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We investigate time series by mapping them to the complex networks using a parametric natural visibility
graph (PNVG) algorithm that generates graphs depending on arbitrary continuous parameter—the angle of view.
We study the behavior of the relative number of clusters in PNVG near the critical value of the angle of view.
Artificial and experimental time series of different nature are used for numerical PNVG investigations to find
critical exponents above and below the critical point as well as the exponent in the finite size scaling regime.
Altogether, they allow us to find the critical exponent of the correlation length for PNVG. The set of calculated
critical exponents satisfies the basic Widom relation. The PNVG is found to demonstrate scaling behavior. Our
results reveal the similarity between the behavior of the relative number of clusters in PNVG and the order
parameter in the second-order phase transitions theory. We show that the PNVG is another example of a system
(in addition to magnetic, percolation, superconductivity, etc.) with observed second-order phase transition
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The study of the time series with complex, fractal structure
presently attracts constant interest due to the rich potential of
engineering applications that cover a wide range of phenomena
from human cardiac rhythm variations to earthquakes and
turbulent flow [1–19]. The time series are examined by
means of different methods: conventional statistic (averages,
dispersions, etc.), power spectra calculations (the presence of
the 1/f noise, etc.), the fractal dimensional and multifractal
analysis, the presence of strange attractors, and the like.

The idea to investigate time series by mapping them to
the complex networks (graphs) [20–22] is very attractive. Two
advanced research areas are combined under this approach: the
methods of the nonlinear time series analysis [23–30] and the
theory of the complex networks [31–37]. It becomes possible
to apply the rich, well-developed methods of the complex
networks analysis to the investigation of the time series with a
complicated structure, such as the fractal time series.

Currently there are several algorithms to map time series
to the complex network. For instance, it was suggested in
[20] to build a network using the proximity of coordinates
in the Poincare section of the time series. Another type of
algorithms introduces the concept of visibility graph [21]. The
algorithm to build the natural visibility graph (NVG) was
proposed in [21]. Later in [22] a horizontal visibility graph
(HVG) algorithm was described.

The NVG and the HVG algorithms allow us to explore
the time series of complex structure associated with a variety
of phenomena: fluctuations of turbulent flows, stock market
indices, human cardiac dynamic, stochastic and chaotic series,
and others [13–19].

The generalization of the NVG algorithm was proposed
in [38]. The parametric natural visibility graph (PNVG)
algorithm assigns to each link of NVG a weight called the
angle of view, the PNVG consists of NVG links with the angle
of view less than the given angle of view α. Thus, each α

generates a new graph. Therefore, the PNVG algorithm allows

*Corresponding author: biv@akuan.ru

us to explore graph properties depending on the angle of view
α. The ability to change arbitrarily the angle of view α added
to the name of the algorithm the word “parametric,” we will
denote it also as PNVG(α).

In the present work we demonstrate that properties of
PNVG(α) behave similarly to the order parameter and the
correlation length in the theory of the second-order phase
transitions. Furthermore, to be short, we omit the term “similar
to” before all the terms using the phase transitions terminology,
for example, instead of “the parameter similar to the critical
exponent” we write for short “the critical exponent,” etc.

The paper is structured as follows. First, the algorithm to
construct the PNVG is described, then PNVG(α) is constructed
for a set of artificial and experimental time series and the detail
investigation of the relative number of clusters in PNVG(α) is
given. Finally, discussions and conclusions are presented.

I. PARAMETRIC NATURAL VISIBILITY
GRAPH ALGORITHM

The PNVG mapping algorithm was proposed by authors
and described in [38]. To construct the PNVG we use the time
series {ti , i = 1, . . . ,N}, which contains events time stamps,
for example, RR peak in the ECG, weather station data, etc.,
then a series of intervals are generated {x(ti) = ti+1 − ti , i =
1, . . . ,N − 1}. According to the procedure, all x(ti) values are
positive.

Initially the time series is mapped to the NVG [21].
The NVG mapping algorithm is presented schematically
in Fig. 1. In the time-interval plane (t , x(t)) the line
segments {((ti ,0) − (ti ,x(ti))), i = 1, . . . ,N − 1} are plotted,
points (ti ,x(ti)) will be treated as positions of NVG nodes on
that plane. The link between NVG nodes is considered to exist
only if the line connecting corresponding nodes do not cross
any line segment between them.

This way of graph constructing (see Fig. 1) allows us to
assign to every NVG link a natural temporal direction and a
weight equal to the angle between link direction and downward
direction; we call it the angle of view. The link of NVG belongs
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FIG. 1. Parametric natural visibility graph mapping algorithm. (a) PNVG selection criterion demonstration. (b) NVG and PNVG diagram.

to the PNVG if its angle of view is less than the given value of
angle of view α.

The PNVG selection criterion for the angle of view α =
π/2 is shown schematically in Fig. 1 top left. NVG links with
the angle of view lower than the angle of view α = π/2 (e.g.,
αi,i+2) are indicated by thick lines, links with angles larger
then α = π/2 (e.g., αi,i+3) thin lines. The NVG is composed
of both types of links, i.e., thin and thick lines. The PNVG
consists only of links marked by thick lines [see Fig. 1(b)].

A formal description of the PNVG mapping algorithm is as
follows:

(1) To build the NVG acc. to [21] using standard NVG
criterion for mapping{

(i,j ) ∈ NV G,x(tk) < x(ti) + (x(tj ) − x(ti))

× tk − ti

tj − ti
, i < k < j

}
, (1)

where i and j are numbers of two arbitrary time events ti < tj
and tk is any event between them ti < tk < tj .

(2) To set for every link of NVG the direction and the
weight (the angle of view).

All the NVG links are attributed to the natural temporal
direction, i.e., the link (i,j ), i < j is considered to be directed
from i to j . The weight is the angle on the time series plot
between downward direction and direction of the line going
from x(ti) to x(tj ) [see Fig. 1(a)]

αij = arctg
x(tj ) − x(ti)

tj − ti
, i < j. (2a)

(3) To select links from the above created directed and
weighted graph according to the rule that uses introduced
arbitrary parameter—the angle of view α, 0 � α � π :

{(i,j ) ∈ PNVG(α), αij < α}. (2b)

One can find from rules 1–3 that the PNVG(α) is a directed
acyclic graph, the PNVG(α) can be either a connected or
disconnected graph.

In the present work PNVG(α) is constructed for three
artificial and three experimental time series. Artificial time
series have the following distributions of intervals: the uniform
random distribution (3a), the Poisson distribution (3b), and
the Weierstrass distribution (3c) having a fractal dimension
D. Let {ri, i = 1, . . . ,N + 1} be a random variable uniformly
distributed on the interval [0,1]:

di = ri, t1 = 0, ti = ti−1 + di−1, x(ti) = di, (3a)

di =−1/λ ln(ri), t1 = 0, ti = ti−1 + di−1, x(ti) = di

(3b)

di =
√

2σ

√
1 − b2D−4

√
1 − b(2D−4)(M+1)

×
M∑

m=0

{b(D−2)m sin[2π (sbmi + r)]}

t1 = 0, ti = ti−1 + |di |, x(ti) = di. (3c)

The following parameter values are chosen: for the Poisson
distribution (3b) λ = 1, for the Weierstrass distribution (3c)
D = 1.3, σ = 3.3, b = 2.5, s = 0.005, M = 10, the modulus
in (3c) was used because the Weiesrstrass distribution is
alternating.

II. THE RELATIVE NUMBER OF CLUSTERS AS THE
ORDER PARAMETER

All possible properties of NVG can be calculated also
for PNVG [38]. For example, the average node degree, the
clustering coefficient, etc. Such PNVG parameters become
dependent on the angle of view, however, there are properties
unique to the PNVG.
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FIG. 2. The relative number of clusters Q(α) for uniformly
distributed time series (3a). In the inset the order parameter m(T )
of the second-order phase transition as a function of temperature T ,
Tc is the critical temperature.

The relative number of clusters Q(α) is the number of
clusters in PNVG (α) divided by the total number of nodes N

in the graph. The cluster is a set of interconnected nodes of the
graph, a single node is also considered as a cluster.

The relative number of clusters in the PNVG(α) also
depends on α but this property does not exist for the NVG
because the NVG always consists of one and only one cluster.

The PNVG (α) with a small, looking downward angle
of view (see Fig. 1) consists of N single node clusters,
therefore Q(α < π/4) = 1. Beginning from α = π/4 the
PNVG algorithm generates links, new multinode clusters are
emerging, and the relative number of clusters Q(α) gradually
decreases. Finally, at the zenith angle of view α = π all the
clusters merge into one and Q(α = π ) = 1/N , in other words,
for large N one always get Q(α = π ) ≈ 0. The numerical
simulations show that the relative number of clusters tends to
zero Q(α → π/2) → 0 already at α → π/2.

Figure 2 shows Q(α) for time series with the uniform
distribution (3a) and in the inset a schematic behavior of
the spontaneous magnetization of a ferromagnet as a function
of temperature is presented. At a certain temperature Tc (the
Curie temperature) the specific magnetization m(T ) becomes

zero [39] and the ferromagnet becomes the paramagnet. Such
a transition is called a second-order phase transition. The
temperature Tc at which this transition occurs is called the
critical temperature (the critical point) and the m(T ) is called
the order parameter.

Figure 2 reveals that at a certain critical angle of view αc =
π/2, the PNVG (αc) has almost all the nodes interconnected
and it consists of several clusters, hence Q(α � αc) ≈ 0 for
large N .

The order parameter has a power-law behavior (4) near
the critical point when the size of the investigated system
is greater than the correlation length. The corresponding
so-called critical exponent or critical index β is the main
parameter of the second-order phase transition:

m(T ) ∼ (−t)β, t = (T − Tc)/Tc, (4)

where t = (T − Tc)/Tc is the proximity to the critical point of
phase transition.

Similar behavior is demonstrated by many other systems
like antiferromagnets, ferroelectrics (where the order param-
eter is the spontaneous electric polarization), the transition of
liquid helium in the superfluid state, etc.

According to Landau’s mean field theory [39], the value
of the index is β = 1/2. In this theory the fluctuations of
the order parameter are ignored. Ginzburg and Levanyuk [39]
introduced the criterion of applicability of Landau’s theory.
In some systems, the criterion is met, for example, for the
superconducting transition and, accordingly, β = 1/2. In the
cases when the criterion is not met, the theory of phase
transitions becomes more complicated and critical exponents
cannot be found exactly. In this case the critical index value of
the order parameter is approximately β ≈ 0.3.

The proximity to the critical angle of view αc will be
denoted further by τ = (α − αc)/αc. The Q(τ ) was calculated
numerically for artificial time series (3a)–(3c) having N = 105

intervals. Figure 3(a) shows the results obtained by averaging
ten different generated time series of each type (3a)–(3c). The
error of each data point presented in Fig. 3(a) is less than 3%.
Critical indices and their errors are listed in Table I.

Figure 3(b) presents Q(τ ) for the experimental time series.
The time series of RR intervals of healthy human cardiac
rhythm were taken from [40]. Plotted data were obtained by
averaging 25 RR series (nsr01–nsr25 acc. to [40]), the length of

(a) (b)

FIG. 3. The relative number of clusters Q upon the proximity to the critical angle τ = (α − αc)/αc in a log-log scale. (a) Artificial time
series (3a)–(3c). (b) Experimental time series: RR intervals of healthy human cardiac rhythm, solar flares, and seismic activity.
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TABLE I. Critical exponents, calculated.

Critical exponent

Distribution β ϑ ν = β/ϑ

Uniform distribution (3a) 0.49 ± 0.02 0.88 ± 0.04 0.56 ± 0.04
Poisson distribution (3b) 0.88 ± 0.03 0.87 ± 0.05 1.01 ± 0.06
Weierstrass distribution (3c) 0.96 ± 0.09 0.92 ± 0.08 1.04 ± 0.13
RR intervals of healthy human cardiac rhythm [49] 1.24 ± 0.08 0.83 ± 0.08 1.49 ± 0.17

RR-intervals time series varied in the range 6−11 × 105. Time
series of the solar flares beginnings was observed in 2002–2012
by the HESSI project [41], more than 6 × 104 flares. Also the
time series of the earthquakes with a magnitude higher than
3.5 on the Richter scale occurring in 1960–2010 was based on
[42], the length of series is more than 2 × 104 events.

For all the above time series the Q(τ ) demonstrates the
power-law behavior and allows us to obtain the critical
exponent

Q(τ ) ∼ (−τ )β, τ = (α − αc)/αc, α < αc. (5)

The critical exponents β (5) were calculated on the base
of data presented in Fig. 3. The lowest calculated value of the
critical index β = 0.49 ± 0.02 has artificial time series with
the uniform distribution (3a), the value coincides with β of
Landau’s mean field theory [39]. Critical indices of all other
distributions both artificial (3b) and (3c) and experimental
were higher (see Table I).

It can be shown that β = 1/2 for the time series generated
by the uniform random distribution (3a). To justify it, we
assume that the clusters in the PNVG(α), having a certain
average size, are formed with equal probability irrespective of
α̃, the deviation from the critical angle of view αc, α̃ = αc − α,
α̃ � 1. To simplify the calculations, we assume also that the
distance between nodes (see Fig. 1 and the description of the
PNVG algorithm) is the constant equal to 1.

This allows us to find the probability of emerging of the
cluster with the average size L at the angle α̃ as the product of
probabilities that each next node has to be shorter for not less
than the tg α̃ value (see Fig. 1), i.e.,

P (α̃,L) = 1

2L

L∏
n=1

(1 − ntgα̃). (6)

According to the first assumption P (α̃,L) = P (kα̃,Lk),
where k > 1 and Lk is the average length of a cluster at the
angle kα̃. In this way we get

1

2L

L∏
n=1

(1 − ntg α̃) = 1

2Lk

Lk∏
n=1

(1 − ntg kα̃). (7)

Furthermore, by performing logarithm (7) and taking into
account that tg α̃ at small angles α̃ < kα̃ � 1 has the value of
tg α̃ ≈ α̃ and considering terms with the highest power of α̃

in obtained relations we get α̃L2 = kα̃L2
k and correspondingly

L

Lk

=
√

k. (8)

Thus, the ratio of the average cluster sizes in the PNVG
does not depend on the angle of view. The number of

clusters is inversely proportional to their size, respectively,
β = 1/2 which corresponds to the above presented numerical
simulation results.

III. PHASE TRANSITION NEAR CRITICAL POINT

Another feature of the Q(τ ) behavior at |τ | � 1 can be
seen from Fig. 3—Q(τ ) is independent on τ at |τ | → 0 in
the 
 area near the critical point when α approaches αc. The
theory of the second-order phase transitions [39] predicts such
behavior of the order parameter in the proximity to the critical
point. The presence of so-called external field h causes such
an effect. The order parameter in the above case depends only
on h,

m(t) ∼ h1/δ. (9)

Note that at the external field h > 0 the order parameter
m(t) above the critical point t > 0 (T > Tc) is not zero and
depends on t ,

m(t) ∼ ht−γ . (10)

There is the relation between critical exponents above β,
below γ critical point and δ is the exponent on the critical
point [39,43,44], i.e., Widom relation [45]

βδ = β + γ. (11)

The size of the area near the critical point 
 can be found
from the condition that the values of the order parameter m(t)
above and below the phase transition point are equal:


β = h
−γ , 
 = h
1

β+γ . (12)

Different experimental time series [Fig. 3(b)] have different

 sizes, which are determined by the time series nature and
the measurement accuracy of studied time series.

Consider the effect of measurement accuracy on Q(α) using
the time series with the uniform distribution (3a). Let us
convert initial (3a) time series x(ti) to the series with only M

different values or levels by a simple transformation x̃(ti ,M) =
ceil(x(ti)M)/M , where M is the number of sampling levels,
ceil(a) rounds a upward. Smaller M means that x̃(ti ,M) is
a rougher approximation of x(ti) time series. For example, if
M = 2 then the time series x̃(ti ,M) contains only two values
1/2 and 1.

Figure 4 shows the shapes of Q(τ ) for uniformly dis-
tributed (3a) time series for different sampling levels M . The
manner of how the 
(M) values are found is schematically
plotted in Fig. 4(a) and calculated data are presented in
Fig 4(b). The 
(M) has power-law behavior with critical
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(a) (b)

FIG. 4. The influence of sampling levels number M on (a) the relative number of clusters Q(τ ) for the uniform distribution (3a) time series
and (b) the size of the area near the critical point 
 upon the inverse of sampling levels 1/M .

exponent 
,


 = (1/M)
, 
 = 1.98 ± 0.04, (13)

where, of course, the 
 is given for the uniformly distributed
(3a) time series.

Also as it follows from Fig. 4(a), the value Q(τ,1/M) at
|τ | � 
 relates to 1/M in a simple way:

Q(|τ |,1/M) = 1/M. (14)

Thus, on the one hand, from (14) and (13) we get

Q(|τ | � 
) = 
1/
, (15)

and, on the other hand, according to (5),

Q(|τ | = 
) = 
β, (16)

which implies that the critical exponents 
 and β relates as
follows:


 = 1/β. (17)

Equation (17) is in conformity with the numerical experi-
ments which gives 
 = 1.98 ± 0.04 (13) and β = 0.49 ± 0.02
for time series with random uniform distribution (3a).

The relationship between 1/M and external field h can be
found also. According to (12) and (13) we obtain

(1/M)
 = h
1

β+γ , (18)

where, in view of (17)

h = (1/M)
(β+γ ) = (1/M)
β+γ

β . (19)

When h �= 0 the order parameter above the critical point
is not equal to zero and it has to demonstrate a power-law
behavior (10) upon the proximity to the critical point. The
critical index γ , which describes the behavior of Q above αc:

Q(τ > 0,h �= 0) ∼ τ−γ . (20)

The numerical simulation for the random uniform distribu-
tion time series (3a) gives

γ = 0.097 ± 0.008. (21)

IV. FINITE SIZE SCALING: L � ξ

The case when the size of the system L is less or of the
same order as the correlation length ξ changes the behavior
of the order parameter, for example, m(T ) at T = Tc (more
correctly, inside the 
 area near the critical point [39]). The
relationship (4) has to be replaced with the relation [46]

m(L) ∼ L−ϑ , ϑ = β/ν, (22)

where ϑ is the critical exponent of the finite size scaling and
ν is that of the correlation length

ξ ∼ |Tc − T |−ν . (23)

Such behavior of the order parameter m(T ) is called a finite
size scaling. In the case when the size of the system L 	 ξ ,
any measured system property does not depend on the system
samples, i.e., the properties of the system are self-averaged. In
the opposite case, when L � ξ , the order parameter m(T ) has
to be found as a time or sample averaged value. For the PNVG
this means that for L � ξ the relative number of clusters Q has
to be calculated as the average value over the system samples.

Having known the critical exponent β (6) and the critical
exponent of the finite size scaling ϑ (22) one can find the
critical exponent of the correlation length [39]

ν = β/ϑ. (24)

Another verification of the fact that Q is the order parameter
analog, is the fact that for the short N < ξ time series Q

behaves as

Q(τ = 0,N ) ∼ N−ϑ , (25)

where N is the length of the time series and ϑ is the critical
index of finite size scaling of Q.

Values of Q(τ = 0,N ) are calculated numerically for the
artificial time series (3a)–(3c) and for the time series of RR
intervals of healthy human cardiac rhythm Fig. 5.

The time series of RR intervals of healthy human cardiac
rhythm were obtained from the 24 time series of RR intervals
(nsr26–nsr50 acc. to [40]) by sequentially slicing them into
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(a) (b)

FIG. 5. The plot of Q(τ = 0,N ) upon the length of the time series N . (a) Artificial time series (3a)–(3c). (b) RR intervals of healthy human
cardiac rhythm.

pieces of certain length without overlays. The results of
calculations of the critical exponents are presented in Table I.

Calculated critical exponents ϑ of Q(τ � 
,N ) depend
upon the nature of the time series weakly, while the exponents
β strongly depend on the time series (see Table I). Thus, the
appropriate critical exponents of the correlation length ν (7)
depend strongly on the original time series nature [38].

V. DISCUSSION

In this study we found that the behavior of the relative
number of clusters Q(τ ) in the graphs produced by the PNVG
algorithm has the same behavior as the order parameter in the
theory of the second-order phase transitions. It is argued by
the following important facts.

First, there exists the critical point at the angle of view αc =
π/2. Near the critical point the relative number of clusters Q(τ )
demonstrates the power-law dependence upon the proximity to
the critical point τ = (α − αc)/αc. Critical exponents of Q(τ )
above β and below γ the critical point αc = π/2 are calculated.

Second, the Q(τ ) value depends on the length of the time
series to a power law when the length of the time series is less
than the correlation length of the PNVG, as it should be in the
theory of the second-order phase transitions.

Third, inside the area near the critical point, the presence
of the external field analog h originates the Q(τ ) to be
independent on τ but the power law dependent on h.

Fourth, the numerical values of the critical exponents satisfy
the basic Widom [45] relation.

All of these patterns can be concisely formulated as the
scaling hypothesis (relation).The relative number of clusters
Q(τ,h) depends on two variables: τ the proximity to the critical
point, and h the external field

Q(τ,h) = h1/δf (τ/h1/βδ) (26)

and can be expressed also in the form of the scaling function
f (z) of the single variable which has following forms of
asymptotic behavior:

f (z→−∞) ∼ (−z)β, f (z→0) = const, f (z→+∞) ∼ z−γ ,

(27)

where

βδ = β + γ. (28)

Up to notation the relations (26)–(28) match those in the
theory of the second-order phase transitions.

Note that the (26)–(28) take place in the percolation
theory [47,48] also, where the role of the order parameter
is played by the density of the infinite cluster P (τ,h), where
τ = (p − pc)/pc, p is the concentration of connected links
(nodes) and the external field h is associated with the
Kasteleyn-Fortuin demon [49].

The conductivity of a randomly inhomogeneous medium
near the percolation threshold with different phase

TABLE II. Critical exponents.

Critical exponent

Systems with the second-order phase transition β γ δ ν

PNVG (current study) 0.49 0.10 1.18 0.56
The Landau’s mean field theory 1/2 1 3 1/2
Fluctuation theory of the second-order phase transition 3D 1/3 4/3 5 2/3

2D 5/36 43/18 18.14 1/33Percolation theory 3D 0.41 1.80 4.78 0.88
2D 1.3 1.3 2 1.33Effective conductivity in percolation structurea
3D 2 0.72 1.36 0.88

aIn the effective conductivity theory exponents β and γ are denoted as t and q, respectively.
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conductances σ1 	 σ2 behaves in the same way as (26)–(28).
The role of the order parameter plays the normalized effective
conductivity σeff(τ,h)/σ1 and the external field is the ratio of
phase conductivities h = σ2/σ1. Critical exponents of systems
with the second-order phase transition that are mentioned
above are listed in Table II.

VI. CONCLUSIONS

The use of the algorithm of mapping time series to the
complex networks (graphs) particularly to the parametric
natural visibility graphs allows us to discover and explore
properties of time series including those originated by the
parametric graphs features. The property investigated in this
study—the relative number of clusters in such a graph

demonstrates the scaling behavior and characterized by a set
of critical exponents satisfying the Widom relation.

Critical exponents above and below the critical point for the
relative number of clusters in the parametric visibility graphs
were calculated as well as the exponents in the finite size
scaling regime. Altogether, this allowed us to find the critical
exponents of the correlation length for generated graphs.

As a result, the similarity is found between the behavior
of the relative number of clusters in the parametric visibility
graphs and the order parameter in the second-order phase
transitions theory.

Thus, we added to the list of systems with observed second
order phase transition—magnetic systems, binary mixtures,
alloys, superfluidity and superconductivity, percolation (geo-
metrical and “physical”) a new system—the parametric natural
visibility graphs.
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