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Memory effect in the upper bound of the heat flux induced by quantum fluctuations
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Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then
define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the
upper bound of the expectation value of the heat operator (second law). We further find that this upper bound
depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can
be qualitatively modified in quantum thermodynamics.
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I. INTRODUCTION

The accelerating development in nanotechnologies enables
us to access individual thermal random processes at micro-
scopic scales. External operations to these systems cause
various responses which are understood through quantities
such as energy, work, and heat. However, we cannot directly
apply thermodynamics to these quantities because the typical
scale of the systems is very small and the effect of thermal
fluctuations is not negligible. There is no established theory to
describe general fluctuating systems thermodynamically [1].
On the other hand, such a system is often modeled as a
Brownian motion [2] and then the behaviors can be interpreted
thermodynamically by using the stochastic energetics (SE) [3].

In this theory, energy, work, and heat are represented by
the variables of the Brownian particles, and we can show that
the energy balance is satisfied and the expectation value of
the heat flux has an upper bound. The former corresponds to
the first law and the latter the second law in thermodynamics,
respectively. The various applications of SE are discussed in
Ref. [3]. The prediction of SE is experimentally confirmed by
analyzing extracted works from a microscopic heat engine [4].
Although this theory is generalized to relativistic systems [5]
and the Poisson noise [6], the applications are still limited to
classical systems [7].

On the other hand, the emergence of thermodynamic behav-
iors in quantum systems is another intriguing problem [8,9].
In particular, it is interesting to ask whether thermodynamic
behaviors are qualitatively modified by quantum fluctua-
tions [10]. For example, the maximum extractable work may
be limited by quantum coherence in a small system [11].
To identify modified behaviors by quantum fluctuations, it
is important to formulate a theory which has a well-defined
classical limit [12].

In this work, we study a formulation of quantum ther-
modynamics by generalizing SE to a quantum Brownian
motion coupled to a classical heat bath [13]. Our model
is characterized by stochastic differential equations of the
position and momentum operators of the quantum Brownian
particle. Then, the behaviors of other operators are determined
from the two equations by employing a differential with respect
to operators in the quantum analysis [14]. We then define a
heat operator, showing properties corresponding to the first and
second laws in thermodynamics. Our theory has a well-defined
classical limit and reproduces the results of the classical SE.
Moreover, we find that the behavior of the heat is qualitatively

modified from the classical behavior by quantum fluctuations,
affecting the maximum extractable work in quantum heat
engines.

This paper is organized as follows. In Sec. II, a model
of a quantum open system based on the quantum Brownian
motion is developed. In Sec. III, we define the thermodynamic
properties of this model by extending SE and show the
modification of the second law by the effect of quantum
fluctuations. Section IV is devoted to concluding remarks and
discussion.

II. DEFINITION OF MODEL

Our model of a quantum open system is characterized by
stochastic differential equations (SDEs) for a position operator
x̂t and a momentum operator p̂t of a quantum Brownian
particle, which are defined by

dx̂t = 1

m
p̂tdt, (1a)

dp̂t = − ν

m
p̂tdt − V (1)(x̂t ,λt )dt +

√
2νkBT dBt , (1b)

where kB , m, T , and ν are the Boltzmann constant, mass, tem-
perature of a heat bath, and dissipative coefficient, respectively.
The external potential V depends on an external parameter
λt and V (n)(x,λt ) ≡ ∂n

x V (x,λt ). The symbol ˆ denotes an
operator.

These equations can be obtained from a microscopic
dynamics by using, for example, the projection operator
technique and the Markov limit [13,15,16]. Note that because
we consider a dissipative system, there is no Lagrangian which
reproduces this system, and thus x̂t and p̂t are not canonical
variables in general. However, to maintain the notation in the
classical Brownian motion, we still call p̂t , which is defined
by Eq. (1a), the momentum operator.

The last term
√

2νkBT dBt , which is called a noise term,
represents thermal fluctuations induced by the interaction with
a heat bath and shows a stochastic behavior. In principle, this
term also can be replaced by an operator, but the definition
of operators in the stochastic calculus is not well understood.
Thus we here treat the noise term as a stochastic c-number,
that is, the increment of the standard Wiener process defined
by the following correlation properties [17]:

E[dBt ] = 0, E[(dBt )
2] = dt. (2)

2470-0045/2016/94(4)/042140(5) 042140-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.042140


T. KOIDE PHYSICAL REVIEW E 94, 042140 (2016)

Other second-order correlations vanish. We assume the exis-
tence of an appropriate probability space (σ algebra) for x̂t and
p̂t [15,17]. As we will see later, because of this idealization,
the heat bath behaves as a classical degree of freedom.

In this formulation, the behaviors of other operators should
be obtained from the above two SDEs. To implement this
systematically, we define a differential in terms of operators
applying the quantum analysis (QA) [14].

A. Quantum analysis

QA was proposed to expand the functions of operators
systematically and has been applied to various problems in
quantum mechanics and quantum statistical mechanics. For
example, the expansion of the S matrix, the Baker-Campbell-
Hausdorff formula, and the linear response theory can be
regarded as the operator Taylor expansion in QA [14].

Let us consider f (Â), where f (x) is a smooth function of
x. Then the operator differential with respect to Â is expressed
by (df/dÂ) and introduced through the following equation:

f (Â + hĈ) − f (Â) =
(

df

dÂ

)
hĈ + O(h2), (3)

where h is a small c-number and Ĉ is another operator which
is in general not commutable with Â, [Â,Ĉ] �= 0. Note that the
value of the differential depends on the operator Ĉ and thus
(df/dÂ) is a hyperoperator.

In QA, this operator differential is defined by(
df

dÂ

)
=

∫ 1

0
dλf (1)(Â − λδA), (4)

where δA = [Â, ].
The advantage of this definition is that the operator Taylor

expansion is expressed in the following simple form:

f (Â + Ĉ) = f (Â) +
∞∑

n=1

1

n!

(
dnf

dÂn

)
Ĉn, (5)

where(
dnf

dÂn

)
= n!

∫ 1

0
dλ1 . . .

∫ λn−1

0
dλnf

(n)

(
Â −

n∑
i=1

λiδ
(i)
A

)
,

(6)
with

δ
(i)
A Ĉn = Ĉn−i(δAĈ)Ĉi−1. (7)

Moreover, when Ât is a function of a c-number t , we have

df (Ât )

dt
=

(
df

dÂt

)
dÂt

dt
. (8)

Several useful relations for δA are summarized as

[Â,δA] = 0, f (Â − δA)Ĉ = Ĉf (Â), (9a)

δAĈ = −δCÂ, eaδAĈ = eaÂĈe−aÂ. (9b)

Let us apply the above definitions to an operator given by
the following SDE:

dÂt = L̂tdt +
√

2νT dBt , (10)

where dÂt = Ât+dt − Ât . Using the operator Taylor expan-
sion for f (Ât + dÂt ) and Eq. (10), we find

df (Ât ) =
[∫ 1

0
dλf (1)(Ât − λδAt

)L̂t + νTf (2)(Ât )

]
dt

+
√

2νT f (1)(Ât ) ◦i dBt (11)

=
(

df (Ât )

dÂt

)
◦s dÂt . (12)

Here the terms of O(dt3/2) are dropped. The products ◦i and
◦s are, respectively, given by the Ito definition,

f (Ât ) ◦i dBt ≡ f (Ât )(Bt+dt − Bt ), (13)

and the Stratonovich definition,

f (Ât ) ◦s dBt ≡ f (Ât+dt/2)(Bt+dt − Bt ). (14)

This result is the operator extension of Ito’s lemma in the usual
stochastic calculus [17].

There is a convenient formula satisfied for operators Â and
dÂ, which have a constant commutator, [Â,dÂ] = const,(

df

dÂ

)
◦s dÂ =

(
dÂ − 1

2
δdA

)
◦s f (1), (15)

where δA ◦s Ĉ = Â ◦s Ĉ − Ĉ ◦s Â.

B. Commutation relation

By applying QA, the differential of the commutator of x̂t

and p̂t in our model is

d[x̂t ,p̂t ] = − ν

m
dt[x̂t ,p̂t ] + O(dt3/2). (16)

We consider that the quantum Brownian particle starts to
interact with the classical heat bath at the initial time t = 0
and thus [x̂0,p̂0] = i�. Using this condition, the solution of
the above equation is

[x̂t ,p̂t ] = i�e−νt/m ≡ i�γ (t). (17)

One can see that the commutator vanishes in the asymptotic
limit in time and then x̂t and p̂t behave as classical variables.
This time dependence is the nature of Eq. (1) and is irrelevant
to the properties of QA. In fact, for the case of V = 0, we can
directly solve Eq. (1) and confirm that Eq. (17) is satisfied.

It should be noted that our model is different from Kanai’s
model where a damping harmonic oscillator is quantized,
although a similar time-dependent commutator is obtained.
In fact, a coupling to a classical heat bath is not considered in
Kanai’s approach [18].

C. Wigner function and equilibrium distribution

The above behavior of the commutator indicates that our
model relaxes toward a classical equilibrium state. To see this
relaxation, we introduce the Wigner function,

ρW (x,p,t) = 〈〈δ(x − x̂t + δxt
/2)δ(p − p̂t )〉〉, (18)

where 〈〈 〉〉 denotes a double expectations: one is for the
Wiener process E[ ] and the other for an initial wave function
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|ψ0〉,
〈〈Â〉〉 = 〈ψ0|E[Â]|ψ0〉 = E[〈ψ0|Â|ψ0〉]. (19)

Note that the initial wave function is independent of the Wiener
process and the order of the quantum and stochastic averages
can be exchanged. The δ function here is defined by the integral
form δ(x) = 1

2π

∫
dkeikx .

The definition by Eq. (18) is different from the traditional
expression of the Wigner function [19] but still gives the
same result. One can see from this expression that the Wigner
function is reduced to the classical phase space distribution in
the classical limit.

Using QA, the time derivative of ρW (x,p,t) is calculated
as

∂tρW (x,p,t)

=
[
− p

m
∂x + V (1)(x,λt )∂p + ν

m
∂pp + ν

β
∂2
p

]
ρW (x,p,t)

+�(x,p,t), (20)

where β−1 = kBT and

�(x,p,t) =
∞∑
l=1

V (2l+1)(x,λt )

(2l + 1)!

(
−�

2

4
γ 2(t)

)l

∂2l+1
p ρW . (21)

In the vanishing limit of dissipation, ν → 0, Eq. (20) is
reduced to the well-known result in quantum mechanics [19].
In the classical limit, � → 0 and/or in the asymptotic limit in
time t → ∞, � disappears and Eq. (20) coincides with the
Kramers (Fokker-Planck) equation of the classical Brownian
motion [3].

The Wigner functions for various quantum open systems are
discussed in Ref. [20] and one of them is the case of a quantum
Brownian motion with a noise operator. Then the Wigner
function of this model is the same as Eq. (20), replacing the
factor γ (t) by 1. However, the definition of the noise operator
used there is incomplete to formulate stochastic calculus.

For later discussion, we introduce the solution of
the Kramers equation by ρKR(x,p,t). Then ρW (x,p,t) =
ρKR(x,p,t) in the classical limit.

The stationary solution of Eq. (20) is given by

lim
t→∞ ρW (x,p,t) = ρeq(x,p) = 1

Zc

e−βH (x,p,λeq ), (22)

where Zc is the partition function, Zc = ∫
de−βH with the

phase volume d = dxdp, and

H (x,p,λeq ) = p2

2m
+ V (x,λeq), (23)

with a constant λeq = λt=∞. This is nothing but the classical
equilibrium distribution, as is expected from the behavior of
the commutator.

The Wigner function is not positive definite and thus cannot
be interpreted as a probability density. Instead, it should be
interpreted as an integration measure. As a matter of fact, we
can reexpress any expectation values of operators by integrals
with this measure. For example, the energy expectation value
is rewritten as

〈〈H (x̂t ,p̂t ,λt )〉〉 =
∫

dρW (x,p,t)H (x,p,λt ). (24)

III. QUANTUM STOCHASTIC ENERGETICS COUPLED
TO A CLASSICAL HEAT BATH

In the classical SE, the heat absorbed by a Brownian particle
is defined as the work exerted by the heat bath on the Brownian
particle. In fact, the interaction between the particle and the
bath is represented by the dissipative term [−νp̂t /m in Eq. (1b)
in the present model] and the noise term [

√
2νT dBt/dt]. The

heat absorbed from the heat bath is equivalent to the work
exerted by the heat bath on the Brownian particle, which
is thus defined by the product of a force and an induced
displacement [3].

Extending this idea to quantum systems, note that the force
and the displacement are operators and not commutable in
general. Here we propose a heat operator as

dQ̂t ≡
(

dx̂t − 1

2
δdxt

)
◦s

(
− ν

m
p̂t +

√
2νT

dBt

dt

)
. (25)

The operator δdxt
symmetrizes the order of the force and the

displacement operators.
By using the properties in QA, in particular Eq. (15), we

can show that the heat operator satisfies the following energy
balance:

dH (x̂t ,p̂t ,λt ) = dQ̂t + dŴt . (26)

Here the work operator exerted by an external force is defined
by

dŴt ≡ ∂λV (x̂t ,λt ) ◦s dλt , (27)

because the external force changes the form of V through its λt

dependence. This energy balance (26) corresponds to the first
law of thermodynamics and is equivalent to that in the classical
SE, except for the difference of operators and c-numbers. Note
that the energy balance is satisfied not for ensembles but for
operators.

The expectation value of the heat operator has an upper
bound. To see this, we introduce a function,

S(t) = SSH (t) + SME(t), (28)

where

SSH (t) = −kB

∫
dρW (x,p,t) ln |ρW (x,p,t)|, (29)

SME(t) = kB

∫ t

ds

∫
d

[
�(x,p,s) ln |ρW (x,p,s)|

−βνδ(�)ρW (x,p,s)
{ p

m
+β−1∂p ln|ρW (x,p,s)|

}2
]
.

(30)

Here δ(�)ρW (x,p,t) ≡ ρW (x,p,t) − ρKR(x,p,t) and repre-
sents the modification of the phase space distribution by
quantum fluctuations. The first term SSH (t) is the Shannon
entropy, calculated by using the Wigner function instead of
a probability distribution. The second term SME(t) contains
the memory effect and thus the behavior of S(t) depends on
the hysteresis of the evolution. Note that SME(t) is induced by
quantum fluctuations and thus vanishes in the classical limit,
leading to S(t) = SSH (t).
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TABLE I. Comparison of the classical and quantum SE. We
introduce F (pt ,dBt ) ≡ − ν

m
pt + √

2νkBT dBt

dt
.

Heat Upper bound

Classical dxt ◦s F (pt ,dBt ) T dSSH /dt

Quantum (dx̂t − 1
2 δdxt

) ◦s F (p̂t ,dBt ) T d(SSH + SME)/dt

Then we can show the following inequality:

T
dS

dt
−

〈〈
dQ̂t

dt

〉〉
= ν

∫
d ρKR

{ p

m
+ β−1∂p ln |ρW |

}2
.

� 0. (31)

The right-hand side on the first line is positive definite
and vanishes when ρW = ρeq . Therefore the upper bound
of the expectation value of the heat flux is characterized by
the time derivative of S(t). This inequality corresponds to the
second law of thermodynamics. As a matter of fact, S(t) can
be interpreted as the thermodynamic entropy in equilibrium,
because

S|ρW =ρeq
= SSH |ρW =ρeq

= 〈〈Ĥ 〉〉
T

+ kb ln Zc, (32)

where Zc is the partition function defined above.
In the classical limit, our Wigner function coincides with

the phase space distribution ρKR as is discussed above and
Eq. (31) is reduced to T dSSH /dt � E[dQt/dt], which is the
result in the classical SE [3]. That is, our quantum SE has a
consistent classical limit for the first and second laws. See also
Table I for the classical definition of dQt .

The most important nature of the above result is the
appearance of the memory effect in SME(t) induced by
quantum fluctuations. As a consequence, it is expected that the
thermal efficiency of quantum heat engines will be different
from that of the classical model. To see this effect formally,
let us consider two processes interacting with different heat
bath of temperatures Tl and Th (Tl < Th). Applying Eqs. (26)
and (31), the work per unit time extracted by interacting with
the heat bath of Ti has an upper bound given by

− d〈〈H 〉〉i
dt

+ Ti

dSi

dt
, (33)

where the index i(= l,h) represents a quantity observed in
each system of Ti . Combining these and appropriate adiabatic
processes, we can construct a cycle and then the total work
extracted from this cycle WEXT has the following limitation:

WEXT � Tl�Sl + Th�Sh, (34)

where �Si is the time integration of dSi(t)/dt for a period
of the interaction with the heat bath of Ti . The right-hand
side depends on the memory effect. If this gives a negative
contribution, the efficiency can be smaller than that of
thermodynamics.

IV. CONCLUDING REMARKS AND DISCUSSION

In this work, we considered thermodynamic behaviors in
a quantum Brownian motion coupled to a classical heat bath.

We then defined a heat operator by generalizing the stochastic
energetics and showed the energy balance (first law) and the
upper bound of the expectation value of the heat operator
(second law). Our theory has a well-defined classical limit and
reproduces the results of the classical SE.

We observe additional restrictions for observables when
the classical SE is generalized to quantum systems. In fact,
the commutation relations of the heat operator are calculated
as

[p̂t ,dQ̂t ]i ≡ p̂t ◦i dQ̂t − dQ̂t ◦i p̂t = 0, (35a)

[x̂t ,dQ̂t ]i = 2i�

m

{
γ̇ (t)p̂tdt + γ (t)

√
ν

2β
dBt

}
, (35b)

where γ̇ (t) = ∂tγ (t). From the second equation, we can show

(�xt )

(
�

dQt

dt

)
� �

m
|γ̇ (t)〈〈p̂t 〉〉|, (36)

where �A =
√

〈〈Â2〉〉 − (〈〈Â〉〉)2. Therefore, there will exist
a limitation for the simultaneous measurement of quantum
thermodynamic quantities.

To generalize this approach to a system coupled to a
quantum heat bath, the noise term will be replaced by an
operator. In fact, an operator equation of a quantum Brownian
motion may be derived from an underlying microscopic theory
by employing systematic coarse-graining procedures such as
the projection operator technique, the influence functional
method, etc. [13,15,16]. Then the derived operator equation
contains a term identified with noise. This term is expected to
show stochastic behavior by taking the Markov limit, but there
is no proof so far and the properties of such an operator have
not yet been well understood [21,22]. Thus the introduction
of a noise operator is not a trivial task [13,23]. We are, in
particular, interested in whether completely positive maps can
be realized by introducing a noise operator.

Because of the classical treatment of the heat bath, this
model describes only a part of quantum fluctuations. Never-
theless, we still observed that quantum fluctuations can modify
thermodynamic behaviors qualitatively. In fact, we found the
appearance of the memory effect in the upper bound, which
can modify the qualitative nature of the maximum extractable
work in quantum heat engines. This result resembles Ref. [11],
where a limitation on maximum extractable work in a quantum
small system is discussed by analyzing the modification of
the Helmholtz free energy in the quantum information theory.
As is seen from Eq. (33), we can introduce another free
energy characterizing the work limitation as F̃ = 〈〈H 〉〉 − T S,
which coincides with the Helmholtz free energy for quasistatic
processes because of the memory effect in S. See also the
different conclusion in Ref. [10] for the effect of quantum
fluctuations in quantum heat engines.

Note that a possible entanglement between a Brownian
particle and a heat bath is not included in the present model.
To consider this effect, of course, we need to introduce a
noise operator which has a well-defined stochastic behaviors.
There is, however, another problem to deal with such an
entanglement. In the microscopic derivations of the classical
and quantum Brownian motions, it is normally assumed that
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there is no correlation between the system and bath density
matrices, at least initially [15,16]. Thus there exists a limitation
in the discussion of the system-bath entanglement in such a
dynamics.

The memory effect contains terms which have higher-order
derivatives in momentum and thus may survive even near
equilibrium for relativistic systems which have an energy
dispersion

√
p2 + m2 [5]. Then it will be interesting to

consider the application of quantum thermodynamics to the
physics of graphene.
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