the nonlinear theory, and the
resulting equations are nontrivial. This distinction between
the linear and nonlinear theories is quite clear, for instance,

when we consider the N = 3 system with periodic boundary
conditions. In this case, the three linearly independent normal
modes in the harmonic theory have amplitudes of constant
times (1,1,1),(1,−1,0),(0,1,−1), for the three coordinates.
All these modes can be extended to the φ4 theory. However,
a mode that can be obtained from two of the modes which
have the same frequency, with amplitudes, (2,−1,−1), is also
a normal mode in the harmonic theory, that can not be extended
to the nonlinear theory, since it does not satisfy the condition
[Eq. (10)]. On the other hand, a solution that can be obtained
as a sum of the amplitudes that satisfy the condition [Eq. (10)]
is not a simple sum of the solutions and is another nontrivially
different solution in the φ4 theory, since the equations of
motion are nonlinear. Some symmetric and antisymmetric
orbits, along with their perturbed trajectories, are shown for
the N = 2 lattice with periodic boundary conditions in Fig. 1.

While we mentioned some simple examples above, we list
the normal modes that can be extended for the three boundary
conditions, periodic, fixed, and free, up to N = 9 in Table I.
The general theory of these modes have been established
previously [15,20,21], using group theoretical methods. The
results in Table I were obtained by solving the condition,
Eq. (10). The general case, for any N , depends on the boundary
conditions in an interesting manner and is explained below.
The symmetric orbits explained above are not shown in this
table and exist for any N when the boundary conditions are
periodic or free. The modes in Table I are listed simply with
the amplitudes of each qj , and this can be multiplied by any
common constant value and still be a periodic orbit. We have
listed only modes which are inequivalent. In particular, the
modes which are equivalent by just by shifting the oscillator
in the periodic case or by reflection (oscillator j ↔ N − j )
are not listed in the tables.

The general solution can be understood as follows: Since
the coefficients for the linear equations [Eq. (6)] are integers,
(ω(m))

2
are also integers, under the condition [Eq. (10)]. Due

to the value of these coefficients, only 0,1,2,3, and 4 are
possible, corresponding to the periods on the lattice of 1, 6,
4, 3, and 2, respectively, as tabulated in Table II. To make
the relationship between ω2, periodicity and the mode clear,

TABLE I. Rescaled amplitudes for the nonlinear periodic modes up to N = 9 for periodic (left), fixed (middle), and free (right) boundary
conditions. In addition, the symmetric solutions aj = 1 (any j ) with ω2 = 0 exist for all N in the periodic and free boundary cases, which are
not shown.

N ω2 aj (periodic bc) N ω2 aj (fixed bc) N ω2 aj (free bc)

2 4 (1,−1) 2 1 (1,1) 2 2 (1,−1)

3 3 (1,−1,0) 3 (1,−1) 3 1 (1,0,−1)

4 2 (1,1,−1,−1) 3 2 (1,0,−1) 4 2 (1,−1,−1,1)
2 (0,1,0,−1) 5 1 (1,1,0,−1,−1) 6 1 (1,0,−1,−1,0,1)
4 (1,−1,1,−1) 2 (1,0,−1,0,1) 2 (1,−1,−1,1,1,−1)

6 1 (0,1,1,0,−1,−1) 3 (1,−1,0,1,−1) 8 2 (1,−1,−1,1,1,−1,−1,1)
3 (1,−1,0,1,−1,0) 7 2 (1,0,−1,0,1,0,−1) 9 1 (1,0,−1,−1,0,1,1,0,−1)
4 (1,−1,1,−1,1,−1) 8 1 (1,1,0,−1,−1,0,1,1)

8 2 (1,1,−1,−1,1,1,−1,−1) 3 (1,−1,0,1,−1,0,1,−1)
2 (0,1,0,−1,0,1,0,−1) 9 2 (1,0,−1,0,1,0,−1,0,1)
4 (1,−1,1,−1,1,−1,1,−1)

9 3 (1,−1,0,1,−1,0,1,−1,0)
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TABLE II. Allowed basic modes and their rescaled amplitudes.
The modes are labeled for reference (see text).

Label ω2 Period Amplitudes Mode

0 0 1 (1)

1 1 6 (0,1,1,0,−1,−1)

2a 2 4 (1,1,−1,−1)

2b 2 4 (0,1,0,−1)

3 3 3 (1,−1,0)

4 4 2 (1, − 1)

a graphical representation of the basic modes is also shown.
All the modes are repetitions of these modes, except close
to the boundaries, as explained below. Corresponding modes
have been derived for the FPU model with periodic boundary
conditions [18]. While the results are similar, it is interesting
to note the the differences. The φ4 theory, unlike the FPU
model, contains an on-site potential that leads to nonlinear
local interactions. This enforces the nonzero amplitudes of the
oscillations to be equal, as seen in Eq. (10), which is not the
case for the FPU model.

Periodic boundary conditions are the simplest to under-
stand. All the solutions are repetitions of the modes in Table II,
and the condition for the nonlinear periodic solutions to exist
is that N is a multiple of a period in Table II. ω2 will then have
the corresponding value. All the basic modes listed in Table II
are allowed. The solutions up to N = 9 listed in Table I (left)
can be all understood from this logic, and in particular, only
the symmetric solution exists for prime numbers N (>3). The
symmetric mode, where all the amplitudes are the same value,
exists for any N .

For fixed boundary conditions, the values at the boundaries
need to be 0 as in Eq. (4), so that 0 needs to be contained in
the amplitudes, and only the modes 1, 2b, and 3 are allowed
(Table II). The periodicity of the zeros for these modes is 3,
2, and 3, respectively, so that the condition for these modes to
exists is that N + 1 is a multiple of 2 and 3 and the solutions
are repetitions of the basic modes 1, 2b, and 3, adjusted so that
the zeros are at the boundaries. In some cases, only half of a
basic mode might appear at the boundary, as in the case for
the first mode for N = 8 and the mode for N = 9 in Table I
(middle). A general nonlinear mode can be constructed this
way, listed in Table I (middle), up to N = 9. While the mode
(1,1) appears for N = 2, unlike the symmetric modes for the
periodic and the free boundary conditions, it is part of mode 1
in Table II with ω2 = 1. For other values of N , no mode with all
amplitudes being equal appears for fixed boundary conditions.

For free boundary conditions, the two consecutive sites with
the same values need to appear, so that only the basic modes
0, 1, and 2a in Table II are allowed. The symmetric mode
(mode 0), which obviously has this property, exists for any N .
The periodicity between the identical consecutive values for

modes 1 and 2a is 2 and 3, respectively, so that the nonlinear
modes exist for N being multiples of 2 and 3. All modes can
be understood in this manner, and they are listed up to N = 9
in Table I (right).

IV. STABILITY AND INSTABILITY OF THE
PERIODIC ORBITS

The periodic orbits explained in the previous section have
only two first order degrees of freedom in essence and might
not seem “chaotic”. However, they can be unstable from a
dynamical systems perspective. In this work, we investigate
the stability, or lack thereof, of the periodic orbits, from
this point of view. When the orbit is unstable, perturbations
grow exponentially large with time. Therefore, this instability
appears as the positive maximal Lyapunov exponent along the
orbit. Obviously, the instability can also be seen explicitly by
following perturbed trajectories. If the exponent is positive,
a small perturbation on the orbit will cause the trajectory to
diverge exponentially from the periodic orbit. While this tells
us how to discriminate when the orbit is unstable, it does not
tell us why the orbit is unstable or stable. For this, we now turn
to an analysis of the perturbations around the orbit. General
theory of stability analysis has been studied previously and
has been performed explicitly for periodic orbits in the FPU
model [15,17,21].

Partly to avoid confusion, it should be mentioned that
even when the orbits are dynamically unstable, some orbits
can be stable from a computational standpoint [7]. This is
a technically interesting issue, perhaps of practical import,
which we briefly explain: Any numerical computation contains
round-off errors and has only a finite precision. Therefore, one
might expect that following unstable orbits numerically for
a long time is impossible, since any deviation will force the
trajectory to diverge exponentially with time from its “true”
trajectory. However, somewhat surprisingly, some periodic
orbits can be followed for an arbitrarily long time. The reason
for this is that their symmetry properties are preserved to the
last bit in the data, with the appropriate coding and the use of
compilers. For instance, in the integration of the the symmetric
and antisymmetric orbits explained in previous section, the
properties q2j = ±q2j+1 are fully preserved in the numerical
integration. While it is unclear if this situation applies to all
periodic orbits, it applies also to other orbits we investigate
below. This property allows us to follow periodic trajectories
and compute Lyapunov spectra averaged along them with
precision, given enough computational time. In this work, we
used the fourth order Runge-Kutta routine for integration and
the method explained in Ref. [22] to compute the Lyapunov
spectra.

Let us briefly summarize the properties of Lyapunov
exponents, which will be of use to us [23,24]. Lyapunov
spectra have been computed in various Hamiltonian systems
[22,24–29], including the φ4 theory both thermostatted and
not thermostatted [2,7]. When one follows a trajectory in
phase space, the neighboring trajectories can diverge from
(or converge to) the original trajectory exponentially, and their
exponents per unit time are called Lyapunov exponents. If we
consider all the possible different directions of the neighboring
trajectories and average along the original trajectory, their
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rates of divergence or convergence from it, we obtain the
Lyapunov spectrum. The systems considered in this work
are all Hamiltonian systems, with the Hamiltonian having
no explicit time dependence. For N pairs of coordinates and
momenta, qj ,pj (j = 1,2, . . . ,N ), there are 2N Lyapunov
exponents. The spectrum of exponents is made up of pairs of
the form ±λ (λ: Lyapunov exponent) and is invariant under
changing the sign of all the exponents, due to the time reversal
symmetry of the system. Furthermore, at least one pair of
exponents is zero, since the trajectories are on a 2N − 1
dimensional constant energy surface. It should be noted, that in
this work, we follow periodic orbits, which are localized in the
phase space, and compute the Lyapunov spectra along them.
So the Lyapunov spectra obtained here are different from the
spectra obtained by averaging over the chaotic “sea” in the
phase space [22,24–29].

A. N = 2 system with periodic boundary conditions

The simplest case to analyze the stability of the periodic
orbits is the N = 2 system, since the N = 1 system will
only have zero Lyapunov exponents, and hence no instability,
from the properties referred to above. Below, this system
with periodic boundary conditions is analyzed in some detail.
For N = 2, there are only the “symmetric” orbit, in which
both coordinates are the same, and the “antisymmetric”
orbit, in which the coordinates are (−1) times each other.
These cases are instructive and enable us to clearly see the
mechanism behind the instability of the orbit, or lack thereof,
enabling us to extend this understanding to more general cases.
The Lyapunov exponents for the periodic orbits have been
computed in some cases [7]. It was found that the symmetric
solutions [Eq. (12)] seemed to have a zero maximum Lyapunov
exponent for any energy, though numerical computations
cannot rule out small nonzero exponents. In contrast, the
antisymmetric orbits [Eq. (13)] were found to be stable at
low energies, becoming unstable at higher energies. This stark
contrast is intriguing, but its underlying physics was unclear.
We will see how this originates below.

The symmetries of the system are more conveniently
viewed using the coordinates

χ = 1
2 (q1 − q2), η = 1

2 (q1 + q2). (14)

Then, the equations of motion for the system can be reorga-
nized into a more convenient form as

χ̈ = −χ (χ2 + 3η2) − 4χ, η̈ = −η(η2 + 3χ2). (15)

To analyze the problem of stability, we perturb around a
general classical solution, χ0,η0, as χ = χ0 + χ1,η = η0 +
η1. Keeping only the leading order terms, we arrive at the
equations for the fluctuations around the solution:

χ̈1 = −3
(
χ2

0 + η2
0

)
χ1 − 4χ1 − 6χ0η0χ1,

η̈1 = −3
(
η2

0 + χ2
0

)
η1 − 6χ0η0η1. (16)

1. Symmetric mode fluctuations

Let us first discuss small deviations from the symmetric
orbit, χ0 = 0 and η0 satisfying the nonlinear oscillator equation

[Eq. (12)]. The deviations from the orbit satisfy

χ̈1 = −(
3η2

0 + 4
)
χ1, η̈1 = −3η2

0η1. (17)

These equations are those of harmonic oscillators with os-
cillation frequencies that depend on time. The frequencies
are clearly real for both equations, so that there is no trivial
exponential growth. Yet η0 is periodic, so that solutions to
these equations can exhibit parametric resonance [1], which
we now investigate.

While Eq. (17) can be analyzed numerically, and shall
be done so below, it is worthwhile to study the mechanism
analytically. Parametric resonance arises when the frequency
of the oscillation changes at a rate close to twice the
base frequency, to leading order. The condition for such an
instability for an oscillator satisfying

ẍ = −ω2(t)x = −ω2
0(1 + h cos γ t)x, (18)

is ∣∣∣∣ γ

2ω0
− 1

∣∣∣∣ <
h

4
. (19)

While the basic motion, η0 is not sinusoidal, let us
approximate η0 by

√
2E

1/4
1 sin 	t to gain insight, where

E1 = E/N is the energy per oscillator. The frequency can be
computed to be 	 = (2π )3/2E

1/4
1 /�(1/4)2. One can then show

analytically that neither ω2(t) = 3η2
0 nor ω2(t) = 3η2

0 + 4
satisfies the condition [Eq. (19)] for any E1. In particular,
we note that in the first case, 	/ω0 is independent of E1 and
just a numerical constant. We can integrate the perturbations
[Eq. (16)] numerically, and we find that the symmetric mode
does not become unstable regardless of the energy, which is
consistent with what was found analytically. An example of
the perturbations is illustrated in Fig. 2. The initial conditions
for the perturbations shown in the plot are chosen to be
(ξ1(0),ξ̇1(0)),(η1(0),η̇1(0)) = (0,1), and the same conditions
will be used below for all perturbation mode analyses. The
equations for the perturbations are linear with respect to ξ1,η1

so that rescaling these conditions just rescales the solutions.

2. Antisymmetric mode fluctuations

In the antisymmetric mode, η0 = 0 and χ0 satisfies the
nonlinear oscillator equation [Eq. (13)]. Similarly to the
symmetric mode case, we need to consider the cases, ω2(t) =
3χ2

0 ,3χ2
0 + 4 for Eq. (18). Let us keep the leading order term

in χ0 expansion and deduce what happens: Approximating χ0

by
√

E1/2 sin(2t), we find that ω2
0 = 3χ2

0 + 4 never satisfies
the resonance condition [Eq. (19)], while ω2

0 = 3χ2
0 satisfies it

in the region 3.4 � 28/(3 × 52) < E1 < 28/33 � 9.5, so that
there is an unstable region.

While the above analytical argument used simple crude
approximations, they nevertheless give us insight as to the
underlying mechanism behind the stability and instability of
the perturbations. When the perturbation equations [Eq. (16)]
are integrated numerically, we find that indeed the mode
for ω2 = 3χ2

0 + 4 never becomes unstable, while that for
ω2 = 3χ2

0 becomes unstable for E/N > 7.12. So the analytic
argument recovers the rough picture, but there is no upper
bound to the energies for the instability of the perturbations
around the orbits, and this is outside the region of the validity
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FIG. 2. N = 2 symmetric orbit trajectories of η0 (red, smaller
amplitude) and its momentum, η̇0 (green), for E/N = 100 (a).
Time dependence of the perturbations η1 (red), χ1 (green, smaller
amplitude) around the symmetric mode, η0 (b). While E/N is
relatively large, perturbation η1 grows only linearly with time, not
exponentially, and χ1 amplitude does not become larger.

of the analytic approximation. The transition from stable to
unstable displays beat behavior just before becoming unstable,
which can be seen in Fig. 3.

B. General periodic orbits for any N

Let us now discuss the case for a general periodic orbit,
for any N and any boundary conditions. A periodic orbit z0

satisfies the equation [Eq. (11)] for some m0, as

z̈0 = −(ω(m0))2z0 − z3
0. (20)

We expand around this basic solution as qj = qj,0 + qj,1,
where qj,0 = ±z0 or 0, due to Eq. (10):

q̈j,1 = qj+1,1 + qj−1,1 − 2qj,1 − 3q2
j,0qj,1. (21)

These equations are linear equations with respect to qj,1 but
contain time-dependent coefficients in qj,0 and furthermore,
Nqj,1 are coupled. When the amplitudes in the mode do
not contain zeros (cf. Table I), the equations can be further
simplified. In this case, using the normal mode coordinates for
the perturbations, z

(m)
1 , we obtain the form of the equations
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FIG. 3. Time dependence of the perturbations around the anti-
symmetric mode, χ0, for N = 2: (a) Perturbation of η1 for E/N = 4
(red, larger amplitude), 6.8 (green). (b) η1 for E/N = 7.2. The
perturbations develop beat behavior (a) and become unstable for
E > 7.12 (b).

which are decoupled:

z̈
(m)
1 = −[

(ω(m))2 + 3z2
0

]
z

(m)
1 . (22)

For a periodic solution of the φ4 lattice generated by z0,
N equations labeled by the normal mode directions, m, for
the perturbations around the original periodic solution. The
spectrum of the (harmonic) normal modes ω(m) enters the
equation. We see that the N = 2 symmetric and antisymmetric
cases discussed above can be recognized as special cases
of these equations. It should be noted that the unperturbed
solution enters only as z0, but this exists only for certain values
of m0, as seen in Table I. The equation cleanly separates the
role of the nonlinear oscillatory mode in z0 and the harmonic
normal modes in the spectrum, (ω(m))2. N enters only through
the spectrum.

The above second order linear differential equation
[Eq. (22)] with a real periodic function as the coefficient is
an example of Hill’s equation. Its two linearly independent
solutions have one of the properties below, given by Floquet’s
theorem [30]:

(a) The linearly independent solutions are of the form
eiαtp+(t),e−iαtp−(t), where p±(t) are periodic functions of
t with the period T .

042209-6



STABLE AND UNSTABLE PERIODIC ORBITS IN THE . . . PHYSICAL REVIEW E 94, 042209 (2016)

(b) A nontrivial periodic solution, p(t) exists. Another
solution, f (t), has the property f (t + T ) = ±f (t) + θp(t),
(θ : constant).
The period of p(t) is T or 2T , and the sign in front of f (t) is
+ or −, respectively.

Here T is the (minimal) period of z0(t)2. Exponentially
growing perturbations exist if and only if the solutions are of
type (a) with a nonreal α. Solutions of type (a) with real α lead
to bounded perturbations. Solutions of type (b) lead to linearly
growing perturbations when θ �= 0.

Let us discuss here the relation between the Lyapunov
exponents, perturbation equations [Eq. (22)], and Floquet’s
theorem. Lyapunov exponents measure the exponential rate
at which the deviations from a trajectory diverge from the
solution. The trajectory needs not be periodic. The number
of Lyapunov exponents equals the dimension of the phase
space, 2N , since the deviations can be made in any direction
in phase space. The behavior of perturbations around a
periodic solution may be obtained by solving the perturbation
equations. Intuitively, it should be expected that the growth rate
of the perturbations should be consistent with the Lyapunov
exponents averaged along the periodic solution. This shall
be quantitatively confirmed below. It should be noted that
the computations involved in obtaining the Lyapunov spectra
and solving the perturbation equations are quite different.
To obtain the Lyapunov spectrum, in principle, we need to
solve the equations of motion and measure how different
solutions with close initial conditions diverge. In practice,
in the method we adopt, the equations of motion for the
whole system are solved while also tracking the evolution
of vectors in the tangent space, a procedure that requires
2N (N + 1) coupled first order equations to be solved. The
whole spectrum of 2N exponents, along with the unperturbed
periodic solution, is obtained this way, without using the
perturbation equations [Eq. (22)]. On the other hand, in
perturbation theory, first, the periodic solution is obtained, and
then the N perturbation equations are solved, one by one. Each
equation should correspond to two Lyapunov exponents. When
the perturbations equation is of type (a) in Floquet’s theorem
and α is not real, a perturbation can grow exponentially and
± Im α should coincide with the Lyapunov exponent pair ±λ.
In all other cases, the corresponding Lyapunov exponents
are zero. This will be explicitly seen below. The pairing
property is consistent with the general property of Lyapunov
exponents. Interestingly, by independently solving one second
order differential equation for each perturbation mode, we
recover the Lyapunov exponents pair (±λ) by pair, including
their degeneracies. To understand how the system works, we
illustrate this with a few concrete examples.

1. General N, symmetric solution, periodic boundary conditions

When the boundary conditions are periodic, the symmetric
solution, where all coordinates and momenta move in unison,
qj = qk,pj = pk (any j,k) is a solution for general N . To
analyze the perturbations to the periodic orbit through the
equations [Eq. (22)] we need the spectrum of the normal
modes for the harmonic theory, which, for periodic boundary
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 0  5  10  15  20  25  30  35

|z
1(
m
) |

t

FIG. 4. Absolute values of the perturbations, |z(m)
1 |, (m =

0,1, . . . ,N/2) around the symmetric solution, z
(0)
0 as a function of

time, t , for N = 16, E/N = 100. All the different modes m = 0
(red), 1 (green), 2 (blue), 3 (magenta), 4 (cyan), 5 (yellow), 6 (black),
7 (orange), N/2 = 8 (gray) are shown. t/2 behavior is also shown
(red), which matches well the linear, but not exponential, growth of
z

(0)
1 . Individual modes, apart from z

(0)
1 are difficult to separate visually,

but it can be seen that while E/N is relatively large, none of the modes
have exponentially increasing amplitudes. At this E/N , the modes
have decreasing amplitudes in the order, m = 0,1,2, . . . ,N/2.

conditions is

ω(m) = 2 sin π
m

N
, m = 0,1, . . . ,N − 1. (23)

This spectrum is doubly degenerate except for m = 0 and N/2,
the latter only when N is even. So there are only N/2 + 1
or (N + 1)/2 independent perturbation equations [Eq. (22)],
depending on whether N is even or odd. When Eq. (22) are
integrated, we find no instabilities for small or large E/N for
any N .

An example is shown in Fig. 4 for N = 16 lattice at
E/N = 100. While the energy of the system is relatively
large, none of the perturbations grows exponentially. This
result is quite consistent with the Lyapunov exponents being
immeasurably small numerically, for any N and E/N [7]. In
this case, the perturbations for the modes m = 1,2, . . . ,N/2
belong to case (a) of Floquet’s theorem, with real values of
α. The distinct feature of perturbations with two periods can
be observed in the figure. The mode m = 0 is of case (b)
of Floquet’s theorem with θ �= 0. It should be noted that
m = 0 coincides with the linearized normal mode of the
original periodic solution, which exists for any energy. The
perturbation in this direction does not grow exponentially so
that the corresponding Lyapunov exponents are zero, yet grows
linearly for the following reason. If θ = 0, we would have two
perturbations which are periodic when shifted with the period
of the unperturbed solution z0. This would lead to a slightly
perturbed periodic solution with the same period. However,
nonlinear periodic solutions change both the period and the
trajectory shape with the energy, which leads to a linear growth
with respect to t in the perturbation. Clearly, this argument is
not restricted to the symmetric periodic orbit, and we shall see
that this property holds for all the examples we study.
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2. General even N, antisymmetric solution, periodic
boundary conditions

The situation is much more interesting for the antisym-
metric periodic solution, qj = −qj+1,pj = −pj+1 for general
even N . When N = 2, it was seen that for large enough E/N ,
the orbit becomes unstable and one (of the two) fluctuation
equations had a parametric resonance. For general N , there
are N/2 + 1 inequivalent perturbation modes, as explained
above. As we increase E/N , the perturbation modes become
unstable, one inequivalent mode by one. This can be seen as the
solutions to the perturbation equations [Eq. (22)], developing
exponentially growing behavior, as in Fig. 6, which is also
evidenced in the Lyapunov spectrum, Fig. 5. The number of
nonzero exponents can be seen to increase systematically as
E/N is increased.

The equations for the perturbations [Eq. (22)] also reflect
the degeneracy of the spectrum [Eq. (23)]. From the compu-
tations of Lyapunov spectra, this degeneracy is a priori not
obvious, but it is indeed reflected in the Lyapunov spectra,
as seen in Fig. 5. The modes become nonzero in pairs,
corresponding to identical Lyapunov exponents [and (−1)
times them], except for two modes, as we now explain.
The two nondegenerate modes m = 0,N/2 correspond to the
symmetric and antisymmetric periodic orbits, respectively.
The unperturbed orbits z0 satisfy the nonlinear oscillator
equation [Eq. (20)] with (ω(0))2 = 0 or (ω(N/2))2 = 4, neither
of which depends on N . So the equations for these two
perturbation modes and hence their behavior are independent
of N . The mode for m = 0 corresponds to a nondegenerate
nonzero Lyapunov exponent pair, whose value is independent
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FIG. 5. Lyapunov exponents {λn} of N = 16 antisymmetric
orbits, for E/N = 0.2 (red), 0.5 (green), 1 (blue), 2 (magenta), 3.5
(cyan), 5.5 (yellow), 6 (black), 7 (orange), 8 (gray) and labeled on the
right-hand side. The Lyapunov exponents are plotted in the increasing
order of their magnitudes. The whole spectrum is always invariant
under the reflection λn ↔ −λn, as it should be. More and more
Lyapunov exponents are seen to become nonzero, corresponding
to more perturbation modes around the periodic orbit becoming
unstable. The exponents are seen to become nonzero in pairs (of ±λn

pairs) with the same values, except for λ0 = 0 and the last exponent
to become nonzero ±λ3 for E/N = 8. The exponents, including their
degeneracy, reflect the properties of the perturbations.
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FIG. 6. Perturbation about the antisymmetric orbit for N = 8,
E/N = 9: Modes for m = 0 (red), 1 (green), 2 (blue), 3 (magenta),
4 (cyan) are shown (also labeled on the right-hand side), which
grow exponentially with time except for mode m = 4, which grows
linearly. exp(λ(p)t) are also shown (in color corresponding to the
mode) and agree excellently with the growth of the perturbations
for m = 0,1,2,3. The corresponding strictly positive exponents
are λ(0) = 0.3795,λ(1) = 0.4476,λ(2) = 0.4591,λ(3) = 0.2903, and
all exponents are doubly degenerate in the Lyapunov spectrum, except
for λ(0). 0.29t is shown and agrees well with the linear growth of the
perturbation for m = 4.

of N . This was found in Ref. [7], and the reason for this
is now clear. This mode becomes unstable at the highest
energy, among the modes. m = N/2 mode direction coincides
with the periodic orbit which we perturbed around, and the
perturbation grows linearly for the reason explained at the end
of Sec. IV B 1. In regard to Floquet’s theorem, the perturbation
equation for the m = N/2 mode is of type (b) with θ �= 0, and
other modes are of type (a). In general, there needs to be a
mode associated with the pair of zero Lyapunov exponents
for any trajectory, including periodic orbits, in particular, not
just the antisymmetric orbit. The perturbation of along the
original periodic solution itself performs this role, and it is
evident here that it is the only mode that can, in general.
The spectrum of Lyapunov exponents should correspond to
the rate of exponential growth of the perturbations with time,
as discussed above. The spectrum computed independently is
seen in Fig. 6 to agree with the growth rate of perturbations
quantitatively.

For perturbations around symmetric orbit, at E/N =
100,N = 16, the size of the amplitudes corresponding to the
modes were in descending order with respect to the modes m =
0,1, . . . ,N/2, as seen in Fig. 4. However, in the example of
the antisymmetric E/N = 9,N = 8, no such simple ordering
exists. It is interesting to see how the growth of perturbations,
as characterized by Lyapunov exponents, depends on the mode
for a given E/N . This is shown for the antisymmetric orbit
for N = 16 in Fig. 7, where it is seen that for large E/N , the
ordering is similar to what was seen for the symmetric orbit.
For perturbations around the antisymmetric orbit, the modes
m = N/2 − 1,N/2 − 2, . . . ,2,1,0 become unstable one by
one as we increase E/N . However, as we increase the energy,
eventually, the size of the Lyapunov exponent is in the reverse
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FIG. 7. The dependence on E/N of the Lyapunov exponents
along the antisymmetric orbit for N = 16, corresponding to the
modes m = 0 (red), 1 (green), 2 (blue), 3 (yellow), 4 (cyan), 5
(magenta), 6 (black), 7 (orange), and N/2 = 8 (gray) (labeled in the
plot). Only positive Lyapunov exponents (λ � 0) are shown, since
the negative exponents are identical, except for the sign.

order they became nonzero. This property holds for all N we
have investigated, and a mathematical structure presumably
exists behind it, which still needs to be investigated.

V. EXTENSION OF THE CONSTRUCTION AND
STABILITY ANALYSIS TO MODELS WITH DIFFERENT

ON-SITE POTENTIALS

As noted in Sec. III, the construction of the periodic orbits
can be applied to general one-dimensional lattice theories,
provided the intersite couplings are harmonic. The theory
can be more general in two ways, the harmonic part of the
Hamiltonian can be different, and also, the on-site potential
can be different. If the normal nodes for the harmonic theory
without the on-site potential are known, we can use the
condition [Eq. (10)] to systematically find periodic solutions.
We now consider Hamiltonians without changing the intersite
potential, but with different on-site potentials, �(q). The
Hamiltonian for these theories is

H =
N∑

j=1

p2
j

2
+

N−1∑
j=1

(qj+1 − qj )2

2
+ HB +

N∑
j=1

�(qj ). (24)

The equations of motion for the theory are coupled 2N first
order nonlinear differential equations, in general. When a
normal mode can be extended to the nonlinear theory, the
same construction yields the equations of motion, which is a
single second order differential equation:

z̈ = −(ω(p))2z − d�

dz
(z). (25)

The condition for such a reduction to apply is identical to
Eq. (10), as long as the potential is even with respect to
z, �(−z) = �(z). When the potential is not even, only the
symmetric mode, with all coordinates having the same value, is
allowed. This mode might be incompatible with the boundary
conditions of the theory. Strictly speaking, when the potential

is not even, a mode with all the nonzero amplitudes having
the same value is allowed, which is more general, in principle,
than the symmetric mode. However, only the symmetric mode
resides in this category for the Hamiltonians considered here
(see Table II). When the trajectory is bounded, it is periodic,
even though the reduction of the equations of motion is
applicable even when the motion is unbounded. The potential
does not need to be a monomial or even a polynomial. If
the intersite potentials are changed, the normal modes for the
harmonic part will be different, but the same principle applies
to extending the normal modes to the nonlinear theory. We
parenthetically point out one exception to these considerations,
the case �(z) = const × z2. In this case, all the normal modes,
with any amplitude, extend to the theory with this on-site
potential, but the equations of motion are linear.

The perturbations around a solution, (qj,0), can be analyzed
analogously to the φ4 theory. The perturbations, (qj,1), satisfy

q̈j,1 = qj+1,1 + qj−1,1 − 2qj,1 − d2

dz2
�(qj,0)qj,1. (26)

These equations are are applicable in general, given any
periodic solution, (qj,0), obtained using Eq. (25). They can
be further simplified to the following equations when �(qj,0)
is independent of j , which occurs when no zeros exist in the
amplitudes of the modes, as in the φ4 theory:

z̈
(m)
1 = −

[
(ω(m))2 + d2

dz2
�(z0)

]
z

(m)
1 , m = 0,1,2, . . . ,N − 1.

(27)

If the harmonic part of the Hamiltonian is the same as those
of the coupled oscillator [Eq. (1)] for periodic, fixed, or free
boundary conditions, the general solutions to the conditions
[Eq. (10)] have been analyzed in Sec. III.

We now examine some concrete examples:
a. Cubic and quartic potential. Let us consider the example

of a potential, by adding a cubic term to the quartic potential
of φ4 theory:

�(q) = q3

3
+ q4

4
. (28)

This potential is different from the φ4 theory potential in that
it is not a monomial, and further does not have the reflection
symmetry q ↔ −q. Therefore, only the symmetric mode, as
explained above, can be extended to the nonlinear theory,
which is a solution for any N , when the boundary conditions
are periodic or free. Some periodic orbits for an N = 4 lattice
with periodic boundary conditions are shown in Fig. 8 at
E/N = 0.5,8 along with their perturbed trajectories. The
former is unstable, and the latter is stable. There are interesting
qualitative differences in the behavior, when compared to
the quartic potential trajectories analyzed in the previous
section. In that case, the symmetric orbit was always stable.
Furthermore, when the orbit became unstable, increasing E/N

only made it less stable (see Fig. 7). With the current potential,
the symmetric orbit becomes unstable at lower energies and
becomes stable at higher energies. This behavior might seem
intuitively strange at first sight, especially since increasing
the energy might naively seem to enhance the instability of
the orbits. However, at higher energies, the orbit samples
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FIG. 8. Periodic orbits in phase space for the potential �(q) =
q3/3 + q4/4 and their perturbations, for N = 4: The symmetric
trajectory (q1,p1) for E/N = 0.5 (green), 8 (magenta), and their
perturbations (red, blue, respectively). Larger E/N leads to trajec-
tories in a larger region in phase space. Evidently the E/N = 0.5
orbit is unstable, while the E/N = 8 orbit is not, which agrees with
the Lyapunov spectra computed along these orbits. The orbits are not
symmetric with respect to q1 ↔ −q1 reflection, and the orbits for
different energies are seen to be quite dissimilar in shape. Also, the
orbits both differ from the harmonic oscillator orbit, an ellipse. All
trajectories were started with qj = 0 (anyj ) and were followed for
the same amount of time, �t = 400. Perturbed orbits were obtained
by increasing the initial p1 values by 10%.

potentials at higher energies on average, which is governed by
the quartic behavior. Therefore, the essential differences from
the quartic potential case become more pronounced at lower
energies. As in the previous section, the rates of growth of the
perturbation modes quantitatively agree with the Lyapunov
spectrum, which has been computed independently.

b. Trigonometric potential. As a final example, let us
analyze

�(q) = 1 − cos(q). (29)

This case is qualitatively different from the previous examples;
the potential is not a polynomial function, and the potential is
bounded, so that there exist unbounded orbits. For this case,
we analyze the perturbations around the mode based on mode
2a in Table II, for the N = 16 lattice with periodic boundary
conditions (Table I). This mode is different from the symmetric
and the antisymmetric mode, but can be analyzed in the same
fashion, using the theoretical structure introduced above.

In Fig. 9 the time dependence of the absolute values
of all the perturbation modes for E/N = 10 is shown. At
this energy, this mode is bounded and periodic due to the
quadratic part of the potential in the Hamiltonian [Eq. (24)].
The symmetric mode would lead to unbounded trajectories at
the same energy. There are three unstable modes, two of which
run away and will not oscillate around zero, and one unstable
mode that does not run away. Such run-away modes can
exist when (ω(m))

2
< 1 so that the time-dependent frequencies

in Eq. (27) can become imaginary, which corresponds to
m/N < 1/6. In this example, m = 0,1 modes run away and
the m = 5 mode has a parametric resonance-type instability.
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FIG. 9. Trigonometric potential: Absolute value of the pertur-
bations, |z(m)

1 |, (m = 0,1, . . . ,N/2) around the mode 2a periodic
solution, z0, with ω2

0 = 2, as a function of time, t , for N = 16, E/N =
10. All the different modes m = 0 (red), 1 (green), 2 (blue), 3 (yellow),
4 (cyan), 5 (magenta), 6 (black), 7 (orange), N/2 = 8 (gray) are
shown. Modes m = 0,1,5 have exponential growing perturbations.
Using the Lyapunov spectrum computed independently, exp(λ(m)t)
corresponding to these three modes are shown, and the growth
rate and the Lyapunov exponents are in excellent agreement. The
corresponding exponents are λ(0) = 0.4150, λ(1) = 0.1230, λ(5) =
0.1243, and λ(1,5) are doubly degenerate in the Lyapunov spectrum.
Perturbation for mode m = 4 grows linearly, and its growth agrees
well with 0.34t , which is also shown.

These perturbations are of type (a) in Floquet’s theorem with
α nonreal. The run-away solutions correspond asymptotically
to periodic solutions oscillating around a nonzero value with
exponentially growing amplitudes. The deviations from the
simple exponential growth behavior for small t is due to the
contribution of the exponentially decaying solutions. m = 4
mode corresponds to the mode 2a of the unperturbed periodic
solution and grows linearly, as can be seen in Fig. 9. This agrees
with the general argument given at the end of Sec. IV B 1, and
the solution is of type (b) in Floquet’s theorem with θ �= 0. The
Lyapunov spectrum, computed independently, confirms that
there are five strictly positive exponents, and their values can
be seen to agree quite well with the growth of the perturbations,
as can be seen in Fig. 9. Lyapunov exponents for the m = 1,5
modes are doubly degenerate, as explained in the previous
section.

VI. DISCUSSION

In this work, we systematically constructed periodic orbits
of the φ4 theory by extending the normal modes of the
harmonic limit of the model. The stability of the periodic orbits
were analyzed, quantitatively relating the Lyapunov exponents
to each modes. Properties of the Lyapunov spectrum, such
as the degeneracy of the exponents and their relation to
the harmonic spectrum were clarified. While some of the
general properties have been known and explicit results have
been derived for some other models [14,15], these questions
have not been studied for the φ4 theory. We believe that
the results complement the previous results in other models
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such as the FPU model in an interesting way, considering
their different dynamical behaviors. Also, importantly, the φ4

theory is a prototypical model in this class in various fields
of physics. Furthermore, by showing how the various aspects
come together explicitly, our results can hopefully serve as a
concrete basis for future research. The systematic construction
of the periodic orbits and their stability analysis are applicable
to other models with harmonic intersite and nonlinear on-site
potentials, and we studied how this can be done with models
having qualitatively different behavior from the φ4 theory. It
should be noted that for this class of models, these periodic
orbits exhaust the solutions in which all the coordinates move
in synchronization and the overall amplitude is arbitrary, by
construction. We found a fascinating consistent picture that ties
together the physics of the periodic orbits, perturbation around
them, and the Lyapunov spectra. One can obtain Lyapunov
exponents around these orbits, one ±λ pair by pair, by solving
a single second order differential equation at a time, rather
than solving for the whole system, providing a clear picture of
the system.

There are several directions to be further investigated.
The φ4 theory can be studied more deeply, using extension
of normal modes and boundary conditions, other than those
studied here. Also, given the general construction presented
here, the dynamics of periodic orbits in models with different
on-site potentials and their stability can be studied. While

we have studied synchronous periodic orbits with arbitrary
amplitudes for these class of theories, more general periodic
solutions exist, sometimes referred to as higher dimensional
bushes [20,21]. Behavior of periodic solutions and their
dependence on the properties of the on-site potential raise
intriguing questions. The link between the stability and
instability of the periodic orbits and the behavior of Lyapunov
exponents can be studied at a deeper level. Consistency
requirements and the behavior of Lyapunov exponents, as seen
in Fig. 7, hint at a beautiful underlying mathematical structure,
which is intriguing. We believe that the interesting subject
matter studied here brings together various fields in classical
dynamics: analytic aspects, such as parametric resonance,
geometric aspects such as the periodic trajectories and the
Lyapunov spectrum, and applied physics. We hope that the
concrete results presented here for the φ4 lattice theory and
other models lead to further progress in the field.
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