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Exact analytical expressions for the cross-section correlation functions of chaotic scattering systems have
hitherto been derived only under special conditions. The objective of the present article is to provide expressions
that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner
type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the
scattering (S)-matrix correlation functions accurately. Our results are given in the energy and in the time
representations and apply in the whole range from isolated to overlapping resonances. The S-matrix contributions
to the cross-section correlations are obtained in terms of explicit irreducible and reducible correlation functions.
Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations
and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations
contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate
predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of
well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S-matrix
autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in
that region. Agreement with known analytical and experimental results is excellent.
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I. INTRODUCTION

Scattering processes from highly complex systems show
characteristic fluctuation phenomena [1–3]. Their average
features are of generic nature independently of the details of
the underlying interactions and show sensitivity to the energy
or frequency. Such fluctuations are characteristic for quantum
chaotic scattering, which occurs in nuclei [4,5], molecules, in
the conductance of mesoscopic semiconductor devices [6] and
disordered open systems [7], in electronic transport in ballistic
open quantum dots [8,9], and in microwave cavities [10–12].
Generally speaking a scattering process is chaotic if the
scattered particle is trapped, i.e., moves close to the periodic
orbits of the corresponding closed system for a sufficiently
long time in the interaction region so that it is effected by the
interior dynamics, which is required to be chaotic [13,14]. A
lower bound for this time, and therewith an upper bound for
the energy spacings, may be obtained based on a semiclassical
approach and is given by the period of the shortest periodic
orbit in the corresponding closed classical system [15]. For
a semiclassical treatment of nuclei see, e.g., Refs. [16–18].
In molecules chaotic scattering has been studied in indirect
photodissociations of excited molecules through resonances,
i.e., quasibound states formed due to the presence of a po-
tential barrier which hinders the immediate dissociation [19].
Similarly, the statistical theory of compound nucleus reactions

*torleif.ericson@cern.ch
†dietz@ikp.tu-darmstadt.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

relies on the formation of a compound nucleus as an interme-
diate state. Analytical results were obtained for the fluctuation
properties of the corresponding scattering matrix [20] based
on the ansatz of Bohr [21], that the formation and decay of the
compound nucleus are independent processes. The associated
cross sections [3–5,11,12,22] exhibit random fluctuations as
a function of energy, thereby reflecting the randomness in
the individual components of its resonant structure. The ratio
�W/d of the average total resonance width �W and the average
resonance spacing d characterizes the energy (frequency)
regions ranging from isolated resonances with �W � d to
the overlapping ones with �W � d. Data give information on
the average cross section, their variance, and the correlation
functions, which are the major tools for the investigation of
the resonance structure of scattering systems.

A general theoretical treatment of chaotic scattering pro-
cesses has been developed by Verbaarschot-Weidenmüller-
Zirnbauer (VWZ) combining scattering theory and random
matrix theory (RMT) [20,23]. The results are expressed in
terms of the values of d and the average elements 〈S〉 of
the scattering matrix S. These are the characteristic physical
parameters. The theory gives global analytical results for the
autocorrelation and cross-correlation functions of an S-matrix
element and a complex conjugate, one as well as for its third
and fourth moment [24,25]. Reference [24], in particular,
provides analytical expressions for the average cross-section
coefficient [26] and its variance. The accuracy of these
analytical results was tested thoroughly with RMT simulations
and also in experiments with microwave billiards [22,27].
In general, however, cross-section autocorrelations have a
more complex structure and are not known analytically.
Explicit results could so far only be obtained using numerical
simulations based on RMT [27].

The present article aims at filling this gap by providing an
analytic, albeit approximate, description of the cross-section
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correlations based on a S-matrix model, using the traditional
statistical Breit-Wigner (SBW) resonance model inspired by
nuclear reaction theory [4,28–30]. It is also referred to as the
EGS model in Ref. [31] or the rescaled Breit-Wigner model
in Ref. [30]. The SBW model approximates the S matrix
by a coherent sum of resonances with random partial width
amplitudes of appropriate average strength and a total width
given by the sum of the partial widths associated with the
open channels. It yields a remarkably good description for the
S-matrix autocorrelations [31]. This feature of the SBW model
was the motivation for its application to the cross-section
correlations in the present article. Approximations and predic-
tions [32–39] for the latter including an extensive comparison
to experimental data exist for the asymptotic regions of isolated
and strongly overlapping resonances [4,11,12,28,40–44]. We
first extend them by deriving the SBW expressions for the
S-matrix and cross-section autocorrelation functions both in
the energy and in the time representation. Their usefulness and
accuracy is then established numerically by comparison with
known exact results derived within RMT on the basis of the
supersymmetry method [24,25,27]. The very good agreement
of these results with those derived with the SBW model
gives confidence that it describes the physics correctly. This is
corroborated with RMT simulations. In Sec. IV, our results are
checked with experimental data obtained from measurements
with microwave billiards. Finally, the SBW model provides
a detailed insight into the origin of the contributions of
various S-matrix correlation functions, which are not ac-
cessible within the VWZ model. It allows us to investigate
the transition region from isolated resonances to overlapping
ones separately for the irreducible two-, three-, and four-
point correlations contributing to the cross-section correla-
tions. Furthermore, we demonstrate explicitly the central role
played by the channels for which the scattering signal is
recorded.

II. FRAMEWORK

A. From cross-section to S-matrix correlations

We consider chaotic scattering in a time-reversal invariant
system described by a unitary and symmetric scattering matrix
Sab(E). Here a,b = 1, . . . ,� denotes the channels and E

the energy. The classical dynamics of the closed system is
assumed to be chaotic. Accordingly, its spectral properties
are described by random matrices of large dimension from
the Gaussian orthogonal ensemble (GOE). The associated
scattering system exhibits a large number of resonances
that are coupled dynamically to the channels as described
for example in Ref. [22]. We are mainly interested in the
fluctuation properties of the S-matrix elements and the cross
sections σab(E) = |Sab(E) − δab|2, which are analyzed in
terms of correlation functions. These are obtained as ensemble
averages generated by random variables, which are equivalent
to energy averages in the absence of secular variations.
For definitions and notations we follow with some minor
changes the procedure and notations of Ref. [22], with a
brief reminder below. As in Ref. [27] we limit the discus-
sion to the cross-section autocorrelations for simplicity of
presentation. The SBW results are readily generalized to other
cases.

The basic quantity is the scattering matrix S(E). It is
convenient to decompose it into an average and a fluctuating
part [45,46],

Sab(E) = 〈Saa〉δab + S
f l

ab (E), (1)

with 〈Sf l

ab〉 = 0. Averages are indicated by brackets as 〈. . . 〉.
The S-matrix autocorrelation function is defined as

C
(2)
ab (ε) = 〈

S
f l

ab (E − ε/2)Sf l∗
ab (E + ε/2)

〉
≡ 〈Sab(E − ε/2)S∗

ab(E + ε/2)〉 − |〈Sab(E)〉|2, (2)

where we introduced the abbreviation C
(2)
ab (ε) = C[S∗

abSab](ε).
The channels corresponding to the labels a,b in the S-matrix
autocorrelation function are denoted as the observed channels
in the sequel. The parameters of S(E) are the average
resonance spacing d and the transmission coefficients in all
open channels e,

Te = 1 − |〈See〉|2. (3)

These quantities determine the scale of the average correlation
width �W of the S matrix in terms of the Weisskopf
estimate [47]

�W =
∑

e

〈�e〉 = d

2π

∑
e

Te. (4)

The average cross section is given by 〈σab(E)〉 = 〈|Sab(E) −
δab|2〉 = |〈Sab〉 − δab|2 + 〈|Sf l

ab |2〉. The fluctuations of the
cross sections are described by their autocorrelation functions.
Here we should note that Ref. [22] defines the cross section as
σab = |Sab|2. It differs from our definition σab = |Sab − δab|2
which is the one commonly used in nuclear physics. The
cross-section autocorrelation function is then obtained as

Cab(ε) = 〈|Sab(E + ε/2) − δab|2|Sab(E − ε/2) − δab|2〉
− 〈|Sab − δab|2〉2. (5)

Note that we use the abbreviation Cab(ε) = C[σabσab](ε) for
the cross-section autocorrelation functions. This function is
the primary object of the studies in the present article. It can
be decomposed as follows:

Cab(ε) (6)

= 2δabRe
{
(1 − 〈Saa〉)2C(2)

aa (ε) (7)

+ (1 − 〈Saa〉)
〈[
Sf l∗

aa (E − ε) + Sf l∗
aa (E + ε)

]∣∣Sf l
aa (E)

∣∣2〉}
+ |C(2)

ab (ε)|2 (8)

+ {〈∣∣Sf l

ab (E − ε/2)
∣∣2∣∣Sf l

ab (E + ε/2)
∣∣2〉− 〈∣∣Sf l

ab

∣∣2〉2 (9)

− ∣∣〈Sf l

ab (E − ε/2)Sf l∗
ab (E + ε/2)

〉∣∣2}.
Here, the average S matrix is assumed to be diagonal and
real [20], 〈Sab〉 = 0 for a �= b. In the decomposition above the
four-point term (9) is of particular importance. It is denoted by

C
(4)
ab (ε) = 〈∣∣Sf l

ab (E − ε/2)
∣∣2∣∣Sf l

ab (E + ε/2
∣∣2〉− 〈∣∣Sf l

ab

∣∣2〉2.
(10)

Further decomposition of this expression yields terms of
the type 〈Sf l

ab (E1)Sf l

ab (E2)〉 and its conjugate. They vanish
on performing the energy average, since the poles of the
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two matrix elements are in the same half of the complex
energy plane. The only surviving product of such pairs in (10)
is the S-matrix correlator (2) multiplied by its conjugate,
|C(2)

ab (ε)|2. For inelastic scattering (a �= b) this term is identical
to the square of the S-matrix correlation function—the Ericson
fluctuation term—which dominates the region of overlapping
resonances. In view of its importance it has been explicitly
subtracted in (9) and added as (8). Therefore, the term in
curly brackets in (9) depends only on the averages of products
of four S-matrix elements and cannot be decomposed into
simpler averages. This is usually referred to as an irreducible
part of the correlations. It is dominant for isolated resonances
and provides an important contribution in the transition region
towards overlapping levels. Its properties are a major topic of
the present article.

The elastic three-point term in the curly brackets of (7) is
denoted by

C
(3)
ab (ε) = 〈

Sf l∗
aa (E + ε)

∣∣Sf l
aa (E)

∣∣2〉δab. (11)

The decomposition of the cross-section correlations Cab(ε)
above is general.

B. Statistical Breit-Wigner model

We have chosen a resonance model which has been exten-
sively used in the past with minor variations for investigations
of statistical reaction properties, mainly in the asymptotic
regions of isolated or strongly overlapping levels [4,28–30,48].
It provides an approximate model for the description of
the properties of the S-matrix correlations contributing to
the cross-section correlation functions; see Eqs. (6)–(9). For
convenience we refer to this model as the SBW model. It
has its roots in nuclear scattering theory, e.g., in Feshbach’s
unified model [49], and is formulated so as to be valid both for
isolated and for overlapping resonances [4,28–30]. We assume
a situation of scattering from a complex, initially closed system
which hosts a large number of states, that are coupled to a set
of uncorrelated open channels. This produces poles at complex
energies ek with Breit-Wigner type pole contributions to the
resulting S matrix. The coupling to the open channels e is
described by statistically distributed partial width amplitudes
γek characteristic of each pole k. The sum over the partial
widths �ek = γ 2

ek yields the total width �k = ∑
e �ek . The

average resonance spacing d as well as the partial width
amplitudes γek are assumed to have no long-range secular
variation with energy and the channel thresholds are required
to be far larger than d. The states form a statistical ensemble
with average properties.

More precisely, we define the resonant contribution Sres
ab (E)

to the scattering matrix as a sum of uncorrelated resonances,
which are unitary when taken individually [50],

Sres
ab = −i

∑
k

γakγkb

E − ek

, ek = Ek − i�k/2,

(12)
�ek = γ 2

ek, �k =
∑

e

�ek.

Here, Ek denotes the position of the kth resonance. The
averages of these quantities are obtained in terms of the

transmission coefficients Te defined in Eq. (3),

〈�ek〉 = 〈
γ 2

ek

〉 = (d/2π )Te, 〈�k〉 = (d/2π )
∑

e

Te. (13)

Elastic phase shifts have been omitted as in Ref. [20]. The
average 〈Sres

ab 〉 vanishes in the nondiagonal case (a �= b) as
it does for the corresponding full S matrix; see Eq. (1). The
average of the diagonal part is irrelevant in the present context,
since it does not contribute to averages involving only Sf l . The
spectral properties of the energy levels are assumed to coincide
with those of random matrices from the GOE.

The central assumption is that the partial width amplitudes
γek are random with random sign and they are commonly
assumed to have a Gaussian probability distribution, such that
the partial widths �ek = γ 2

ek have a Porter-Thomas distribu-
tion [51]; see Appendix A 1. The motivation for these prereq-
uisites can be expressed in several ways. One can for example
view the amplitudes γek as the projection of the partial width
operator γ̂e onto a randomly oriented space spanned by a large
number of orthogonal resonant states k so that the sign of each
partial width amplitude is random and consequently averages
involving odd powers γ 2n+1

ek vanish. This implies according to
a classical statistical argument (the “drunken sailor problem”)
that each γek has a Gaussian distribution centered at the origin
and is uncorrelated with the other partial width amplitudes,
〈γekγe′l〉 = 0 for e �= e′. The distribution of the corresponding
partial widths is the Porter-Thomas distribution [52].

While a Gaussian probability distribution for the partial
width amplitudes is a natural consequence of the statistical
picture above, many results obtained on the basis of the model
Eq. (12) appear to be well approximated by weaker conditions
assuming a symmetric distribution with random sign of the
variables. Such a situation may occur for systems that are
not fully chaotic. Therefore, it is of considerable interest to
understand how rapidly the above established statistical limit
becomes important in practice. Since the formal steps in the
derivation of the cross-section autocorrelation function are
identical for the case of a Porter-Thomas distribution and the
general one, we consider the latter in the following and then
confine ourselves to the former, when comparing to known
analytical results and experimental data.

The level correlations are introduced phenomenologically
and are taken to be robust. They are assumed to coincide with
those of random matrices from the GOE [5,53]. The results, in
fact, are sensitive only to their gross features: anticorrelations
of levels at close encounter create a correlation hole on the
typical scale d corresponding to the absence of one level in
that region [54]. Furthermore, the energy levels are taken to be
statistically independent of the partial widths. The remaining
parameters of the model are the average resonance spacing and
the transmission coefficients of the channels.

Stated in this form, the SBW model is completely defined
and can be solved in closed form for the correlations between
two, three, and four S-matrix elements. A frequent critique con-
cerning the SBW model is that it neglects unitarity constraints.
For a dynamical model this is justified, since consistency is
essential. For the phenomenological SBW model the average
S-matrix elements 〈Saa(E)〉 depend importantly on unitarity
due to the shadow of the inelastic states via the optical
theorem. In particular, the inclusion of this constraint ensures
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that complete transmission Ta = 1 indeed corresponds to
〈Saa(E)〉 = 0. Other restrictions related to unitarity for the
SBW model are expected to be small. The obvious quantitative
success in describing many properties of chaotic systems is
a strong justification for this procedure. We further remind
the reader that regions of large probability are the ones least
exposed to such constraints. In addition, the cross-section
correlations studied in the following result from folding
procedures deemphasizing the effect of any unitarity violation
in regions of low probability.

C. S-matrix autocorrelation function

This section mainly serves to specify the notation used in
the following and to illustrate schematically the method used
in Sec. III for the derivation of the cross-section correlation
functions within the SBW model. More complete results for
the properties of its S-matrix autocorrelation functions are
given in Appendix B.

The S-matrix autocorrelation function is defined as in the
VWZ model [20] in order to facilitate the comparison of both
models. Since 〈γki〉 = 0, for inelastic processes S

(f l)
a �=b ≡ Sres

ab .
Note that correlations are nonvanishing only when averages
are taken between an S-matrix element and a complex
conjugate one.

1. Inelastic autocorrelations

We illustrate the procedure of the analysis for the inelastic
autocorrelation function C

(2)
a �=b(ε), which displays most

features of the general case. Since 〈Sres
ab 〉 = 0 for a �= b,

according to Eq. (2),

C
(2)
a �=b(ε) = 〈

Sres
ab (E − ε/2)Sres∗

ab (E + ε/2)
〉

=
〈∑

kl

γakγkb

(E − ε/2 − ek)

γalγlb

(E + ε/2 − e∗
l )

〉
. (14)

Since the signs of the partial width amplitudes are random,
only the diagonal terms with k = l contribute to the average.
We rescale the energy levels Ek to mean spacing unity, d = 1.
Their sum is replaced by an integral over the variable E1 and
the label k of the partial widths �ek is replaced by the index
1 assuming a probability distribution p(xe) for them, which is
not further specified at this point. Then Eq. (14) takes the form

C
(2)
a �=b(ε) =

∫ ∞

−∞
dE1

〈
�1a�1b

(E1 − ε/2 − e1)(E1 + ε/2 − e	
1)

〉

= 2π

〈
�a�b

iε + �

〉
, e1 = E1 − i�1/2,

〈. . . 〉 =
∏

e

∫
dxep(xe) . . . . (15)

The autocorrelation function C
(2)
a �=b(ε = 0) = 〈σab〉 yields

the average inelastic cross section. Replacing in Eq. (15)
each partial width �e by its average 〈�e〉 reproduces the
Hauser-Feshbach expression [55], also obtained within the
VWZ model [56,57].

While the energy representation is natural in the sense that
experiments are performed in it, and useful for the qualitative
understanding of gross features, the time representation is

far more convenient for detailed theoretical predictions. It
is obtained via the Fourier transform from energy to time
which vanishes for τ < 0. Therefore, we restrict to τ � 0 in
the following. This yields for the Fourier transform of the
S-matrix autocorrelation function (15)

C̃
(2)
a �=b(τ ) =

∫ ∞

−∞
dε exp(2πiετ )C(2)

a �=b(ε)

= (2π )2〈�a�b exp (−2π�τ )〉. (16)

Note that energy is expressed in units of the level spacing d

(which is set to unity) and the time in units 2π/d. The Fourier
transform (16) has the great advantage that it is separable.
Thus, since the total width � of a resonance is the sum of the
partial widths �e, the average occurring in Eq. (16) can be
replaced by a product over averages of the individual partial
widths,

C̃
(2)
a �=b(τ ) = (2π )2〈�a exp (−2π�aτ )〉〈�b exp (−2π�bτ )〉

×
∏

e �=a,b

〈exp (−2π�eτ )〉. (17)

It is particularly convenient to use a shorthand notation for
the products appearing in the Fourier transform as defined in
detail in Appendix A 1. For the present case, Eq. (A2) gives
for ka = kb = 1, ke �=a,b = 0, and xe = �e/〈�e〉

C̃
(2)
a �=b(τ ) = TaTb�e;ab(τ )

≡ TaTb

∏
e

〈
xke

e exp(−Teτxe)
〉
. (18)

Here, as is commonly done in the time representation, the
average partial widths are replaced by the transmission
coefficients; see Eq. (13). In the standard case of a
Porter-Thomas distribution the inelastic autocorrelation
function becomes according to Eq. (A5)

C̃
(2)
a �=b(τ ) = TaTb�e;ab(τ )

≡ TaTb(1+2τTa)−1(1+2τTb)−1
∏

e

(1+2τTe)−1/2.

(19)

The corresponding expression for a generalized
Porter-Thomas distribution is also given in Appendix A 1.

The average inelastic cross section 〈σab〉 = C
(2)
a �=b(0) ≡

〈|Sres
ab |2〉 is obtained from the inverse Fourier transform of the

autocorrelation function in the time representation (18),

〈σab〉 =
∫ ∞

0
C̃

(2)
a �=b(τ )dτ

≡ TaTb

∫ ∞

0
�e;ab(τ )dτ. (20)

Note that there are no Ericson fluctuations in the S-matrix
correlations. They show up only in the cross sections, as
outlined later.

2. Elastic autocorrelations

The elastic case is derived in close similarity to the inelastic
one. In distinction to the latter, the average S-matrix element
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〈Sres
aa (E)〉 is nonvanishing. This introduces a characteristic

dependence on the level correlations. Proceeding as previously
in the derivation of Eq. (15) gives, unless the transmission
coefficient Ta is close to unity,

C(2)
aa (ε) = 2π

〈
�2

a

iε + �

〉
− 2π

∫ ∞

−∞
drY2(r)

×
〈

�1a�2a

i(ε − r) + (�1 + �2)/2

〉
, (21)

where �i = ∑
e �ie. Note that only the fluctuating parts of the

S-matrix elements contribute. The two-level cluster function
Y2(r) is defined and discussed in Appendix A 2. The first
term in Eq. (21), already occurring in Eq. (15), measures
the correlation between different parts of the same broadened
resonance. The second one is generated by two broadened
resonances at a distance r correlated via the two-point cluster
function Y2(r).

For the present discussion we choose the Dyson (GOE) two-
point cluster function Y2(r); see, e.g., Refs. [53,58], Eq. (5.69).
Its Fourier transform yields the form factor b(τ ) with b(τ =
0) = 1, which is given in Eq. (A6). The Fourier transform of
C(2)

aa (ε) in Eq. (21) is similar to that of the inelastic S-matrix
autocorrelation function in Eq. (18), except for an additional
term arising due to level correlations,

C̃(2)
aa (τ ) = (2π )2

{〈
�2

a exp(−2π�τ )
〉− b(τ )〈�1a exp(−π�1τ )〉

× 〈�2a exp(−π�2τ )〉}. (22)

With the shorthand notation of Appendix A 1 it takes the form

C̃(2)
aa (τ ) = T 2

a

[
�e;aa(τ ) − b(τ )�2

e;a(τ/2)
]
. (23)

Here, an elastic enhancement factor A(ka) appears with the
value A(2) = 3 for the standard case of a Porter-Thomas
distribution; see Appendix A 1.

These results for the SBW model have been derived
explicitly with the intention of applying them and their
generalizations to studies of cross-section correlations for
chaotic or nearly chaotic systems. Since the results are
approximate, it is essential to test the efficiency of the model
by comparison to exact results. Our philosophy is that “the
proof of the pudding is in the eating.” Based on RMT and the
supersymmetry method, the VWZ approach [20] gives an exact
analytical, although complex, solution for the correlations
of two S-matrix elements. Recently an accurate analytical
approximation of the VWZ result has been derived by one
of us and compared to the SBW model in Ref. [31]. The VWZ
results and their structure were very well reproduced for a
variety of transmission coefficients and over many magnitudes
of their size with the exception of Ta,b 
 1, corresponding to
〈Saa〉 
 0. This is illustrated in Fig. 1, where the analytic
results deduced from Ref. [31] are shown as full black lines
and the VWZ ones are plotted as blue circles for diverse
choices of the transmission coefficient. Their values were
taken from experimental studies with microwave billiards [27]
and are listed in Table I. These curves are compared to the
SBW model, shown as red diamonds in Fig. 1. Only for the
cross-correlation functions are deviations of the SBW model
from the analytical and the VWZ curves visible. For τ = 0,
all autocorrelation functions reproduce the predicted value

FIG. 1. S-matrix autocorrelation function in the time representa-
tion. The full black lines correspond to the analytical results, Eqs. (24)
and (25) of Ref. [31], blue circles to those derived on the basis of
the VWZ model [20], and red diamonds to the SWB model Eqs. (19)
and (23). The � = 52 transmission coefficients corresponding to the
values of �W/d in the insets are listed in Table I. All correlation
functions were divided by (1 + δab)TaTb, predicted at τ = 0 for the
inelastic case (b �= a) in the upper panels and the elastic one (b = a)
in the lower panels. The cross-correlation functions (b �= a) in the
middle panels vanish there at τ = 0.

C̃
(2)
ab (τ = 0) = (1 + δab)TaTb [30]. This agreement between

the different models gives confidence to the applicability of

TABLE I. The values of the transmission coefficients T1, T2 and of
τabs = ∑�

i=3 Ti with equal transmission coefficients T3 = · · · = T�,
the Weisskopf estimate �W/d for the total widths, and the average
ratio ρ1,2 = (〈�1〉 + 〈�2〉)/(2�W ) for the experimental spectra in the
1-GHZ frequency windows. The numerical simulations associated
with these data were all performed with � = 52.

GHz T1 T2 τabs �W/d ρ1,2

5–6 0.012 0.014 0.331 0.06 0.036
6–7 0.031 0.032 0.462 0.08 0.060
7–8 0.037 0.039 0.588 0.11 0.057
8–9 0.079 0.067 0.728 0.14 0.083
9–10 0.097 0.130 0.810 0.17 0.109
10–11 0.178 0.222 1.011 0.23 0.142
11–12 0.256 0.233 1.205 0.27 0.144
12–13 0.303 0.327 1.288 0.31 0.164
13–14 0.401 0.415 1.546 0.38 0.173
14–15 0.332 0.379 1.793 0.40 0.142
15–16 0.455 0.353 1.891 0.43 0.150
16–17 0.399 0.404 2.046 0.45 0.141
17–18 0.417 0.475 2.274 0.50 0.141
18–19 0.528 0.496 2.598 0.58 0.141
19–20 0.480 0.457 3.265 0.67 0.111
20–21 0.583 0.538 4.135 0.84 0.107
21–22 0.638 0.558 4.739 0.94 0.100
22–23 0.710 0.593 4.806 0.97 0.107
23–24 0.784 0.665 4.903 1.01 0.114
24–25 0.694 0.796 5.344 1.09 0.109
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the SBW model to cross-section correlations in regions for
which the VWZ approach provides no predictions.

III. CROSS-SECTION AUTOCORRELATION FUNCTIONS

For simplicity of notation we limit the discussion mainly to
the autocorrelation functions.

A. Derivation of the irreducible functions
for the cross-section autocorrelations

The cross-section autocorrelation function in Eq. (6) is
approximated within the SBW model by replacing the S-
matrix elements entering the two-, three-, and four-point
correlations in Eqs. (7)–(9) by the resonant Breit-Wigner terms
Sres

ab given in Eq. (12). This does not introduce additional loss
of information, since constant terms such as 〈Sres

ab 〉 do not
contribute to S

f l

ab . Furthermore, the average diagonal matrix
elements 〈Saa〉 are taken to have the values which by unitarity
defines the corresponding transmission coefficients [50].

The S-matrix autocorrelation functions C
(2)
ab (ε) occurring

in expressions (7) and (8) have been evaluated in the previous
section, Sec. II C. Therefore, only the three-point function in
the curly brackets in (7) and the irreducible four-point term (9)
remain to be evaluated in the SBW model. The procedure is
illustrated schematically for the latter, i.e., for the four-point
S-matrix term C

(4)
ab (ε) defined in Eq. (10). It becomes in terms

of the resonance amplitudes Eq. (12)

C
(4)
ab (ε) =

〈∑
klmn

[
γakγkb

(E − ε/2 − ek)

]f l[
γalγlb

(E − ε/2 − e∗
l )

]f l

×
[

γamγmb

(E + ε/2 − em

]f l[
γanγnb

(E + ε/2 − e∗
n)

]f l
〉

−
∣∣∣∣∣
〈∑

kl

[
γakγkb

(E − ek)

]f l[
γalγlb

(E − e∗
l )

]f l
〉∣∣∣∣∣

2

. (24)

The expression (9) depends only on the average of the four
correlated S-matrix elements and is irreducible. The sum over
the four resonant indices k,l,m,n can be decomposed into
terms with less summations by simply setting part of the
indices equal. Here, however, it is important to ensure that
contributions are not counted too often. We illustrate this for
the self-correlation (k = l = m = n) of the broadened state k

with itself. This joint contribution is denoted by Fabab
4 (ε) (the

“diagonal term” [30]). The sum over k is counted twice, since
one of the terms is compensated by the folded contribution
from two broadened resonances with (k = l) �= (m = n).
This joint contribution is denoted by Fabab

4 (ε) (the diagonal
term [30]). Two additional counterterms are produced by the
products of pairs occurring in the second term of Eq. (24),
i.e., in the Ericson fluctuation term, and in the pairs with poles
in the same half of the complex energy plane. These linked
terms correspond to (k = n) �= (l = m) and (k = m) �= (l =
n), respectively, whereas the term k = l = m = n is already
counted in both cases. Their joint contribution is denoted by
Gabab

4 (ε). Additional counterterms are generated by a single
resonant contribution correlated to three other linked ones,
i.e., counterterms corresponding to permutations of the type

k �= (l = m = n). They are combined in a term denoted as
Habbb

4 (ε). In principle, Eq. (24) depends explicitly on higher-
order level cluster terms denoted by Yn(r). We conjecture
that contributions from terms involving irreducible three-point
(n = 3) and four-point (n = 4) level cluster functions are
negligible, since the associated levels mutually repel each other
and correspond to uncorrelated amplitudes.

The procedures presented here qualitatively are the basis
for the results given in Sec. III B as well as for those given in
Appendix B.

B. Irreducible functions for the cross-section correlations

The general cross-section correlation function Cab(ε) is
expressed by irreducible S-matrix correlation functions and
can then be evaluated analytically as described above for
the irreducible four-point functions (24) and following for
the autocorrelation case with (cd) = (ab). The procedure is
basically a generalization of that for the correlation functions
for two S-matrix elements. Analytical expressions are obtained
for these functions by observing that the ensemble average over
the resonance positions can, as for the two-point function, be
performed as an energy average in the standard way. The result
then follows using complex integration which gives it in terms
of the residues at the complex poles. The results are given
for the general case with four observed channels (abcd) and
presented separately for the energy and time representations.

1. Energy representation

The cross-section autocorrelation function Cab(ε) in Eq. (6)
of the observed channels a,b,c,d is expressed in terms of
irreducible four-point functions Fabab

4 (ε),Gabab
4 (ε),Habab

4 (ε)
corresponding to three irreducible terms of Eq. (9), the
irreducible three-point function C(3)

aa (ε) defined in (7), and the
two-point functions entering (7) and (8). The latter are defined
fully by the explicit S-matrix autocorrelation functions given
in Sec. II C. The inelastic two-point cross-section correlation
function reads

Cab(ε) = ∣∣C(2)
ab (ε)

∣∣2 (25)

+Fabab
4 (ε) + Gabab

4 (ε) (26)

and the elastic one

Caa(ε) (27)

= Faaaa
4 (ε) + 2Re

{
(1 − 〈Saa〉)2C(2)

aa (ε)
}

(28)

+Gaaaa
4 (ε) + ∣∣C(2)

aa (ε)
∣∣2 (29)

+Haaaa
4 (ε) + ReFaaaa

3 (ε). (30)

Here, ReFaaaa
3 (ε) denotes a three-point correlation function

defined in terms of that given in (11) as

ReFaaaa
3 (ε) = 2(1 − 〈Saa〉)Re

[
C(3)

aa (ε) + C(3)
aa (−ε)

]
. (31)

The explicit analytical expressions for the irreducible S-matrix
correlation functions are determined as described in the last
part of the previous subsection. The different contributions to
the correlation functions are even in the energy increment ε.
In this article we mainly restrict the discussions to S-matrix
and cross-section autocorrelations. Then the indices c,d take
the values a or b only.
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The terms with (k = l = m = n) and (k = l) �= (m = n) in Eq. (24) yield

Fabcd
4 (ε) = 4π

〈
�1a�1b�1c�1d

�2
1

�1

ε2 + �2
1

〉
− 2π

∫
drY2(r)

〈
�1a�1b�2c�2d

�1�2

(�1 + �2)

(r + ε)2 + 1
4 (�1 + �2)2

〉
, (32)

while the terms with (k = m) �= (l = n) and (k = n) �= (l = m) in Eq. (24) give

Gabcd
4 (ε) = −2π

∫ ∞

−∞
drY2(r)

〈
�1a�1b�2c�2d

r2 + 1
4 (�1 + �2)2

{
�1

ε2 + �2
1

+ �2

ε2 + �2
2

− (�1 + �2)

(r − ε)2 + 1
4 (�1 + �2)2

(
3 − 2rε + (�1 + �2)2

r2 + 1
4 (�1 + �2)2

)}〉
. (33)

The irreducible function Gabcd
4 is nonvanishing only for indices (ab; cd) referring to the combinations (aa; aa), (ab; ab), and

(aa; bb).
Terms of the type k �= (l = m = n) in Eq. (24) lead to

Habcd
4 (ε) = −2πδab

∫ ∞

−∞
drY2(r)

〈
�1a�2b�2c�2d

�2
(
r2 + 1

4 (�1 + �2)2
)
{

(�1 + �2)�2

ε2 + �2
2

− 2
(r2 − εr) − 1

4 (�1 + �2)2

(r − ε)2 + 1
4 (�1 + �2)2

}〉
+ (ab) ↔ (cd).

(34)

In addition the reducible terms corresponding to the autocorrelations in Eq. (24) generate a three-point correlation function C
(3)
ab

for the elastic case. Using the definition of the three-point function from Eq. (11) gives

Fabcd
3 (ε) = 4πδab(1 − 〈Saa〉)

{〈
�1a�1c�1d

ε2 + �2
1

〉
−
∫ ∞

−∞
drY2(r)

〈
�1a�2c�2d

�2

1
2 (�1 + �2)

(r − ε)2 + 1
4 (�1 + �2)2

〉

− δcd

∫ ∞

−∞
drY2(r)

〈
�1a�1c�2d

r2 + 1
4 (�1 + �2)2

[
1
2 (�1 + �2)�1

ε2 + �2
1

− r2 − εr − 1
4 (�1 + �2)2

(r − ε)2 + 1
4 (�1 + �2)2

]〉}
+ (ab) ↔ (cd). (35)

Additional reducible contributions are generated by the reduction into S-matrix autocorrelation functions. The terms C(2)
aa (ε)

in Eq. (7) and |C(2)
ab (ε)|2 in Eq. (8) are obtained from Eqs. (15) and (21). For the numerical evaluation of the cross-section

autocorrelation function (27) we used the analytical results of Ref. [31] for C
(2)
ab (ε).

2. Time representation

The cross-section autocorrelation function in the time representation, C̃ab(τ ), is obtained from the Fourier transforms of the
functions in Eqs. (32)–(35); see Appendix B 2. The inelastic autocorrelations are given by

C̃ab(τ ) (36)

=
∫ ∞

0
dλC̃

(2)
ab (λ)C̃(2)

ab (λ + |τ |) (37)

+ F̃abab
4 (τ ) + G̃abab

4 (τ ), (38)

the elastic ones by

C̃aa(τ ) (39)

= F̃aaaa
4 (τ ) + 2Re

{
(1 − 〈Saa〉)2C̃(2)

aa (τ )
}

(40)

+ G̃aaaa
4 (τ ) +

∫ ∞

0
dλC̃(2)

aa (λ)C̃(2)
aa (λ + |τ |) (41)

+ H̃aaaa
4 (τ ) + ReF̃aaaa

3 (τ ). (42)

Using the shorthand notation of Eqs. (A2) and (A5) the separable expression F̃abcd
4 (τ ) is obtained from Eq. (32),

F̃abcd
4 (τ ) = TaTbTcTd

{∫ ∞

0
λdλ�e;abcd (λ + |τ |) − b(τ )

∫ ∞

0

∫ ∞

0
dμdλ�e;ab(μ + |τ |/2)�e;cd (λ + |τ |/2)

}
. (43)
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Similarly, the irreducible functions G̃abcd
4 (τ ), H̃abcd

4 (τ ), and F̃abcd
3 (τ ) are derived from Eqs. (33)–(35), yielding

G̃abcd
4 (τ ) = −T 2

a T 2
b

{∫ ∞

0

∫ ∞

0
dμdλb(λ)�e;ab[(μ + λ)/2]�e;γ δ[(μ + λ)/2 + |τ |]

+
∫ ∞

0
λdλb(λ + |τ |)�e;ab[(λ + |τ |)/2]�e;γ δ[(λ + |τ |)/2]

}
, (44)

H̃abcd
4 (τ ) = −δabTaTbTcTd

{∫ ∞

|τ |
dμ

∫ ∞

0
dλb(λ)�e;a(λ/2)�e;bcd [μ + λ/2]

+
∫ ∞

0
dμ

∫ ∞

|τ |
dλb(λ)�e;a[λ/2]�e;bcd [μ + λ/2]

}
+ (ab) ↔ (cd), (45)

and

F̃abcd
3 (τ ) = (1 − 〈Saa〉)δabTaTcTd

{∫ ∞

0
dλ�e;acd (λ + |τ |) − b(τ )�e;a(|τ |/2)

∫ ∞

0
dλ�e;cd (λ + |τ |/2)

− δcd

[∫ ∞

0
dλb(λ)�e;d (λ/2)�e;ac(λ/2 + |τ |) +

∫ ∞

|τ |
dλb(λ)�e;ac(λ/2)�e;d (λ/2)

]}
+ (ab) ↔ (cd). (46)

As in the energy representation, the function G̃abcd
4 (τ ) has

nonvanishing contributions only for indices (ab; cd) equal to
(aa; aa), (ab; ab), or (aa; bb), whereas the function H̃abcd

4 (τ )
contributes only when either a and b or c and d coincide.

The energy and the time representations of the cross-
section autocorrelation functions are complementary and
give different insights. The separable property in the time
representation gives contributions from the individual channels
e in a multiplicative form, contrary to the folding in the energy
representation. This property allows the detailed description
of the cross-section correlations in terms of the transmission
coefficients Te of the individual channels e. Furthermore
it simplifies considerably the numerical evaluation of the
cross-section correlation functions. The more general form
in Eqs. (32)–(35) is useful in the limit of constant total widths.
This latter case gives a global overall view of the “forest”
of all the channels and their net effect, while the separable
description in Eqs. (43)–(46) emphasizes the effects of the
individual channels, the “trees in the forest.”

Figure 2 shows for τ = 0 the fractions of the contributions
of the functions entering (36) and (39) to the cross-section
correlation function C̃ab(τ ) versus �W/d. These results are
qualitatively characteristic of the relative sizes of the cor-
responding terms for τ �= 0. In the inelastic case (upper
panel) the cross-section term C̃ab(0) is well approximated by
F̃abab

4 (0) (black dots) for �W/d � 2. For larger values of �W/d

the Fourier transform of the Ericson fluctuation term (37),
shown as blue triangles-down, becomes dominant. Thus, in
the inelastic case, C̃ab(τ ) approaches the function

C̃
(as)
a �=b(τ ) =

∫ ∞

0
dλC̃

(2)
ab (λ)C̃(2)

ab (λ + |τ |) (47)

for large values of �W/d.
In the elastic case, the contribution from F̃aaaa

4 (0) (black
dots) is dominant for small �W/d due to self-correlations,
like in the inelastic one. The three-point function F̃aaaa

3 (0)
(orange triangle-up) and |H̃aaaa

4 (0)| (green diamonds) also
have comparatively large values for �W/d � 1.5. However,
these terms cancel each other systematically to a large

degree as illustrated in Fig. 3 (red diamonds). The two-point
correlation function (40) becomes dominant for �W/d � 1.5.
Contrary to the inelastic case, the Ericson fluctuation term
(blue triangles-down) and also G̃aaaa

4 (0) (red squares) are
small for all values of �W/d and the sum of these terms of

FIG. 2. Relative contributions of the individual terms entering
Eqs. (36) and (39) to the cross-section correlation functions C̃ab(τ =
0) vs �W/d for 52 equal transmission coefficients. Black dots
correspond to � = F̃4, red squares to � = G̃4, green diamonds to
� = H̃4, orange triangles-up to � = F̃3. Blue triangles-down display
the Fourier transform of the Ericson fluctuation term in Eq. (37),
maroon crosses that of the second term in Eq. (40). Upper panel: the
inelastic case a = 1, b = 2. Lower panel: the elastic case a = b = 1.
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FIG. 3. Same as Fig. 2, for the specific combinations � of the
individual contributions given in (40) (black dots), (41) (blue squares),
and (42) (red diamonds), respectively. It is clearly visible that the
cross-section correlation function is well approximated by the sum
Eq. (40) of the two terms which dominate the regions of isolated
and overlapping resonances, respectively. With increasing �W/d ,
C̃aa(τ = 0) approaches C̃(as)

aa (τ = 0) given in (48), plotted as maroon
crosses.

opposite signs is vanishingly small, as illustrated in Fig. 3 (blue
squares). As a consequence, C̃aa(τ ) is well approximated by
the sum of the two terms in (40), shown as black dots in
Fig. 3. With increasing �W/d the function F̃aaaa

4 (0) becomes
vanishingly small so that for large �W/d the function C̃aa(τ )
is proportional to the Fourier transform of the S-matrix
autocorrelation function,

C̃(as)
aa (τ ) = 2Re

{
(1 − 〈Saa〉)2C̃(2)

aa (τ )
}
, (48)

which is plotted as maroon crosses in Fig. 3. In the energy
representation the functions entering Eqs. (25) and (27) exhibit
the same relative behavior as in the time representation.
In the inelastic case, the cross-section correlation function
approaches with increasing �W/d the Ericson fluctuation term

C
(as)
a �=b(ε) = ∣∣C(2)

ab (ε)
∣∣2, (49)

and in the elastic one twice the S-matrix autocorrelation
function

C(as)
aa (ε) = 2Re

{
(1 − 〈Saa〉)2C(2)

aa (ε)
}
. (50)

These results are in accordance with those obtained in
Refs. [28,29], but now with a well-defined range of validity.
The conclusions to be drawn from the above observations can
be summarized as follows: in the limit of narrow resonances
the diagonal term Fabab

4 and its Fourier transform are strongly
dominant. This behavior reflects the self-correlation of a
narrow resonance with itself. It is particularly apparent in
the energy representation in Eq. (32), since level repulsion
suppresses the contribution from other resonances for ε = 0.
In the time representation a correlation hole is produced by
level repulsion for small values of τ . With increasing total
width the role of the diagonal term diminishes and the most
reducible terms in Eqs. (25) and (27) and, similarly, in Eqs. (36)
and (39) become the dominant ones. The SBW model strongly

suggests that the asymptotic region begins approximately at
�W/d 
 π . Above this value the Ericson fluctuation term
and the linear contribution from the S-matrix autocorrelation
function rapidly become the prevailing terms in the inelastic
and the elastic case, respectively.

IV. EXPERIMENTAL, ANALYTICAL,
AND NUMERICAL TESTS

To test the SBW model we used data from experiments with
microwave resonators, known exact analytical results at the
energy increment ε = 0, and we performed RMT simulations
similar to those presented in Refs. [27,59].

A. Experimental details

For the experimental test we used the same data as in
Ref. [27]. There, a chaotic scattering system was realized
with a flat microwave resonator with the shape of a tilted-
stadium billiard [22,27,59]. The dynamics of the correspond-
ing classical billiard is chaotic [60]. Thus, according to
the Bohigas-Giannoni-Schmit conjecture [61], the fluctuation
properties of the eigenvalues of the associated quantum billiard
are described by random matrices from the GOE [53]. The
modes in the resonator were coupled to the exterior via two
antennas. For the determination of the S-matrix elements
Sab describing the scattering process from antenna b to
antenna a with a, b ∈ {1, 2}, a vector network analyzer
coupled microwave power into the resonator via antenna b and
determined the relative phase and amplitude of the transmitted
signal at antenna a. Resonance spectra were measured with a
step size �f = 100 kHz in the frequency range 5–25 GHz.
To ensure that averages of the resonance widths and the
resonance spacings were approximately constant, we analyzed
the spectra in 1 GHz frequency intervals, yielding 104 data
points each. Furthermore a movable scatterer was inserted into
the microwave resonator to gather in each frequency interval
eight independent data sets. At low excitation frequencies the
resonances are isolated, i.e., the mean resonance widths are
small compared to the resonance spacing d. There the number
of resonances in a 1-GHz window is comparatively small.
With increasing excitation frequency the resonances begin to
overlap. We used the Weisskopf formula [47,62]

2 π
�W

d
=
∑

c

Tc = T1 + T2 + τabs (51)

to characterize the frequency intervals. Here, T1 and T2 are
the transmission coefficients corresponding to the antennas.
They are determined from the measured reflection spectra
using Eq. (3). Ohmic absorption in the walls of the resonator
was modeled by a large number of fictitious channels. The
sum of the corresponding transmission coefficients yields τabs.
Its value was determined from a fit of the analytic result
for the S-matrix autocorrelation function obtained from the
VWZ model [20] to the experimental one. The values for the
transmission coefficients and �W/d in each 1-GHz window
are listed in Table I. Note that, generally, τabs  T1, T2.
The reason for this is that losses due to absorption in the
walls dominate those through the antennas, since the coupling
of the antenna states to the resonator modes is only weak.
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Detailed information on the experiments, the analysis of the
experimental data, and the systematic and statistical errors can
be found in Refs. [12,22].

B. RMT model

To model chaotic scattering systems for values of �W/d

larger than achieved in the experiments, we performed RMT
simulations. For this we used the S-matrix formalism devel-
oped in [63] in the context of compound-nucleus reaction
theory. The associated unitary S matrix has the general form

S(E) = 1 − 2πiW
(
E1 − H + iπWT W

)−1
WT . (52)

Here, the Hamiltonian H describes the internal dynamics. The
matrix elements of W specify the couplings of its states to
the open channels [20,64]. In order to model chaotic, time-
reversal invariant scattering systems like, e.g., the microwave
resonator described above, we inserted in Eq. (52) for H a
real and symmetric random matrix from the GOE [53]. The
matrix entries of W were chosen as real Gaussian-distributed
random numbers with zero mean. The entries of the matrix
WWT [20,63] determine the transmission coefficients Te, with
e = 1, . . . ,�. In the simulations, the number of open channels
�, that is, the dimension of S(E), was set to 52, and that of H

to N = 200. The RMT results were obtained with an ensemble
of 1000 random scattering matrices.

C. Variances of the cross sections

The question of accuracy of the SBW model is an
important issue in the following. It was tested by comparing
results obtained with the model to experimental ones to
RMT simulations and to the exact solution for the cross
sections at ε = 0 [24,25,27]. Figures 4 and 5 show the ratios
of the cross-section correlation coefficients (25) and (27)
to Cab(ε)/C

(as)
ab (ε) at ε = 0 given in Eqs. (49) and (50),

respectively, as a function of �W/d. It is expected to approach
the value unity, shown as dashed black line in the figures,
for large values of �W/d. We compare in Fig. 4 the SBW
model (black squares) to RMT simulations (red circles) and
experimental results plotted as green diamonds [27]. For better
visibility of the differences we show the ratios on a logarithmic
scale. The inelastic case, shown in the upper panel of Fig. 4,
is relatively simple, since its only nonvanishing contribution
to the decomposition (6) is the term C

(4)
ab (ε) of Eq. (10). In the

SBW model it is defined by the three irreducible functions in
Eq. (25) given explicitly in Eqs. (15), (32), and (33). For ε = 0,
C

(4)
a �=b(0) is the variance of the cross sections. For �W/d > 1

this variance becomes asymptotically the Ericson fluctuation
term |C(2)

a �=b(0)|2, while as illustrated in Fig. 2, it becomes
the self-correlation term in the limit �W/d → 0. Deviations
of the analytical model from the RMT simulations and the
experimental results are largest for �W/d � 0.8.

The elastic case is analogous to the inelastic one, but
there are characteristic modifications most clearly seen in the
SBW model. These appear since the average of any individual
resonance to the S-matrix element no longer vanishes, even
though the average partial width amplitude does so. The prob-
ability distribution of S(f l)(ε) is no longer symmetric about
the origin, which produces the three additional contributions,

FIG. 4. Ratios of Cab(ε = 0) to the corresponding C
(as)
ab (ε) de-

fined in Eqs. (49) and (50), respectively. The transmission coefficients
T1, T2, and τabs corresponding to the 20 values of �W/d considered
in the figure are given in Table I. Black squares were obtained
using the inverse Fourier transforms of (36) and (39) and of (24)
and (25) in Ref. [31]. Blue crosses show the exact analytical results
given in Ref. [24] and green diamonds the experimental ones. Upper
panel: the inelastic case a = 1, b = 2. Lower panel: the elastic case
for a = b = 1. The scale has been chosen logarithmic for a better
illustration of the good agreement between the different results.

Haaaa
4 , Faaa

3 , and the two-point term C(2)
aa ; see Eq. (27). Also in

this case, shown in the lower panel of Fig. 4, the SBW model
closely reproduces the experimental and the RMT result but for
a small systematic deviation for �W/d � 0.8. When reaching
the experimentally achieved maximal value �W/d = 1.09, the
ratios approach the values 1.5 and 1.8 for the inelastic case
and the elastic one, respectively. Thus, there the cross-section
correlation functions are already close to the corresponding
function C

(as)
ab (ε). Furthermore, the transition to the asymptotic

value is slower in the latter case than in the former one, as
already has been observed in Ref. [27].

In order to allow a test of the SBW model for �W/d � 1 we
performed additional RMT simulations and also evaluated the
exact analytic result for the ratios [24,25,27] up to �W/d = 2.
Here, we chose all 52 transmission coefficients equal. The
results are presented in Fig. 5. The deviations between the
three different models seem to be very small even in the elastic
case. They are visible only in the logarithmic scale used in the
figure. Here, the agreement of the SBW model with the exact
analytical results of Refs. [24,25] is better than that with the
RMT simulations. In fact, it has been shown in Ref. [27] that
the agreement between the results of Refs. [24,25] and RMT
simulations improves when choosing larger matrix dimensions
in the S-matrix model (52) than those used here. Once more,
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FIG. 5. Ratios of Cab(ε = 0) to the functions C
(as)
ab (ε) defined in

Eqs. (49) and (50), respectively, for 52 equal transmission coefficients.
Black squares were obtained using the inverse Fourier transforms
of (36) and (39) and of (24) and (25) in Ref. [31], red circles and
the blue line show the RMT simulations and the exact analytical
results given in Ref. [24], respectively. Upper panel: the inelastic
case a = 1, b = 2. Lower panel: the elastic case for a = b = 1. The
scale has been chosen logarithmic for a better illustration of the good
agreement between the different results, especially in the inelastic
case.

the asymptotic values are not yet reached. As may be deduced
from Figs. 2 and 3, and as has been found in Ref. [27], this
limit is reached above �W/d � π . In view of the overall
good agreement of the SBW model with experimental, exact
analytical, and RMT results we may conclude that it provides
a good description for the variances of the cross sections.

D. Cross-section autocorrelation functions

Additional evidence for this last feature is given by Fig. 6,
which displays Cab(ε)/Cab(0) as a function of the energy
increment ε for different values of �W/d. The analytical
results (black full lines) were obtained by computing the
inverse Fourier transform of C̃ab(τ ) in Eqs. (36) and (39).
For this we evaluated the integrals (43)–(46) and used
Eqs. (24) and (25) from Ref. [31] in order to determine
the S-matrix autocorrelation functions. They are compared
to RMT simulations (red circles) and experimental results
(green diamonds). The agreement between SBW and RMT is
striking. The bumps appearing in the experimental curves for
ε � 3–5 are attributed to finite-size effects. Note that they also
appear in RMT simulations at an energy increment ε which
depends on the size of the random matrices. Furthermore,
the applicability of RMT to describe generic features in the

FIG. 6. Cross-section correlation functions Cab(ε)/Cab(0). The
52 transmission coefficients T1, T2, and τabs corresponding to the
values of �W/d in the insets are given in Table I. The full black lines
were obtained using the inverse Fourier transforms of (36) and (39)
and of (24) and (25) in Ref. [31]. The red circles correspond to the
RMT results, the experimental ones are plotted as green diamonds.
Upper panel: the inelastic case a = 1, b = 2. Lower panel: the elastic
case a = b = 1.

long-range correlations of a system is justified only for ε values
bounded by the length of the shortest periodic orbit.

Figure 7 shows a comparison of SBW results with RMT
simulations. Once more, in the inelastic case the agreement
between both models is very good. The widths of the SBW
curves slightly underestimate that of the RMT simulations
for �W/d � 1. The variations of the elastic and the inelastic
cross-section autocorrelation functions with ε are nearly the
same. However, the widths of the former ones are smaller than
those of the latter ones.

FIG. 7. Cross-section correlation functions Cab(ε)/Cab(0) for 52
equal transmission coefficients. The corresponding values of �W/d

are given in the insets. The black full lines were obtained using the
inverse Fourier transforms of (36) and (39), and of (24) and (25) in
Ref. [31]. Red circles illustrate the RMT results. Upper panel: the
inelastic case a = 1, b = 2. Lower panel: the elastic case a = b = 1.
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E. Self-correlation terms

The results for the inelastic and elastic cases demonstrate
that the self-correlation term (32) is dominant for a small
total width 〈�〉/d, i.e., Weisskopf width �W/d, and provides
the major contribution to the cross-section correlations for
�W/d � π−1. In that region, the cross-section coefficients
accurately reproduce the exact results; see Fig. 5. The features
of the self-correlations become apparent in the SBW model,
which provides explicitly the dominant contribution respon-
sible for the underlying mechanism. The self-correlations are
accounted for by the first term in Eq. (32),

�
(4)
ab = 4π

〈
�2

a�
2
b

�3

〉
. (53)

Assuming a Porter-Thomas distribution for the partial widths
and their ratios xe = �e/〈�e〉, it can be computed explicitly.
It takes the simplest form for the case of equal transmission
coefficients, where it is given for the elastic case a = b in
terms of the ratio ρ = 〈�a〉/�W by (see also Ref. [30])

�(4)
aa 
 4π

105ρ4

(1 + 6ρ)(1 + 4ρ)(1 + 2ρ)
�W/d. (54)

For a constant total width �W/d, this self-correlation term
varies rapidly with the fourth power of the average partial width
〈�a〉, whereas for a constant ratio ρ it changes only linearly
with �W/d. Note that for equal transmission coefficients the
ratio ρ ≡ 1/� is constant. In the microwave experiments the
partial widths of the fictitious channels were equal and differed
from those of the antenna channels, which both take similar
values and the ratios 〈�1,2〉/�W were also approximately
constant in the frequency intervals 10–19 GHz and 20–25 GHz,
respectively. The corresponding values are given in the sixth
column of Table I.

The lower panels of Figs. 4 and 5 show the ratio
Caa(0)/C(as)

aa (0). The asymptotic cross-section correlation
function C(as)

aa (0) is given in (50). The self-correlation term
associated with C(2)

aa (0) corresponds to the first term in Eq. (21).
Proceeding as in Eq. (54), it can also be computed explicitly,
yielding

�(2)
aa = 2π

〈
�2

a

�

〉
= 2π

3ρ2

(1 + 2ρ)
�W/d. (55)

Using the SBW results Eqs. (54) and (55) yields with
C(as)

aa (0) 
 2π2ρ2(�W/d)2C(2)
aa (0) for small ρ and �W/d

Caa(0)

C
(as)
aa (0)


 1

3π2

105

(1 + 4ρ)(1 + 6ρ)

1

(�W/d)2
. (56)

Similarly, we obtained for the inelastic self-correlation terms,
assuming equal transmission coefficients, which implies
〈�a〉 = 〈�b〉 for the observed channels a,b ∈ {1,2},

�
(4)
ab = 36π

ρ4

(1 + 6ρ)(1 + 4ρ)(1 + 2ρ)
�W/d, (57)

�
(2)
ab = 2π

ρ2

(1 + 2ρ)
�W/d, (58)

and, accordingly, for the inelastic ratio

Cab(0)

C
(as)
ab (0)


 9

π

1 + 2ρ

(1 + 6ρ)(1 + 4ρ)

1

�W/d
. (59)

FIG. 8. Ratios of Cab(ε = 0) to C
(as)
ab (ε = 0) defined Eqs. (49)

and (50). Here, 202 open channels with equal transmission coeffi-
cients were taken, corresponding to a small ρ = 1/202. Red squares
show the approximations (56) and (59) obtained by taking into
account only the self-correlations for the elastic case (lower panel)
and the inelastic case (upper panel), respectively. The blue line shows
the exact analytical results obtained from Ref. [24]. A logarithmic
scale was chosen to better illustrate their good agreement up to
�W/d 
 0.2.

For large numbers of open channels �, i.e., small values of
ρ, the approximate results in Eqs. (56) and (59), obtained by
considering only the self-correlation terms (54), (55), (57),
and (58) depend moderately on ρ. In Fig. 8, we compare them
with the exact analytical results obtained from Ref. [24]. The
agreement is good, both in the elastic and the inelastic case,
for �W/d � 0.2.

The sensitivity of the self-correlation terms with respect to
the values of 〈�a〉/d and above all the close agreement of the
SBW results with exact ones for this range of small 〈�a〉/d and
narrow resonance widths provide a strong indirect evidence
for the persistence of the normal width distribution in the
tail of the corresponding distribution. This conclusion extends
to the experimental situation as well. There again the close
agreement with exact calculations in the region of dominant
self-correlations emphasizes the validity of a normal width
distribution. This sensitivity is of practical importance since
it implies that experiments must ensure that the data samples
are sufficiently large so as not to distort the results. Note that
in the region of isolated resonances the contribution of the
average partial widths of the observed channels, 〈�a〉 with
a = 1,2, to the total width �W are approximately 6–10% (see
Table I). Moreover, only a small fraction of less than 1% of
the total number of states contribute to the self-correlations.
Consequently, in this region the correlations are produced by
widely spaced resonances with an exceptionally strong partial
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width in the observed channels. These observations will be
further elaborated in a future publication.

V. CONCLUSION

The aim of the present article has been to obtain an
analytical approximation to the cross-section correlations
and related functions for a chaotic scattering system. The
analysis was based on the SBW model, extensively used
previously in the asymptotic limits of narrow and strongly
overlapping resonances. Here, we have set three goals (i)
first, to corroborate that the SBW model provides quantitative
results for the S-matrix autocorrelation functions close to
exact ones under rather general conditions; (ii) second, to
establish the general analytical expressions for the four-point
S-matrix correlation functions; (iii) third, to demonstrate that
these results give insights into the physical mechanisms which
produce the correlations as well as to illustrate the sensitivity
of the correlation functions to their input parameters. As will
be discussed below, the goals set in the Introduction have been
achieved and the results exceed our initial expectations.

(i) The accuracy of the SBW model is already indicated by
its similarity to an approximation derived analytically based on
the exact results [20] in Ref. [31] which was shown to provide
a good description for the S-matrix correlation functions.
Figure 1 illustrates this agreement between the approximations
and the exact analytical results for different experimentally
relevant situations. It emphasizes the importance of the
observed channels for the overall scale and the insensitivity to
the details of the remaining ones. The unitarity constraint on
the S-matrix results in the optical theorem which is accounted
for on the average. Once this is the case, the lack of unitarity
of the S-matrix approach Eq. (12) is of little importance
for observed channels a,b with 〈�a,b〉/�W � 1 since in the
overlap region up to this correction the variances of the
S-matrix correlations are identical for the SBW model and
the VWZ approach, which preserves unitarity. Moreover, in the
overlap region the cross-section variances are well described
by S-matrix variances as illustrated in Figs. 2 and 3. We
therefore conjecture that the unitarity corrections are equally
small in this case. The good agreement of the experimental,
numerical, and analytical results compared in Figs. 4 and 5
further emphasizes empirically that the SBW model captures
the essence of the exact results correctly also for weakly
overlapping and isolated resonances.

(ii) The second goal of deriving closed analytical expres-
sions for the cross-section correlation functions in the SBW
model was considered unachievable in Ref. [30]. Our results
are obtained by first observing that they are special cases
of the four-point S-matrix correlation functions. These are
more conveniently expressed in terms of irreducible four-point,
three-point, and two-point correlation functions, yielding a
modification of the expansion given in Ref. [27]. In general
there are three such irreducible four-point functions, two
once reducible ones and one which is twice reducible. This
expansion is particularly complex for correlations between
elastic cross sections. The different irreducible terms are
further simplified by appropriate contractions taking into
account the level cluster correlations which depend on the
overall conditions. Here, we restrict the discussion to the

standard Dyson level correlations [58]. Terms depending on
the three- and four-level cluster functions have been neglected
since they correspond to a simultaneous close encounter of
more than two levels which is intuitively unlikely to occur.
Results are given in Sec. III B in the energy and the time
representations. They are formulated very generally and cover
all cases from a single channel to a large number of open
channels with a large variety of transmission coefficients from
the region of narrow resonances to the asymptotic region of
overlapping ones.

The accuracy of the analytical SBW results for the cross-
section correlation functions has been tested by comparison to
exact results for the cross-section variances in Figs. 4 and 5
and to experimental and RMT results for the cross-section
correlation functions in Figs. 6 and 7. The deviation observed
in Fig. 4 for the smallest value of �W/d may be explained by
the small number of resonances in the corresponding 1-GHz
window; see Table I. We conclude from the agreement between
the SBW model calculations and the experimental and RMT
results that below �W/d � 2 they are nearly independent
of the unitarity constraint. This is not surprising because it
is largely imposed via the normal Breit-Wigner form of an
individual resonance with an average background amplitude.
As observed above, the model is conjectured to closely
reproduce exact results in the region of large �W/d. Note
that in Refs. [27,32,45] analytical expressions were derived
for the cross-section correlation functions that are applicable
beyond the value �W/d ∼ 2, where the distributions of the real
and imaginary parts of the S-matrix elements have Gaussian
distributions [38,65].

Like in the VWZ model the present approach tacitly
assumes that during the scattering process a long-lived
(quasibound) chaotic state has been produced in a short time
compared to its lifetime. Since the lifetime of the chaotic
state is inversely proportional to the Weisskopf width this
automatically implies that it has a maximum value set by the
formation time. The latter depends on the dynamical properties
in the interaction region. For an initially closed system with
chaotic dynamics it can be identified with the length of the
shortest periodic orbit [13,14]. In the case of an intermediate
motion in an optical potential as in nuclear physics it can be
deduced from the widths of the corresponding resonances and
their decay to doorway states.

An interesting by-product is that they apply equally well
to any distribution of partial width amplitudes with random
sign. We have not explored their sensitivity to the explicit
form of this probability distribution, which has always been
assumed to be the normal one. We note that the SBW model
is in this respect more flexible than the RMT models which
assume randomness on the level of the initial interaction with
a normal distribution of the matrix elements of the associated
Hamiltonian. Consequently, the second goal even exceeded
our expectations concerning the capability of the SBW model.

(iii) Our third and principal goal was to improve the
understanding of the different contributions generating the
correlation functions and of their relevance, because the RMT
approach gives only global results. The SBW results are very
general covering the whole range of isolated to overlapping
resonances. In view of the large variety of situations we focus
on the important special case for which none of the partial
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widths that constitute the Weisskopf width dominates. The
latter approximately yields the total width.

We consider two examples. The first one concerns the con-
sequences of the transition from the region of nonoverlapping,
narrow resonances to the asymptotic region of overlapping
ones. Here the simplest situation is the inelastic cross-section
autocorrelation function illustrated in the upper panel of
Fig. 2, which demonstrates the change from dominance of
self-correlations for �W/d � π−1 and even beyond to that of
the Ericson fluctuation term with increasing �W/d. The sum
of these two contributions gives an excellent description in the
entire range of �W/d.

The corresponding elastic situation is illustrated in the lower
panel of Fig. 2. As for the inelastic case the self-correlations
dominate for �W/d � π−1 whereas contributions from the
remaining four- and three-point correlations cancel each
other systematically and substantially. The region between
1 < �W < 2 is characterized by comparable contributions
from self-correlations and from the asymptotic two-point
correlation term, while for larger �W the latter rapidly becomes
dominant. The Ericson fluctuation term is everywhere small.
The conclusion to be drawn from these observations is thus
that for 0.5 � �W/d � 4 the sum of the self-correlations and
the asymptotic two-point term approximate the cross-section
autocorrelations well in the elastic case and for larger values
of �W/d only the two-point correlations survive.

We also computed the cross-section correlation functions as
function of ε and compared them to RMT results obtained via
numerical simulations. Figures 6 and 7 demonstrate that the
latter, normalized to unity at ε = 0, are accurately described
by the SBW model and are insensitive to its details. We
conclude from these observations that the central features
governing chaotic cross-section correlations—as well as S-
matrix correlations—are determined by the distributions of
the partial width amplitudes of the observed channels.

The SBW model provides explicitly the functional depen-
dence of the correlation functions on the level correlations. For
narrow and weakly overlapping resonances the contributions to
the elastic cross-section variances are typically dominated by
self-correlations. They are mainly produced by widely spaced
states with exceptionally large width in the observed channels.
This feature is well supported by the agreement of the SBW
model results with the corresponding exact ones, illustrated in
Figs. 5–8. The agreement with experimental data demonstrates
that the Porter-Thomas width distribution indeed is valid over
a large range for the underlying probability distribution in
Eq. (53) and implied experimentally as well by Fig. 4.

We note that the assumption that no partial width dominates
can be achieved in two physically distinct ways. First, it can be
realized in systems where the nonobserved channels are either
due to incoherent absorption or to a large number of channels
sufficiently weak so as not to produce noticeable mixing
effects, second by means of many channels with transmission
coefficients close to unity and very large Weisskopf widths
as discussed in Refs. [66–70]. In the latter case these can
coherently produce narrow (“trapped”) states as well as broad
(“superradiant”) ones. Such phenomena are of different nature
and beyond the framework of the present article.

Finally, we note that the approach considered in the present
article can be generalized in a number of ways. In particular, we

provide explicit expressions for the cross-section correlation
functions of systems with width distributions different from
the Porter-Thomas one, although we have not explored the
sensitivity of the results with respect to their choice. Another
generalization would be the extension to systems with a broken
symmetry or violated time-reversal invariance.
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APPENDIX A: DISTRIBUTIONS AND NOTATIONS

1. General probability averages and shorthand notation

Consider a probability distribution p(x) with the average
〈x〉 = 1. Define the quantity A(k) ≡ 〈xk〉. Then

〈xke exp(−λTex)〉 ≡ 〈xke 〉 〈x
ke exp(−λTex)〉

〈xke 〉
≡ A(ke)ge(λTe). (A1)

In the separable description define

�e;abc..(λ) =
∏

e

〈xke exp(−λTex)〉 ≡
∏

e

A(ke) ge(λTe).

(A2)

Here, the product is over all open channels e with transmission
coefficients Te. The labels l = a,b,c, . . . correspond to those
of the S-matrix elements in the correlation function under
consideration. Each such label contributes one unit to the
corresponding exponent kl of x, that is, kl equals the number
of occurrences of an index l. The open channels e that do not
coincide with one of the labels l have ke = 0 and A(0) = 1.

For the special case of the generalized Porter-Thomas
distributions the probability distribution has the form

pν(x) = �(ν)−1ννxν−1 exp(−νx) (A3)

in terms of the � function �(ν) with 〈x〉 = 1 and 〈x2 − 〈x〉2〉 =
1/ν. For such distributions Eq. (A2) becomes

〈xke exp(−λTex)〉ν = Aν(ke)(1 + λTe/ν)−(ke+ν) (A4)

with Aν(k) = �(ν+k)
�(ν)νk the generalized Porter-Thomas enhance-

ment factor. Special values are

A1/2(k) = (2k − 1)!! Porter-Thomas distribution,

A1(k) = k! exponential distribution,

Aν=∞(k) = 1 constant width.

For a generalized Porter-Thomas distribution Eq. (A2) be-
comes

�
(ν)
e;ab...(λ) ≡ Aν(ka)(1 + λTa/ν)−kaAν(kb)(1 + λTb/ν)−kb . . .

×
∏

e

(1 + λTe/ν)−ν . (A5)
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The standard Porter-Thomas distribution [52] corresponds to
ν = 1/2.

2. Two-level cluster function

The two-level cluster function is denoted by Y2(r), with
r the spacing between adjacent energy levels. The levels
are rescaled to average spacing unity. The form factor
b(τ ) corresponds to the Fourier transform of Y2(r), b(τ ) =∫

Y2(s) exp(2πiτr)dr [53]. For the GOE it is given by the
Dyson expression [58]

b(τ ) = 1 − 2|τ | + |τ || ln[1 + 2|τ |] 
 1−2|τ |+2|τ |2 − 2|τ |3
+ 8|τ |4/3 − 4τ |5 + · · · 0 < |τ | < 1,

b(τ ) = −1 + |τ | ln

[
2|τ | + 1

|2τ | − 1

]

 0 + (1/12)|τ |−2

+ · · · |τ | > 1. (A6)

Approximate expressions for these functions respecting scales
and normalization are

Y2(r) 
 (1 + (πr)2)−1; b(τ ) 
 exp(−2|τ |). (A7)

APPENDIX B: SOME GENERAL RESULTS
FOR CORRELATION FUNCTIONS

The correlation functions are given in a general form as
follows:

C[f,g](ω) ≡
〈
f
(
x0 − ω

2

)
g
(
x0 + ω

2

)〉
− 〈f (x0)〉〈g(x0)〉.

(B1)

1. Two-point S-matrix correlations

The full two-point function in the energy representation
equals for the inelastic case a �= b

C
(2)
ab (ε) = 2π

〈
�a�b

iε + �

〉
, (B2)

and for the elastic one a = b

C(2)
aa (ε) = 2π

[〈
�a�b

iε + �

〉
−
∫ ∞

−∞
drY2(r)

×
〈

�1a�2b

i(ε − r) + (�1 + �2)/2

〉]
. (B3)

The Fourier transforms for the inelastic case (B2) is given as

C̃
(2)
ab (τ ) = (2π )2〈�a�b exp (−2πτ�)〉, (B4)

and for the elastic one (B3) as

C̃[SaaS
∗
bb](τ ) = (2π )2{〈�a�b exp(−2πτ�)〉

− b(τ )〈�1a�2b exp[−2πτ (�1 + �2)/2]〉}.
(B5)

In both cases it is nonvanishing for τ > 0.
In the separable shorthand notation of Appendix A 1 this

gives for the inelastic case

C̃
(2)
ab (τ ) = TaTb�e;ab(τ ), (B6)

and for the elastic one

C̃[SaaS
∗
bb](τ ) = TaTb[�e;ab(τ ) − b(τ )�e;a(τ/2)�e;b(τ/2)].

(B7)

The exponential approximation to the time variation is valid
as long as (2πτ/d)2〈(� − 〈�〉)2〉 < 1. In terms of the gener-
alized Porter-Thomas distributions given in Appendix A this
condition becomes τ 2 ∑

e T 2
e /(2ν) < 1. For the elastic case

the variation is additionally modulated by the form factor
b(τ ). The deviation converges to zero for increasing ν → ∞.
The distribution becomes an exponential one in this limit of a
constant transmission coefficient.

2. Time correlation functions

The time correlation functions C̃[σabσcd ](τ ) are the Fourier transforms of the corresponding ones in the energy representation;
see Eqs. (24)–(35). We consider only autocorrelation functions so that the indices c,d take the values a or b only. The
corresponding expressions in the shorthand notation are given in Eqs. (43)–(46).

The Fourier transform of Fabcd
4 (ε) of Eq. (32) is

F̃abcd
4 (τ ) =

∫ ∞

−∞
dε exp(2πiετ )Fabcd

4 (ε) = (2π )2

[〈
�1a�1b�1c�1d

�2
1

exp(−2π�1|τ |)
〉

− b(τ )

〈
�1a�1b

�1
exp(−π�1|τ |)

〉〈
�2c�2d

�2
exp(−π�2|τ |)

〉]
. (B8)

The Fourier transform of Gabcd
4 (ε) of Eq. (33) has at most two differing indices (a,b) corresponding to the cases (ab; ab) and

(aa; bb),

G̃abcd
4 (τ ) =

{
(2π )3

〈
�1a�1b�2a�2b

�1 + �2
[exp(−2π�1|τ |) + exp(−2π�2|τ |)]

∫ ∞

0
dλb(λ) exp[−πλ(�1 + �2)]

〉

+ (2π )4

〈
�1a�1b�2a�2b

∫ ∞

0
λdλb(λ + |τ |) exp{−π (�1 + �2)[λ + |τ |]}

〉}
. (B9)
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The Fourier transform of Habcd
4 (ε) of Eq. (34) is

H̃abcd
4 (τ ) = −(2π )3δab

〈
�1a�2b�2c�2d

�2

[
exp(−2π�2|τ |)

∫ ∞

0
dλb(λ) exp[−π (�1 + �2)λ] +

∫ ∞

|τ |
dλb(λ) exp[−π (�1 + �2)λ]

]〉
+ (ab) ↔ (cd). (B10)

The Fourier transform of the three-point function Fabcd
3 in Eq. (35) is

F̃abcd
3 (τ ) = −2(1 − 〈Saa〉)δabC̃

(3)
acd (τ ) + (ab) ↔ (cd)

= +(2π )2(1 − 〈Saa〉)δab

{〈
�1a�1c�1d

�1
exp(−2π�1|τ |)

〉
− b(|τ |)

〈
�1a�2c�2d

�2
exp[−π (�1 + �2)|τ |]

〉

− 2πδcd

〈
�1a�1c�2d

[
exp(−2π�1|τ |)

∫ ∞

0
dλb(λ) exp[−π (�1 + �2)λ] +

∫ ∞

|τ |
dλb(λ) exp[−π (�1 + �2)λ]

]〉}
+ (ab) ↔ (cd). (B11)

3. Qualitative contributions to the cross-section variance

Estimates concerning the relative importance of the different contributions in the SBW model are obtained by replacing the
different total widths �1,�2,� by a typical total width �W in Eqs. (32)–(35) and Eqs. (B2) and (B3). Here, for simplicity we
set d = 1. The approximation assumes a negligible contribution from the partial widths with labels a,b to the total width. The
two-level form factor is given by Eq. (A7). The ratio of the variance to the square of the S-matrix autocorrelation function takes
the following form for the inelastic case:

Ca �=b(0)/
∣∣C(2)

a �=b(0)
∣∣2 = {

Fa �=ba �=b

4 (ε = 0) + Ga �=ba �=b

4 (ε = 0) + ∣∣C(0)
a �=b

∣∣2(0)
∣∣2}/∣∣C(2)

a �=b(0)
∣∣∣∣2

=
[(

9

π�W

− 1

(1 + π�W )

)
−
(

1

(1 + π�W )
+ (π�W )2

(1 + π�W )3

)
1

]

−→
{

9
π�W −1 for π�W � 1

7
π�W

+ 1 for π�W � 1
. (B12)

The corresponding estimate for the elastic case equals

Caa(0)/
∣∣C(2)

aa (0)
∣∣2 =

{
Faaaa

4 (ε = 0) + Gaaaa
4 (ε = 0) + Haaaa

4 (ε = 0) + ReFaaaa
3 (ε = 0)

+ ∣∣C(2)
aa (0)

∣∣2 + 2(1 − 〈Saa〉)2C(2)
aa (0)

}/∣∣C(2)
aa (0)

∣∣2



{[
105

π�W

− 9

(1 + π�W )

]
− 9

[
1

(1 + π�W )
+ (π�W )2

(1 + π�W )3

]
− 30

[
1

(1 + π�W )
+ π�W

(1 + π�W )2

]

+
(

2

〈Saa〉 + 1

)
2

{
15 − 3π�W

(1 + π�W )
− 3

[
π�W

(1 + π�W )
+ (π�W )2

(1 + π�W )2

]}

+
(

3 − π�W

(1 + π�W )

)2

+
(

2

〈Saa〉 + 1

)2

4π�W

[
3 − π�W

(1 + π�W )

]}/(
3 − π�W

(1 + π�W )

)2

−→
{ 35

3π�W −1 for π�W � 1
4 + 2π�W for π�W � 1

. (B13)

Note that the typical scale of the Weisskopf unit in this context is π�W and not �W .
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