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Two-dimensional quantum percolation with binary nonzero hopping integrals
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In a previous work [Dillon and Nakanishi, Eur. Phys. J. B 87, 286 (2014)], we numerically calculated the
transmission coefficient of the two-dimensional quantum percolation problem and mapped out in detail the
three regimes of localization, i.e., exponentially localized, power-law localized, and delocalized, which had been
proposed earlier [Islam and Nakanishi, Phys. Rev. E 77, 061109 (2008)]. We now consider a variation on quantum
percolation in which the hopping integral (w) associated with bonds that connect to at least one diluted site is not
zero, but rather a fraction of the hopping integral (V = 1) between nondiluted sites. We study the latter model by
calculating quantities such as the transmission coefficient and the inverse participation ratio and find the original
quantum percolation results to be stable for w > 0 over a wide range of energy. In particular, except in the
immediate neighborhood of the band center (where increasing w to just 0.02V appears to eliminate localization
effects), increasing w only shifts the boundaries between the three regimes but does not eliminate them until w

reaches 10%—-40% of V.
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I. INTRODUCTION

Quantum percolation (QP) is one of several models used
to study quantum transport in disordered systems. Unlike
classical percolation, the transport of a particle depends not
merely on the underlying connectivity of the system, but also
on quantum interference effects. Thus, even in a completely
connected (i.e., completely occupied) system, a quantum
particle’s wave function may be of finite extent, resulting in
very low or zero transmission, depending on such factors as
the particle’s energy or the systems boundary conditions.

Quantum percolation also differs from another common
model for disordered systems, the Anderson model [1], both
in model design and in transport behavior. While both models
can be represented by the same basic Hamiltonian [see Eq. (1)],
the type of disorder differs:
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H =

Whereas in the Anderson model the on-site and/or off-
diagonal energies are selected from a finite continuous dis-
tribution, in the quantum percolation model they are selected
from a binary distribution of either zero or infinite energy
barriers. In site percolation, the on-site energy is randomly
chosen to be zero (occupied) or infinite (unoccupied); in
bond percolation the off-diagonal hopping energy is randomly
chosen to be either one (connected) or zero (disconnected). In
both cases, the effect is that the disordered site is completely
isolated from the rest of the system; a quantum particle is
completely unable to move from an occupied (connected) site
to an unoccupied (disconnected) site.

Quantum percolation also differs from the Anderson model
in its transport behavior. Previous work by Dillon and
Nakanishi [2] confirmed numerically that the 2D quantum
percolation model exhibits a delocalized state at low disorder
and mapped a detailed phase diagram showing the three
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regimes (delocalized, power-law localized, and exponentially
localized) proposed earlier by Islam and Nakanishi [3]. Other
recent works likewise show a delocalized state [4—8]. This
is in contrast to the Anderson model, which according to
one-parameter scaling theory should have only exponentially
localized states in the thermodynamic limit in d = 2 dimen-
sions [9]. Numerous studies have verified this prediction for
the Anderson model, with some finding weak localization at
low disorder; [10] if nonlocalized states exist, they are only at
the band center. (See Ref. [11] and references therein.)

To investigate what differences in the nature of the disorder
between the Anderson model and the quantum percolation
model might lead to their differences in transport behavior,
we study a modified quantum percolation model in which the
binary nature of the QP models disorder is maintained, while
changing the distribution to a finite one that allows tunneling
between available and unavailable sites. If the infinite-energy
aspect of QP disorder is more important, we expect that
changing to a finite energy will result in losing the QP model’s
characteristic phases, but not if the binary aspect (which is
maintained) is the more important characteristic. We start from
the approach described in Dillon and Nakanishi [2] using the
quantum percolation Hamiltonian with off-diagonal disorder
and zero on-site energy:

H = "Vyli){j| + Hc. 2

(ij)

In this study, when randomly diluting the lattice by some
fraction ¢, instead of setting V;; = 0 for i and or j unoccupied
as in the original model, we now set V;; = w, where 0 <
w < 1 and w is the same for all diluted sites. By doing this,
we enable tunneling through and among the diluted sites rather
than imposing an infinite energy barrier, while still maintaining
a binary disorder. As in Ref. [2], we set up the model on
a square lattice of varying sizes to which we attach semi-
infinite input and output leads at diagonally opposite corners
as shown in Fig. 1 and use an ansatz proposed by Daboul
et al. [8] to calculate the transmission coefficient. We do this
numerically but essentially exactly for each realization of the
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disordered system, and final data are obtained by averaging
over anywhere from several hundred to a thousand realizations
for each dilution g, energy E, lattice size L x L, and diluted
site hopping energy w. Significantly, we use an identical set
of disorder realizations for every diluted site hopping energy
w studied for each choice of (g, E, L); that is, while the initial
selection of disorder realizations for each (¢, E, L, w = 0)
is random, all subsequent runs for larger values of w at the
same (q,E,L) use the same set of disorder realizations. In
doing so, we are essentially taking a set of realizations for the
original quantum percolation model at a particular (¢, E, L)
and slowly “turning on” the diluted site hopping energy from
w = 0tow = 1 in varying increments. [e.g., in Fig. 1, lattices
(b) and (c) have the same disorder realization, but in (c) we
have “turned on” the diluted site hopping energy to w # 0].
By duplicating the lattice configurations in this manner, we
ensure that any differences in transport that arise are solely
due to changing the hopping energy, not to any differences in
the disorder realizations chosen.

The wave function for the entire system of lattice plus
input and output leads can be calculated by solving the
time-independent Schrodinger equation:
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and Vin = {V_(u+n) and You = (Y44}, n =0,1,2.. ., are
the input and output lead parts of the wave function, respec-
tively. The ansatz by Daboul et al. assumes that the input and
output parts of the wave function are plane waves:
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Equation (6) is an exact expression for the 2D system
connected to semi-infinite chains with continuous eigenvalues
between —2 and 2 as specified by the energy restriction
above. The solutions of the equation yield the transmission
and reflection amplitudes ¢ and r, from which we calculate
the transmission coefficient 7 = |¢|* and reflection coefficient
R =%

From the wave function solutions of Eq. (6) we also calcu-
late the Inverse Participation Ratio (IPR), which measures the
fractional size of the particle wave function across the lattice
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PHYSICAL REVIEW E 94, 042141 (2016)

where r is the amplitude of the reflected plane wave and ¢
is the amplitude of the transmitted plane wave. This ansatz
reduces the infinite-sized problem to a finite one that includes
only the main L x L lattice and the closest points on the input
and output lead, for the wave vectors « that are related to the
energy E by

E = e ¥ 4 &%, 3)

Note that the plane-wave energies in Eq. (5) are restricted
to the range —2 < E < 2; by adding the semi-infinite one-
dimensional input and output leads we have restricted the
available energies to the one-dimensional subset of the full two
dimensional spectrum (—4 < E < 4). However, this range is
still large enough for us to observe the localization behavior
of the wave function.

Having applied the ansatz, the Schrodinger equation for
an L x L lattice connected to the semi-infinite input and
output leads can be reduced to an (L? 4 2) x (L? 4 2) matrix
equation of the form

—E+é* & 0 1+r elr — e
51 A 52 wclust 0 P
0 &' —E+4¢é* t 0

(6)
where A is a L? x L? matrix representing the connectivity of
the cluster (with —E as its diagonal elements), ¢; is the L?
component vector representing the coupling of the leads to the
corner sites, and 1/7c1us1 and 0 are also L2 component vectors,
the former representing the wave function solutions (e.g., ¥,
through ; for the cluster in Fig. 1). The cluster connectivity
in A is represented with V;; = 1 in positions A;; and Aj; if
sites i and j are connected, otherwise V;; = w. For example,
the 3 x 3 lattice shown in Fig. 1(c) would have the following
matrix equation:
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and gives a picture of the transport complementary to to the
picture provided by the transmission coefficient alone. The
IPR is defined by

1
AN

where v; is the amplitude of the normalized wave function for
the main-cluster portion of the lattice on site i and L?is the size
of the lattice [12]. It should be noted that our ¥ for given E is
a continuum eigenstate of the system containing the 1D lead

IPR ®)
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FIG. 1. Examples of a small system of 3 x 3 square lattice cluster
with a point-to-point connection. The letters label the lattice points of
the cluster part of the Hamiltonian, while numbers label those of the
leads. Three types of lattices are shown: (a) a fully connected, ordered
lattice, (b) a diluted lattice in the original quantum percolation model,
and (c) a diluted lattice in the modified quantum percolation model
studied in this work, with hopping energy 0 < w < 1. Lattices (a) and
(b) also correspond to the w = 1 and w = 0 limits of the modified
QP model, respectively.

chains, and lzclust is expected to correspond to a mixed state
consisting of eigenstates of the middle square portion of the
lattice. We see that given two lattices of the same size, the one
with the smaller IPR has the particle wave function residing
on a smaller number of sites, though the precise geometric
distribution cannot be known from the IPR alone. Although the
IPR is certainly influenced by the lattice’s amount of disorder,
two different disorder realizations may result in very different
IPR; thus we calculate not just the average IPR but also the
IPR distribution across all realizations. The IPR is often used
to assess localization by extrapolating it to the thermodynamic
limit; if the IPR approaches a constant fraction of the entire
lattice, there are extended states, whereas if it decays to zero
the states are localized. However, various studies have shown
that IPR as a function of other parameters such as energy can
also signal a phase change (see Islam and Nakanishi [13], Johri
and Bhatt [14,15], and Wang et al. [16] for examples in several
different systems).

The remainder of the paper is organized as follows. In Sec. II
we examine the effects of the diluted site hopping energy on
the transmission of the modified quantum percolation model,
culminating in phase diagrams showing the phase boundary
changes that result from introducing tunneling. In Sec. III we
analyze the IPR distributions and averages as a function of
both dilution and diluted site hopping energy, revealing that
the changes induced in the system by introducing tunneling are
more complex than the transmission coefficient studies alone
may suggest. Finally, in Sec. IV we summarize our results and
conclusions.

II. TRANSMISSION AND LOCALIZATION

The transmission coefficient was calculated over the same
six energies E (in the range 0.001 < £ < 1.6) and 23 to 27
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lattice sizes L x L depending on E (where 10 < L < 780)
as were studied in our previous work [2]. The dilution range
was 2% < g < 50% and the diluted-site hopping energy was
chosen from 23 to 32 values 0 < w < 1, both with varying
increment sizes. As described in the introduction, the random
seeding of the disorder realizations was designed such that
every w within a given (g, E, L) was applied to an identical
set of realizations, while each g (or E or L) with the same w
was given a different set of realizations, allowing us to control
for the changes in w while still selecting a random set of
lattices over which to average the transmission coefficient.

Before determining the localization behavior of the
modified Hamiltonian in detail, we first examined the
transmission 7 versus the diluted-site hopping energy w for
a few of the larger lattice sizes for each of the energies. An
example of two characteristic energies away from the band
center is shown in Fig. 2.

There are two notable features to the transmission
curves. Most obviously, there is an abrupt change in the
transmission between w = 0.9 and w = 1. Transmission on
an ordered lattice has been shown to depend strongly on the
energy, with transmission and reflection resonances arising
when degenerate eigenstates of the square lattice are split by
attaching the semi-infinite leads, resulting in even neighboring
energies having dramatically different transmission [17].
Thus, it is not surprising that the w = 1 limit appears to
be a special case. Looking at the transmission for smaller
increments of w between w = 0.9 and w = 1 (see inset in
Fig. 2) shows wide fluctuations in the transmission between
these two values, thus w = 0.9 appears to be the lower cutoff
for fully connected-like behavior.

More interesting is the stability of the transmission as w
increases. The average fractional cluster size (as measured
by simply counting the fraction of sites for which [y|> # 0)
increases from S < g for w=0to S=1 for w > 10-10
(the smallest nonzero hopping energy studied), meaning that
at least some tunneling occurs for w # 0. Despite this, the
transmission remains stable for up to at least w = 0.1 for
the smaller energy (£ = 0.1), and as much as w =0.3
(E = 1.6), before it increases monotonically to the maximum
transmission at around w = 0.9 before the large variations of
T set in for larger w.

Near the band center (E = 0.001, Fig. 3), the transmission
likewise increases monotonically with w, but does so much
more quickly than at higher energies: for all ¢, the transmission
increases rapidly for any w > 0. Also unique is the smooth
transition to the fully connected limit.

To construct the complete phase diagram for the modified
quantum percolation model, we fit the transmission 7 versus
the lattice size L for each energy E, dilution ¢, and diluted-
site hopping energy w. As in Ref. [2], the fit of the T
versus L curve indicates the state of the system: when
an exponential fit (T = aexp(—bL)) is best, it indicates
exponential localization, a power law fit (T = aL~") indicates
a weaker power-law localization, and a fit with an offset
(power with offset T = aL~" + ¢ or exponential with offset
T = aexp(—bL) + c) indicates delocalization since T = c at
L—00. We were unable to satisfactorily fit most transmission
curves at w = 0.9 due to the variation in transmission upon
approaching the fully connected limit of w = 1. However, for
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FIG. 2. Transmission T vs diluted site hopping energy w on a lattice of size L = 443 at various dilutions and the energies (a) £ = 0.1 and
(b) E = 1.6, with insets showing a detail of the high-w region with additional points for w > 0.9. The lines are merely to guide the eye.

all other w, the fits were good, with the vast majority of the best
fits having R2 > 0.95 and well over half having R? > 0.98.
The fits with lower Rg occur mostly at very large w, where
the T versus L curves begin to be less smooth as the system
moves more toward the ordered limit with its strong energy
dependence and at the phase boundaries. Additionally, within
each phase, the difference between the goodness of the best
fit and the next-best fit is significantly distinct. The exception
to this are linear-scale fits within the exponentially localized
region, in which case we examine curves in the logarithmic
scale to distinguish between the two localized fits (as in Ref. [3]

E =0.001

and our previous work in Ref. [2]) and within the power-law
region, since any power-law fit can be improved minutely by
adding an offset term, in which case the delocalized power-law
plus offset fit was only taken to be best if it substantially
improved the R,> compared to a pure power-law fit. For an
example at £ = 1.6 and ¢ = 30%, see Table I, which lists the
R,? for the possible fits of the transmission curves shown in
Fig. 4(a), a subset of which are shown with fits in Fig. 4(b).
As is illustrated in these figures, we find that for each energy
E and dilution ¢, the transmission curves progress toward
delocalization with increasing residual transmission as the

E =0.001
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FIG. 3. Transmission 7" vs diluted site hopping energy w on a lattice of size L = 312 at various dilutions and energy £ = 0.001 for (a) the

full range of w studied and (b) zoomed in on w < 0.2 to more clearly
the eye.

show the initial increase in transmission. The lines are merely to guide
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FIG. 4. Transmission T vs lattice size L at E = 1.6 and q = 30% for selected w. In (a) the lines connecting the points are to guide the eye;
in (b) they are fits (dotted: exponential, solid: power law, dashed: power law with offset) for the transmission curves, which are a subset of the
unfitted curves shown in (a). In (b), only the best fits for w = 0.0 and w = 0.4 are shown, while for w = 0.6 and w = 0.8 the best possible
power-law fit for the transmission is included in addition to the actual best fit of a power law with offset, to illustrate the goodness of the power

plus offset fit.

diluted-site hopping energy w increases. For g within the
exponentially localized region at w = 0, the system passes
through all three phases (exponentially localized, power-law
localized, then delocalized) as w increases. If g is within
the power law region at w = 0, the progression is just from
power-law localized to delocalized, and for ¢ delocalized
at w =0 system only undergoes an increase in residual
transmission.

The g versus w phase diagrams for three of the six energies
studied are shown in Fig. 5. At w = 0, the phase boundaries
match the phase diagram found in Ref. [2] within error
bars, including the slight nonmonotonicity with respect to
E. Near the band center, the exponentially localized region
seems to vanish for very low w. It is possible that for higher

TABLE L. R? for fits of T vs L in both log-log scale and linear
scale at £ = 1.6 and g = 30%; values are bolded for the fit used to
determine the phase diagram, as described in the text.

T=ae? T=aL"T=ae? T=aL?"

w (log-log) (log-log)  (linear) (linear) T =aL’+c¢
0 0.9819 0.7791 0.9853 0.997 N/A
0.01  0.9876 0.794 0.9853 0.9971 N/A
0.1 0.9854 0.9603 0.9923 0.9983 N/A
0.2 0.9864 0.8071 0.9925 0.9958 N/A
0.3 0.9884 0.8313 0.9798 0.9974 N/A
0.4 0.8539 0.938 0.9681 0.9982 N/A
0.5 0.7898 0.9922 0.9443 0.988 0.989
0.6 N/A N/A 0.5783 0.9207 0.9757
0.7 N/A N/A 0.3475 0.7403 0.9641
0.8 N/A N/A 0.2925 0.6373 0.8872

dilutions ¢, the exponentially localized region persists to larger
w; however, we did not study these since calculations at
E = 0.001 are dramatically more computationally expensive
than other energies due to the small diagonal terms making
the sparse matrix closer to singular. For all other energies, the
phase boundaries between the three regions has no quantitative
change up to some value wquan, With wguane as low as
0.05 for £ =0.1 and up to wquane = 0.35 for £ = 1.6. For
W > Wquant, the three regions initially persist with the phase
boundaries shifted to higher ¢, but as w increases still further
the exponentially localized and then the power law localized
regions disappear, leaving all states delocalized at all dilutions.
The transitions from three phases to two to only delocalized
states each occur at larger w as E increases; the phase diagrams
for the three energies not shown show a progressive increase
in the size of the localized phase regions from E = 0.1 to
E = 1.6. For w = 0.6 the system is delocalized at all energies
as well as at all dilutions. While the nonmonotonicity of the
phase boundaries as E increases at fixed w can be explained
by the competition between interference effects and increased
short-range diffusivity described for the original model (see
discussion in Ref. [2]), we are unsure why localization should
persist to higher w as E is increased at fixed ¢, and turn to the
inverse participation ratio study described in the next section to
explore the localization properties from a different perspective.

The stability of the phase boundaries as w is increased to at
least 5% of the available-site hopping energy, combined with
the presence of the three phases characteristic of quantum
percolation for w up to at least 10% and up to as much as
40% of the maximum V = 1 (depending on energy), lead us
to conclude that the binary disorder of the quantum percolation
model is more significant than the disorder being infinite. Had
the latter been more important, we would have expected to
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FIG. 5. Dilution g vs diluted site hopping energy w phase diagram
for the 2D modified quantum percolation model at three of the
six energies studied: (a) £ = 0.001, (b) E = 0.1, and (c) E = 1.6.
The phase boundaries are to guide the eye, not specific fits. The
phase diagrams for the energies not shown (E = 0.4, 0.7, and 1.1)
are qualitatively similar to those of E = 0.1 and E = 1.6, showing the
three regions characteristic of quantum percolation with a progressive
increase in the size of the phase regions from £ = 0.1 to £ = 1.6.
E = 0.001 is a special case in which there is no (or vanishingly small)
power-law region and the system rapidly becomes delocalized as w
increases.
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see the localized phases vanish much more quickly (if not
immediately) upon increasing w from O (whereby the infinite
energy barriers associated with diluted sites become finite
ones).

III. INVERSE PARTICIPATION RATIO

To help us understand why the transmission (and phase) is
initially unaffected by particle’s nonzero tunneling probability,
we look at the IPR, first at the w = 0 limit of the original,
unmodified quantum percolation model. For w =0, the
maximum IPR is equal to the percentage of available sites
1 — g; this occurs if the wave function is uniformly distributed
over all available sites. In practice, the IPR will be smaller,
due to interference effects and the random application of
disorder resulting in clusters of theoretically available sites
that are disconnected from the main conducting cluster. We
examined both the IPR distribution across all realizations
and the average IPR on the largest available lattice size in
common to all dilutions at a given energy. At w =0, we
find that while the average IPR decreases smoothly as g
increases, the IPR histogram for the disorder realizations
exhibits distinct characteristics depending on the transmission
state: for delocalized ¢, the IPR is peaked and looks roughly
Gaussian [Fig. 6(a)]; for g around and just above the power-law
phase boundary, the IPR distribution is more boxlike with a
tail on the right [Fig. 6(b)]; for higher g within the power
law region the distribution has a low peak near 0 with a
tail [Fig. 6(c)]; and for exponentially localized g, the IPR is
strongly peaked near O with a long tail to the right [Fig. 6(d)].
Thus the IPR histogram serves as a detailed check on the
localization state of the system that is independent of L
[because of how we chose to normalize the IPR; see Eq. (8)].

Visually checking all histograms for all E, g, and w
is obviously cumbersome, so we instead characterize the
distribution by its skewness and kurtosis, which measure
the symmetry and shape of the distribution, respectively. The
skewness of a distribution with n elements x; is defined by

LS — )3
=,,Zl()63 M)’ ©

where w is the mean of x and o is its standard deviation.
Skewness = 0 for a symmetric distribution, while positive
or negative skewness indicates a tail on the right or left
side respectively, and |Sk| > 1 is generally taken to indicate
a substantially asymmetrical distribution. The kurtosis of a
distribution is defined by

_ P i =t

4

Sk

o

K 3, (10)

o
where 1 and o are again the mean and standard deviation.
Kurtosis = 0 for a normal distribution, negative kurtosis
indicates a flat, more uniform distribution, and positive kurtosis
indicates a strongly peaked distribution. Combining these two
characteristics with our observations of the histograms in
each of the three qualitative phases, we can say that within
the delocalized phase |Sk| < 1 and K ~ 0 (usually roughly
0 < K < 1 because the IPR is slightly more peaked than
Gaussian in delocalized phase), within the power law region
Sk > 0 with K < 0 at the delocalized-to-power-law boundary
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FIG. 6. Sample of normalized inverse participation ratio (IPR)
histograms at £ = 1.6 and L =443 and w = 0 for four different
dilutions within (a) the delocalized region, (b) and (c) the power-
localized region, and (d) the exponentially localized region, showing
the distributions characteristic of each of those phases. (For E = 1.6
phase boundaries are at ¢ = 15.5 £ 0.5% and g = 24 + 1.5%.)

moving to K > 0 for power-law-to-exponential boundary, and
within the exponentially localized phase Sk > 1 and K > 1.
Some examples of the IPR average, skewness, and kurtosis are
plotted versus dilution in Fig. 7 at E = 1.6 and w = 0, with
the phase boundaries (as determined from the transmission
fits) marked. We see that the phase boundaries correspond
well with the observed changes in the distribution measures.
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We then examine the IPR average, skewness, and kurtosis
versus w for different ¢, which reveals a more complex picture
with several interesting features. First, for £ > 0.4 (Fig. 8),
we see that for all dilutions, the average IPR, skeweness and
kurtosis are all roughly constant for w < 0.1 except for high
g, which show fluctuations in the kurtosis. The kurtosis is
still within the range indicative of a very sharp peak in the
IPR, which for high ¢ (localized states) is near IPR = 0;
therefore we do not believe the fluctuations to be indicative
of any significant change in the particle’s state. Thus for
w < 0.1, the average wave function seems essentially locked
in place. While we know that the particle wave function
does spread across the entire lattice for w > 0 (recall that
cluster size = lattice size for w > 0), apparently very little
of the wave function reaches the newly accessible sites, most
likely due to interference effects caused by there still being a
strong probability of reflection. Second, while the three distinct
regions described in the previous paragraph are visible in the
IPR average, skeweness, and kurtosis combined, the transitions
between phases are smooth ones; there are no discontinuous
changes in the wave function behavior. As w increases toward
the exponential-to power law phase boundary w, (denoted
by square markers in Fig. 8) the wave function remains
exponentially localized (average near 0, large skewness, and
very large kurtosis indicates a strong peak near [PR = 0) buton
average begins to spread slightly more evenly across the entire
lattice including the diluted sites (slight increase in average and
decrease in kurtosis means fewer realizations with IPR ~ 0).

Within the power law region the wave function behavior
changes the most: in increasing w from w), to the power-to-
delocalized phase boundary w,; (denoted by circle markers
in Fig. 8), the wave function continues to spread more
evenly across the entire lattice (average IPR increases rapidly)
while the system shifts smoothly from being dominated by
realizations with the wave function concentrated on a small
number of sites (large skewness and kurtosis with smaller IPR)
to realizations with a more uniform mixture of participation
ratios (sk & O with k < 0). (The changes within the power-law
region are true regardless of whether the system began in the
exponentially localized phase or the power-law localized phase
for w = 0.) Last, within the delocalized region (w > wy),
the wave function continues to spread more evenly across
the entire lattice (average IPR increases), and it becomes
more likely that different disorder realizations sustain the wave
function over the same number of sites (skewness and kurtosis
indicate a shift from a low peak to a tight peak).

For E =0.1 and g > 18%, the IPR distribution (as de-
scribed by the average, skewness, and kurtosis) is much the
same as for E > 0.4, the primary exception being that the
distribution remains stable from w = 0 only up to w = 0.05,
notto w = 0.1 (Fig. 9). However, for ¢ < 18%, i.e., dilutions
for which the state is delocalized for all w, there is a
curious drop in the average IPR around w = 0.1 that is not
accompanied by a similar drop in the transmission, which is
roughly constant over this range (compare Fig. 2). The trend
of the skewness and kurtosis of the IPR distribution at £ = 0.1
are not very different from the other energies [the phase shifts
occur at lower w as given by the phase diagram Fig. 5(b),
but the shape is the same], so it seems the change is only
in the average IPR, not in the shape of the distribution. The
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FIG. 7. IPR average, skewness, and kurtosis vs dilution ¢ for £ = 1.6 and E = 0.001 at w = 0, the original QP model. For E = 1.6, the
delocalized to power-law localized phase boundary and power law to exponentially localized phase boundary are marked on the curve by
circles and squares, respectively; for £ = 0.001 the phase boundary between delocalized and exponentially localized is denoted by a triangle.

dip around w = 0.1 occurs for all lattice sizes, making it less
likely that it is a finite size effect. While we are not certain
what could be causing such (apparently) anomalous behavior,
our best estimate is again that interference effects are at play: it
is conceivable that increasing the hopping energy temporarily
increases the probability of destructive interference on sites
that had always been available, thereby constraining the
wave function to a narrower path while sustaining the same
transmission, before a further increase of w begins to overcome
such interference effects and IPR rises.
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For E = 0.001, the energy nearest to the band center, we
see even more interesting and unexpected behavior. It is not
entirely unexpected that states very close to the band center
behave differently, as several studies have shown E =0 to
have unique characteristics in quantum percolation [18-20].
However, it is peculiar that at this energy the IPR increases
more slowly than the transmission does, in contrast to all
other energies, at which the IPR and transmission increase at a
similar rate. Apparently, the wave function is constrained to a
very narrow selection of sites even at low g, so increasing the

351
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FIG. 8. IPR average, skewness, and kurtosis vs diluted site hopping energy w for E = 1.6 at selected dilutions. The exponential to power-law
localization phase boundary and power-law to delocalized phase boundary are denoted on each curve by squares and circles, respectively. If a
curve has no markers, it is in the delocalized phase for all w; if it only has one marker, it begins in the power-law localized phase at w = 0 and

shifts into the delocalized phase.
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FIG. 9. IPR average, skewness, and kurtosis vs diluted site hopping energy w for E = 0.1 at selected dilutions. The phase boundaries are
marked on each curve as in Fig. 8. We see that there is an anomalous dip in the average IPR of initially delocalized ¢ for small w.

hopping energy of the diluted sites along that path reduces the
destructive interference they cause, thus significantly increas-
ing the transmission even as the transmitting cluster remains
roughly the same size. This is consistent with our knowledge
that for quantum percolation, the eigenstates of £ = 0 are
dominated by many states with small spatial extent, leading to
lower transmission and localization at smaller ¢ in the original
model [13]. Our work examines a continuous spectrum in
which the particle wave function is a mixed state, but it is
reasonable to believe the mixed state to be similarly dominated
by small spatial clusters. More unusual is that for ¢ = 2%—-6%

0.45 p2 7r
04 r 6
0.35 5F
0.3 4
0.25 3

Average normalized IPR
IPR skewness

(for which the system is delocalized for all w), we again see
an unexpected drop in IPR just above w = 0, where there is no
such drop in the transmission (see inset in Fig. 10). In this case,
due to the increments in w studied, it is highly probable that
there is actually a singularity in the average IPR at w = 0;
regardless, the behavior is still puzzling. Furthermore, for
w =~ <0.15, the relationship between IPR and g is inverse of
what we would expect (and inverse of the relationship between
transmission and g); that is, we see the smaller dilutions having
the lower IPR, meaning the wave function is more tightly
constrained in the lattice at lower dilutions than at higher ones.
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FIG. 10. IPR average, skewness, and kurtosis vs diluted site hopping energy w for £ = 0.001 at selected dilutions. The phase transitions
are not marked on these curves; for g > 8% there is a transition from exponentially localized to delocalized at w = 0.005. For the initially
delocalized g there is a drop in the average IPR above w = 0 (see inset), similar to that seen at £ = 0.1. For all dilutions, below w = 0.2 the
relationship between IPR and ¢ is inverse of what we would expect, with the lower dilutions having a lower, not higher, IPR.

042141-9



BRIANNA S. DILLON THOMAS AND HISAO NAKANISHI

IV. SUMMARY AND DISCUSSION

We have studied a modified version of the quantum
percolation model in which the diluted site hopping integrals
are allowed to be nonzero, thus introducing the possibility
of tunneling through and among the previously inaccessible
diluted sites while maintaining a binary disorder. Our work is
based on a system where one-dimensional leads are connected
to the diagonal corners of a randomly diluted square lattice,
for which we calculate the transmission coefficient, inverse
participation ratio, and related quantities numerically and
analyze the results by methods such as finite-size scaling. We
determined a full three-parameter phase diagram showing the
effects of changing the diluted site hopping energy along with
the dilution and particle energy. From these phase diagrams, we
see that the quantum percolation model is a surprisingly robust
one, with the three phases characteristic of the original model
persisting to at least w = 0.05 for £ > 0.1, and even higher
for larger E. By examining the average participation ratio,
we see that in fact, for w < 0.05 to 0.1, the modified model
shows results that are nearly identical to the original even
as far as the individual realizations, with the wave function
being predominately constrained to the original (undiluted)
sites despite a small fraction of the wave function tunneling
to and through the now-accessible diluted sites. For these very
small w, then, there are still strong interference effects that
continue to work in conjunction with the underlying disorder
to cause localization. At higher values of w, the wave function
is able to spread more evenly across the entire lattice, but it is
not until w =~ 0.6, a surprisingly large hopping integral, that
the wave function is delocalized for all energies E. Thus, we
see that for lower w, the modified QP model is dominated
by the amount of disorder g; though interference effects are
weakened as the hopping integral increases, it is not enough
to affect localization character. Since the quantitative and
then qualitative characteristics of the original QP model are
maintained for such a wide range of diluted site hopping
integral, we conclude that the binary nature of the disorder is
the defining characteristic of the QP model, not the existence
of infinite-energy barrier. Finally, at sufficiently high w, the
phase behavior is dominated more by the diluted site hopping
integral than the amount of disorder g present, evidenced by
the vertical phase boundaries for the localized states.

The energy nearest the band center is the exception to
the rule. In this case, we find that increasing the diluted site
hopping integral quickly moves the system into the delocalized
phase for all g. Furthermore, the increased transmission
corresponding to the phase change is not accompanied by
a commensurate change in the IPR, which remains very small
and does not increase dramatically until w > 0.2. It may be

PHYSICAL REVIEW E 94, 042141 (2016)

possible to interpret these two results combined as reflecting
the fact that the wave functions are constrained to a large
number of small spatial clusters at the band center for a wide
range of g, and thus an increase in w has a large effect on
suddenly creating a connected path through the lattice for the
quantum particle, while it has a much smaller effect on creating
alarge cluster on which the wave functions can reside. Perhaps
more puzzling is the fact that there is a singularity in the [IPR
at w = 0 for low values of g that correspond to the delocalized
region, and that for w < 0.2 it is the lower dilutions that have a
smaller IPR. These peculiarities occur within the range of w for
which strong interference effects are evident for other energies.
Additional study will be needed to interpret this behavior more
clearly. Regardless, the overall result is consistent with the
band center having special characteristics in the QP model.

We additionally observed an anomalous decrease in the IPR
for E = 0.1 at lower dilutions for which the system is always in
the delocalized phase. The anomaly occurs only in the average
IPR; the shape of the distribution of IPR realizations appears
unaffected, as is the transmission. We are unsure of what causes
this anomaly, or whether it is of significance since it does not
affect the overall phase of the system.

In conclusion, we have seen that the quantum percolation
model is a robust and complex one. That the model remains
quantitatively unchanged for a range of w # O broadens its
applicability to materials and systems in which it is unrealistic
for impurities to be modeled as completely isolated from the
rest of the material. Additionally, we have shown that while
the average IPR changes smoothly as g changes at fixed w or
vice versa, the IPR distribution exhibits a very distinct (yet
continuous) change as g (or w) crosses a phase boundary,
with IPR in the delocalized state having a peaked, mostly
symmetric distribution, but the IPR in the power-law localized
and exponentially localized states having a highly skewed
distribution with a peak near zero that becomes sharper as the
particle becomes more localized. While we did not determine
the phase boundaries independently using the IPR alone, we
expect that the correspondence found here between delocalized
and localized states and the IPR distribution will be useful
in distinguishing delocalized states from localized ones in
other scenarios, such as lattice configurations in which the
appropriate extrapolation method for the thermodynamic limit
is not necessarily clear.
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