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We analyze nonperturbative renormalization group flow equations for the ordered phase of Z2 and O(N )
invariant scalar models. This is done within the well-known derivative expansion scheme. For its leading order
[local potential approximation (LPA)], we show that not every regulator yields a smooth flow with a convex free
energy and discuss for which regulators the flow becomes singular. Then we generalize the known exact solutions
of smooth flows in the “internal” region of the potential and exploit these solutions to implement an improved
numerical algorithm, which is much more stable than previous ones for N > 1. After that, we study the flow
equations at second order of the derivative expansion and analyze how and when the LPA results change. We
also discuss the evolution of the field renormalization factors.
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I. INTRODUCTION

The low temperature properties of most equilibrium sta-
tistical systems draw great physical interest. For example,
they include the liquid phase in the liquid-vapor transition or
the ferromagnetic phase of a magnet. Among the quantities
of interest on these phases is the effective potential that
determines the equation of state (and, for example, the
magnetization as a function of the temperature in a magnet).
These properties are often disregarded for many reasons.
First, they are nonuniversal (they depend on the microscopic
Hamiltonian of the system). Second, they are difficult to handle
because typically the low temperature phase includes intense
interactions that are very difficult to treat within standard per-
turbative means. More precisely, the low temperature regime
of typical statistical models is notoriously more difficult to
handle than the high temperature one. At low temperature, it
is usual that the coexistence of two different phases dominates
the free energy and this property is not easily handled by mean
field methods or perturbative expansions. This manifests itself
as violations of various exact thermodynamics properties at
mean field level, such as the convexity of the free energy
in terms of the order parameter. Convexity can be restored by
hand in mean field treatments via the Maxwell construction but
it is unclear how this strategy can be followed systematically
when a perturbative expansion is performed around the mean
field. The reason is that convexity in the coexistence region
is associated with large fluctuations in the configuration space
and not with small ones around a mean field analysis. Another
difficulty is that such large distance effects must be analyzed
together with short distance behavior that typically dominates
nonuniversal properties as the phase diagram. One then needs
a method capable of treating all phenomena including very
different length scales.

Since the 1990s a method has been developed [the so-called
nonperturbative renormalization group [1–5] (NPRG)], that
can easily handle the convexity properties of the free energy.
It was quickly understood [6–12] that one of the simplest
approximations implemented in such a scheme naturally yields
a convex free energy. This approximation scheme, called local
potential approximation (LPA), is also able to address success-
fully a large variety of statistical problems at equilibrium, out
of equilibrium (for reviews on the subject see for example [13–

15]), or even in more difficult contexts, such as in the presence
of quenched disorder (see for example [16]). Moreover, this
approximation scheme can be seen as the leading order of
a systematic expansion of vertex functions in wave numbers
called the derivative expansion (DE) [13,14,17]. The DE has
shown to be extremely successful [13,14]. It has been pushed
in the case of a single scalar Ginzburg-Landau model up to
order O(∂4) [18] obtaining results with a quality comparable
to those of Borel resummed six order perturbative expansion.1

Given these previous results it is natural to extend the
analysis to higher orders of the DE for models with O(N )
symmetry [12]. One of the difficulties is that although the
LPA preserves the convexity of the free energy, its numerical
implementation is generically unstable: at sufficiently small
RG scales, the numerical flow becomes unstable. Even if the
convexity shows up, the free energy approaches singular points
of the flow equations and it is difficult to push the solution nu-
merically to low momentum scales. This is in radical contrast
with what happens in the high temperature phase or around
a critical point. Given this problem, sophisticated numerical
methods have been employed in order to solve the LPA
equation at low renormalization group scales [11,20,21]. The
difficulty with such approaches is that they are difficult to im-
plement at next-to-leading orders of DE and even more difficult
when applied to more sophisticated approximation schemes
such as the Blaizot-Méndez-Wschebor scheme [22–24].

A word can be said on the comparison of NPRG results
within the DE with Monte Carlo simulations. One could
wonder what is the point of using semianalytical results if one
has at our disposal simulations that can, at least in principle
for most models, be made as precise as we want. While
simulations are extremely useful, NPRG analysis can be a
valuable complement for many reasons. First, even if NPRG
approximations are usually harder to control than systematics
in Monte Carlo simulations, some of the systematics of
simulations are not present in NPRG. For example, NPRG
studies can cover orders of magnitudes in length scales and
they are not limited by finite volumes or coarse lattices.

1The analysis of the derivative expansion at order O(∂6) [19] has
been presented in various conferences.
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Moreover, the numerical cost of NPRG studies is usually
many orders of magnitude lower than Monte Carlo studies.
In practice, it is convenient to exploit in a complementary way
both approaches.

One last comment is necessary before going to the content
of the article. One could consider two ways to avoid the
analysis of the approach of the convexity of free energy.
In fact, one must frequently consider the free energy in an
external magnetic field (or, for liquid-vapor transition in the
presence of a chemical potential). At a uniform nonzero
external field, in many cases the behavior of the free energy
stabilizes before the singularities associated with the approach
to the convexity take place. In such a case, one could just
stop the flow and ignore the regions of the free energy with
a nonconvex behavior. The problem with such an approach
is that the systematic errors associated with such procedures
can not be made arbitrary small. Moreover, in many cases
the singularities are approached before the nonflat part of the
free energy stabilizes. This does not exclude the use of this
procedure but limits its range of applicability. For example, this
procedure, together with the approximation proposed in [22],
has been exploited recently with success in the study of bound
states in 3-d scalar theories in the ordered phase near the
critical point [25] but it is unclear whether such procedure
can be used at lower temperatures. The second strategy is to
consider the possibility of making a field expansion around
the minimum of the potential [13]. This, in a way, decouples
the physics of the “nonconvex” part of the potential from the
convex one. However, the field expansion works very badly at
dimensions lower than three even at criticality (it breaks down
even at very high order of the expansion at dimensions around
2.8 because of the proliferation of multicritical points [26]).
Even in dimension three and higher, this procedure is unable
to treat the case of first order phase transitions or cases where
the full field behavior is needed. This is important in order to
have access to the equation of state or even to study the phase
diagram, for example, in the liquid-vapor transition where no
symmetry Z2 is present far from the critical point.

In the present article, we extend previous studies of the
low temperature phase of Ginzburg-Landau models within
the NPRG. First, we improve previous results in the LPA
approximation to the O(N ) model, analyzing in detail the
dependence in the regulator and the number of fields. We
show that, contrarily to what could be expected, the numerical
behavior of flow equations is much more stable when N >

1 than for N = 1. In both cases we improve and exploit
analytical results for the free energy in the coexistence region
in order to implement a simple numerical algorithm that allows
us to explore much smaller renormalization group momentum
scales. Then, we extend the numerical results for O(N ) models
to the DE at next-to-leading order.

II. NONPERTURBATIVE RENORMALIZATION GROUP
AND THE DERIVATIVE EXPANSION

Before considering the behavior of the effective action in
the low temperature phase, let us recall briefly the origin and
uses of NPRG equations. We present this formalism for a
generic Euclidean field theory with N scalar fields ϕi , denoted
collectively by ϕ, with Hamiltonian H [ϕ]. Then, we specialize

to the case where H [ϕ] is O(N ) or Z2 symmetric. The NPRG
equations, intimately related to Wilsonian renormalization
group equations, connect the Hamiltonian to the full Gibbs
free energy (generating functional of 1-PI vertex functions).
This relation is obtained by controlling the magnitude of long
wavelength field fluctuations with the help of an infrared
cutoff, which is implemented [3–5,27] by adding to the
Hamiltonian H [ϕ] a regulator of the form

�Hk[ϕ] = 1

2

∫
ddq

(2π )d
[Rk(q)]ij ϕi(q)ϕj (−q), (1)

where [Rk(q)]ij denotes a family of k-dependent “cutoff
functions” to be specified below. Above and below, sums are
understood for repeated internal indices. The role of �Hk is to
suppress the fluctuations of ϕ(q) with momenta q � k, while
leaving unaffected the modes with q � k. Accordingly, typi-
cally Rk(q)ij ∼ k2δij when q � k, and Rk(q)ij → 0 quickly
when q � k. Therefore, the partition function with an external
source J is modified as

Zk[J ] =
∫

Dϕ exp

{
−H [ϕ] − �Hk[ϕ] +

∫
Jϕ

}
. (2)

One can define an effective Gibbs free energy correspond-
ing to H [ϕ] + �Hk[ϕ] denoted by �k[φ] as a (modified)
Legendre transformation of the free energy given by

�k[φ] = −lnZk[J ] +
∫

Jϕ − �Hk[φ], (3)

where φ is the average field; φi(x) = 〈ϕi(x)〉 in the presence
of external sources. When k = 	, with 	 the microscopic
scale of the problem, all fluctuations are suppressed and �	[φ]
coincides with the Hamiltonian. As k is lowered, more and
more fluctuations are taken into account and when k → 0, all
fluctuations are included and �k=0[φ] becomes the Gibbs free
energy �[φ] (see, e.g., [13]). The flow of �k[φ] with k is given
by the Wetterich equation [3–5,27]:

∂k�k[φ] = 1

2

∫
ddq

(2π )d
tr

{
∂kRk(q2)

[
�

(2)
k + Rk

]−1
q;−q

}
, (4)

where �
(2)
k denotes the matrix of second derivatives of �k with

respect to φ and the trace is taken over internal indices.
From now on, we specialize to O(N )-symmetric models.

Since we are interested in the following in nonuniversal
properties such as the free-energy for T < Tc, we need in prin-
ciple to consider general O(N )-invariant Hamiltonians. NPRG
equations have no difficulties in handling non-renormalizable
Hamiltonians and can even include a realistic microscopic
structure of a given system such as a specific lattice model
in order to analyze nonuniversal properties [28,29]. However,
for the purposes of the present article it is enough to choose a
simple ϕ4 Ginzburg-Landau Hamiltonian given by

H [ϕ] =
∫

ddx

{
1

2
∇ϕi(x) · ∇ϕi(x) + r

2
ϕi(x)ϕi(x)

+ u

4!
[ϕi(x)ϕi(x)]2

}
. (5)

In order to preserve the O(N ) symmetry all along the flow, it
is mandatory to consider a regulator respecting this symmetry.
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This implies the use of a regulator of the form

[Rk(q)]ij ≡ Rk(q)δij .

In practice, we choose functions Rk(q) of the two types most
frequently used in the literature. The first one corresponds to
the θ regulator [30] equal, up to field renormalizations, to

Rk(q) = (k2 − q2)θ (1 − q2/k2). (6)

The second one corresponds to infinitely differentiable reg-
ulators that decrease rapidly when q � k. In practice, for
numerical implementations, we use the standard exponential
regulator that is, up to field renormalizations,

Rk(q) = α
q2

eq2/k2 − 1
. (7)

Here the prefactor α has been included in order to study the
typical regulator dependence of various results [31].

Before considering our specific analysis of the low temper-
ature phase, let us discuss briefly the approximation scheme
employed in the present article, the DE. This corresponds
to expanding the Gibbs free energy in the derivatives of the
field while keeping any other possible field dependence. For
example, at leading order (LPA), it corresponds to taking an
arbitrary effective potential and the bare form of the terms
including derivatives of the field:

�k[φ] =
∫

ddx

{
1

2
∇φi(x) · ∇φi(x) + Uk(ρ)

}
, (8)

where ρ = φi(x)φi(x)/2. At next-to-leading order [also called
O(∂2) order], all possible O(N )-invariant terms involving two
derivatives must be included in the ansatz of �k:

�k(φ) =
∫

ddx

{
Uk(ρ) + 1

2
Zk(ρ)∇φi · ∇φi

+ 1

4
Yk(ρ)∇ρ · ∇ρ

}
+ O(∂4). (9)

In the particular case of a single scalar field N = 1, the third
term is redundant and one can in this specific case take Y = 0
without loss of generality.

Finally, let us review some difficulties encountered in
previous works where the low temperature phase of the
O(N ) models has been studied with the DE. A more detailed
analysis of the corresponding equations is presented in the
following sections. The difficulties appear already at LPA
level. The flow equation of the derivative of the potential
Wk(ρ) = ∂ρUk(ρ) reads

∂tWk = −4vd

d
kd+2

(
3W ′

k + 2ρW ′′
k

(k2 + Wk + 2ρW ′
k)2

+ (N − 1)W ′
k

(k2 + Wk)2

)
,

(10)

where v−1
d = 2d+1πd/2�(d/2), t = ln(k/	), and the θ

regulator, Eq. (6), has been used. At the beginning of the flow,
U	(ρ) is the bare potential Eq. (5). Accordingly,2

W	(ρ) = r + u

3
ρ. (11)

2For the DE case, we consider Z	(ρ) = 1 and Y	(ρ) = 0.

One can control in which phase the system is by computing the
position of the minimum of the effective potential Uk=0 at k =
0. At the mean field level, the minimum corresponds to ρ0, the
zero of W	(ρ); that is, −3r/u if r < 0 or zero if r � 0. Fluctu-
ations tend to lower the value of the average 〈ϕ〉 of the field and
thus of the value of the running minimum ρ0(k) of Uk when k is
decreased. When T > Tc, the running minimum hits the origin
for a nonvanishing value of k, ρ0(k > 0) = 0, while at Tc it goes
to the origin right at k = 0. At fixed u, the value of r for which
the transition occurs is therefore negative, ρ0(k) > 0 for any
k > 0 and ρ0(k = 0) = 0. For T < Tc, ρ0(k) remains positive
even for k → 0. As a consequence, for the “internal region of
the potential,” that is, ρ < ρ0(k), Wk(ρ) < 0 for any k > 0; see
Fig. 1. This is the origin of the difficulties since poles in the de-
nominator of the flow equation (10) can appear because of this
negative sign if the regulator is not large enough. For the θ regu-
lator one must require in order to avoid initial singularities that

	2 + W	 > 0 and 	2 + W	 + 2ρW ′
	 > 0; (12)

that is, 	2 + r > 0 for the particular initial condition (5).
These constraints should not be seen as a physical constraint
but as a condition on the value of 	 that is appropriate as an
initial condition of the flow. By construction the scale 	 must
always be much larger than any other physical scale and,
accordingly, the previous inequalities must be fulfilled.

When k is lowered, the problem is worse: it has been
shown, and will be discussed in detail in the next sections,
that when k → 0 in the low temperature phase the flow brings
the potential to the regime where 0 < Wk(ρ) + k2 � k2. This
is numerically even more demanding. Similar observations
apply to the LPA equation with other regulators [13].

There is also good news, as has been analyzed before [7,32].
First, in LPA and for some regulators, the singularity works
as a barrier in flow equations and consequently the singularity
is approached but never reached. Accordingly, the effective
potential behaves as Wk(ρ) ∼ −k2 in all the internal region.
This implies that in those cases, the LPA approximation
preserves the convexity of the physical free energy, which
becomes flat in the internal region for k → 0, as is shown in
the bottom panel of Fig. 1. Second, in the neighborhood of
the singularity, the NPRG equation simplifies and analytical
solutions can be obtained in that regime [7,32]. In this article
following a suggestion made in [13] we exploit analytical
solutions in the internal region of the potential in order to
construct an efficient algorithm for the broken phase. It must
be stressed that in order to do so, it has been necessary
to improve considerably previous analytical results. In fact,
previous results from [7,32] were only valid at small values of
the fields but in order to implement the numerical scheme just
mentioned it is necessary to know the analytical form of the
solution for larger values of ρ. Such solution is presented here
for the LPA approximation and exploited in order to improve
qualitatively the quality of the numerical treatment.

Before discussing in detail the analysis of flow equations
we want to be precise on the interest of controlling the flow
in the “internal” part of the potential because one could say
that, finally, what is physically interesting is the region around
the minimum of the potential (for zero external field) or
the “external” part when one includes an external magnetic
field. In some cases, as explained in the introduction, the
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FIG. 1. Top: Typical evolution of the potential to the high
temperature phase. Center: Typical evolution near the critical point.
Bottom: Typical evolution of the potential in the low temperature
phase.

flow stabilized on those parts of the potential before the
singularity is reached and one could just stop the flow before
the singularity contaminates the physically interesting regions.
The problem with this approach is that it is not general because
in many other cases the singularity is approached before the
region of the potential around the minimum is stabilized. In
those (many) cases, one needs to improve the numerical control
of the “internal” part of the potential in order to be able to reach
small enough values of k. Even more, the notion of “stabilizes”
is defined up to a certain precision. If the numerical accuracy

around the minimum needs to be improved, sooner or later one
will need to address the issue of instabilities in the internal part
of the potential.

III. LOCAL POTENTIAL APPROXIMATION

The properties of NPRG equations in the LPA
approximation in the broken phase have already been analyzed
in the literature both analytically and numerically [7,13,32].
In the present section we briefly review some of these works,
generalize them to other cases, and also show some limitations
of previous results. After that we exploit the analytical results
in order to implement a simple numerical analysis that is
significantly more stable than previously considered.3

The NPRG equation for the derivative of the effective
potential, Wk = ∂ρUk , for a generic regulator profile Rk(q)
reads [13]

∂tWk = −1

2

∫
ddq

(2π )d
∂tRk(q)

{
(N − 1)W ′

k

[q2 + Rk(q) + Wk]2

+ 3W ′
k + 2ρW ′′

k

[q2 + Rk(q) + Wk + 2ρW ′
k]2

}
. (13)

Generalizing the discussion of the introduction, if the flow
avoids the presence of singularities, one must have, for all
ρ, q, and k,

q2 + Rk(q) + Wk > 0,

q2 + Rk(q) + Wk + 2ρW ′
k > 0. (14)

Now, in the internal region of the potential, one must have,
for any k, Wk < 0. Accordingly, given that Rk(q) ∼ O(k2),
one concludes that, for q � k, Wk(ρ) = O(k2) (or smaller).
On the other hand, in the low temperature phase, the effective
potential should have a nontrivial behavior in terms of the
physical dimensionful field, or equivalently in terms of ρ.4

This motivates the use of wk(ρ) = Wk(ρ)/k2 instead of
Wk(ρ). It is convenient to introduce also the dimensionless
function r(y) defined by Rk(q2) = q2r(q2/k2). With these
definitions, the equation for wk(ρ) reads

∂twk = −2wk + vdk
d−2

∫ ∞

0
dy yd/2+1 r ′(y)

×
{

(N − 1)w′
k

{y[1 + r(y)] + wk}2

+ 3w′
k + 2ρw′′

k

{y[1 + r(y)] + wk + 2ρw′
k}2

}
. (15)

3In Ref. [11] an efficient algorithm has been implemented for the
LPA approximation of the N = 1 case. It is important to observe,
however, that it exploits many specificities of this particular case and
that it is not trivial to generalize such procedure for other values of
N or in more involved approximation schemes.

4It must be mentioned that when the system is near a critical
regime, a hybrid procedure may be convenient. That is, one can take a
rescaling of the field that introduces the standard dimensionless fields
at values of k much larger that the physical scales of the problem and
becomes just a finite rescaling in the opposite case.
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This is in contrast with the usual set of variables used in studies
of the critical domain, where wk is studied as a function of
the dimensionless field which is, at LPA level, ρ̃ = ρ/kd−2.

In the rest of this section we study this equation for various
values of N and for various regulators both analytically and
numerically. We show that the LPA equation does not avoid the
existence of singularities of the flow unless a sufficiently strong
regulator is included. In particular, the θ regulator (6) does
respect this property. Smooth regulators respect this property
also if 1 + R′(q = 0) < 0 [corresponding to the case α > 2
for exponential regulators (7)] [7,13,32]. When this property
is not fulfilled, the flow brings the potential to the singularity
at Wk + R(q) = 0 (typically at ρ = 0 and q = 0). This case
was not fully addressed before in the literature even if such
possibility was suggested in [13,32].

A. Large N

We first analyze the large N limit of Eq. (15). This has
been done long time ago [32] but we include it here for
completeness. Moreover in this case many calculations can
be done analytically and this motivates the general behavior of
the potential obtained in the general case. The large N limit is
taken in the usual way (see, for example, [33]). It is simpler to
analyze it for the dimensionful derivative of the potential Wk .
The coupling u is of order 1/N and Uk and ρ are of order N .
Accordingly, Wk is of order 1 and the large N limit of Eq. (13) is

∂tWk = −N

2
W ′

k

∫
ddq

(2π )d
∂tRk(q)

[q2 + Rk(q) + Wk]2
. (16)

An implicit solution of this differential equation
can be obtained by considering the inverse function
ρ = Fk(W ) [32]. It satisfies F ′

k(W ) = 1/W ′
k(ρ) and

∂tFk(W ) = −F ′
k(W )∂tWk(ρ). Accordingly

∂tFk(W ) = N

2

∫
ddq

(2π )d
∂tRk(q)

[q2 + Rk(q) + W ]2
. (17)

In this equation W must be seen as an independent variable
and consequently (17) can be integrated:

Fk(W ) − F	(W ) = −N

2

∫
ddq

(2π )d

{
1

q2 + Rk(q) + W

− 1

q2 + R	(q) + W

}
. (18)

Given an initial condition for the potential, one can invert it
in order to obtain F	(W ). For example, for a Hamiltonian of
the form (5), one obtains, by inverting the relation between
Wk(ρ) and ρ,

F	(W ) = 3

u
(W − r). (19)

If 	 is much larger than any other physical scale, one can
absorb for d < 4 the dependence on 	 in a renormalization
of the parameter r , obtaining an implicit equation for Wk(ρ):

ρ − 3

u
[Wk(ρ) − r̃] = −vdNkd−2

∫ ∞

0
dy yd/2−1

×
(

1

y[1 + r(y)] + Wk(ρ)/k2
− 1

y

)
,

(20)

1.0 0.5 0.5 1.0

2

2

4

6

wk

FIG. 2. Right hand side of Eq. (22) as function of wk .

where

r̃ = r + Nu

6

∫
ddq

(2π )d

{
1

q2
− 1

q2 + R	

}
(21)

is the renormalized mass parameter. We can see here that
the minimum of the potential goes to zero when k → 0
only if r̃ = 0. One deduces that r̃ ∝ (T − Tc) near the phase
transition. We use this equation now in order to study the
behavior for various regulators and, in particular, analyze how
the convexity is approached in the low temperature phase and
if and when the singularity can be reached at a nonzero value
of k. As expected, there is only a broken phase for d > 2
because for d � 2 the integral in (21) is infrared divergent.

Let us consider now how this equation behaves for specific
regulators. Let us consider first the θ regulator (6), which
allows integrals to be done analytically at integer dimensions.
For example, for d = 3,[

3

u
(wkk

2 − r̃) − ρ

]
/(2v3Nk) =

{
−1 + 1

3+3wk
− √

wkarctan(
√

wk) if wk � 0,

−1 + 1
3+3wk

+ √|wk|arctanh(
√|wk|) if wk < 0.

(22)

Here we used as before the notation wk(ρ) = Wk(ρ)/k2. In
Fig. 2, the right hand side of Eq. (22) is plotted as a function of
wk; we can see that it diverges when wk(ρ) → −1. In Fig. 3 the
numerical solution of the implicit Eq. (22) is shown for typical
parameters in the low temperature phase. One observes that the
singularity, wk(ρ) = −1, is approached by the solution in the
internal region of the potential. Moreover, in Fig. 4, it can be
seen that the singularity is approached but is not crossed. This
is very similar to the results obtained in [13] except that it was
not known that the θ regulator leads exactly to (22). In fact,
the approach of the singularity can be discussed analytically.
First of all, the right hand side of Eq. (22) is a monotonic
decreasing function. Accordingly it is not difficult to convince
oneself that a unique solution exists for any ρ and k. This means
that the singularity is never reached. Second, if the singularity
is not crossed and a low temperature phase exists, there are
values of ρ with wk < 0 for all k > 0. There are then only two
possibilities. The first one corresponds either to wk → 0− or
to a negative constant larger than −1 in the internal region.
However, if this were true, the right hand side of Eq. (22)
would tend to a constant and the left hand side would tend to
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FIG. 3. Solution of Eq. (22) for wk(ρ) as a function of ρ for
various values of k = 10−2	 (blue diamonds), k = 10−3	 (red
squares), and 10−4	 (black plain line).

infinity when k → 0 giving a contradiction. Correspondingly,
the only remaining possibility is that wk(ρ) tends to −1 in all
the internal region of the effective potential. Consequently, one
can make an expansion of Eq. (22) in δwk(ρ) = wk(ρ) + 1. At
leading order one obtains

δwk(ρ) = 2v3N

3

k

−3r̃/u − ρ
, (23)

which, as observed before, leads to δwk(ρ) going to zero when
k → 0 for all ρ < −3r̃/u.

One can repeat this calculation for arbitrary integer dimen-
sion, but it is convenient to generalize it to an arbitrary d

by performing the expansion on δwk(ρ) directly at the level of
flow equations. This allows the generalization of this procedure
to arbitrary values of N . Before doing that, let us show the
corresponding result for large values of N . If one expands at
leading order on δwk(ρ) the flow equation (10) (taken at large
N ) one arrives at (

1

δwk(ρ)

)′
∼ −dk2−d

2vdN
(24)

0 1 2 3 4
d/(4vdN) ρ

1

2

3
(wk+1)/k(d-2)

2vdN/d 1_______
(ρ0(k)-ρ)

FIG. 4. Comparison of numerical (black plain line) and semian-
alytical (red dashed) solutions for wk + 1 at large N as a function of
ρ for the θ regulator (d = 3) for k = 0.002.

whose solution is

δwk(ρ) = 2vdNkd−2

d

1

ρ̂0(k) − ρ
. (25)

Here ρ̂0(k) is an integration constant that cannot be fixed
without referring to the full (analytical or numerical) solution
from the microscopic scale 	 to the infrared limit (k → 0).
In the particular large N case, this constant can be fixed
analytically as in (23). In the k → 0 limit, moreover, it must
be identified with ρ0(k = 0) because, as discussed before, in
the entire internal zone of the potential, the approximation just
analyzed becomes correct when k → 0. From the solution
of this equation we observe that the limit of validity of
this approximation is precisely ρ < ρ0(k = 0) when k → 0.
Another consequence of this general solution is that there
is no broken phase in LPA for d � 2 (as expected from the
Mermin-Wagner theorem): For d � 2, the “correction” does
not tend to zero, and the associated solution does not exist.
Following the previous discussion, the only possibility, in the
absence of singularities, is that at a given k0 > 0, the minimum
of the effective potential reaches ρ = 0 and remains there after.

The results from the numerical solution of (10) (taken
at large N ) coincides with the previous results. One can
solve the equation with a standard finite differences explicit
Euler procedure (with typical parameters �ρ = 0.034 and
�t = −10−5). In Fig. 4 the corresponding results are shown.
Both solutions agree with good precision for values of ρ for
which wk(ρ) < 0. However, the singularity is approached and
eventually the numerical code brings the potential to the wrong
side of the singularity and the flow blows up. This is a purely
numerical problem. In fact, by improving the parameters of
the numerical code one can push the flow to smaller values of
k. However, given that the singularity is approached rapidly
it becomes impossible to go to really small values of k by
simply taking smaller grids and larger volumes in ρ. To solve
this problem, we will present below an improved numerical
algorithm that solves this difficulty.

The large N limit of the LPA equation (16) and its
solution (20) have been partially analyzed previously for
smooth regulators such as the exponential one [7,13]. In fact,
there are essentially two typical cases (see Fig. 5): case (i) the
inverse propagator y[1 + r(y)] + Wk(ρ)/k2 has its minimum
at a nonzero value of y (let us call it y0), and case (ii) the inverse

0 1 2 3 4 5

1

2

3

4

5

y

y
1

r
y

regulator
Exponential regulator 1
Exponential regulator 2
Exponential regulator 3
Exponential regulator 4

FIG. 5. y[1 + r(y)] for different regulators. The vertical dashed
lines show the minimum of y[1 + r(y)], y0, for each case.
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FIG. 6. Right hand side of Eq. (20) for the exponential regulator
and α = 3 (d = 3). The dotted line points out the position of the
singularity −y0[1 + r(y0)].

propagator has its minimum at y = 0 with the derivative of the
inverse propagator with respect to y being positive at y = 0.
For the exponential regulator (7) the case (i) corresponds to the
case α > 2 (i.e., for a strong enough regulator) and the case
(ii) corresponds to the case α < 2. There is a third possible
case that corresponds to a minimum of the inverse propagator
at y = 0, the derivative of which is zero. That is a very peculiar
possibility that should be analyzed case-by-case.

Let us discuss first case (i). It has been shown that in
this case, the behavior of the flow in the low temperature
phase is qualitatively similar to the one analyzed for the θ

regulator [7,13]: the singularity works as a barrier that is
approached but never crossed and accordingly the convexity
of the effective potential is ensured by the LPA equation. The
exponent characterizing the approach to the singularity does
not depend on the specific form of the regulator profile but is
different from the particular case of the θ regulator. The right
hand side of Eq. (20) diverges when Wk(ρ)/k2 approaches
−y0[1 + r(y0)]. It is not hard to convince oneself that this
singularity comes from the region of integration y ≈ y0. This
can be seen in Fig. 6 where the right hand side of Eq. (20) is
represented in the case α = 3.

Accordingly, one can obtain the equivalent of the integral
when the singularity is approached by substituting in the
numerator of the integral y with y0 and by expanding the
denominator at leading nontrivial order [at order (y − y0)2].
Equation (20) near the singularity becomes

ρ − 3

u
[Wk(ρ) − r̃] = −vdNkd−2

∫ ∞

−∞

dy y
d/2−1
0

δwk + C(y − y0)2

= −vdNkd−2 π y
d/2−1
0√

C δwk

, (26)

where the notations δwk = y0[1 + r(y0)] + Wk(ρ)/k2 and
C = r ′(y0) + y0r

′′(y0)/2 have been introduced. In this equa-
tion, the integration domain has been enlarged from −∞
because this integration domain is regular in the limit δwk →
0. It is important to observe that the (δwk)−1/2 behavior does
not depend on the precise shape of the regulator as long as
it has a regular behavior around y0, the minimum at nonzero
value of y, and as long as C, the second derivative of the
inverse propagator at y0, is nonzero. This second hypothesis

0 5 10 15
d/(4vdN) ρ

0

20

40

60

80

100

(w
k+y

o(1
+r

o))
 / 

k2(
d-

2)

semi-analytical results
numerical results

FIG. 7. Comparison of numerical (black plain line) and semi-
analytical (red dashed) solutions at large N for wk + y0[1 + r(y0)]
as a function of ρ for the exponential regulator (d = 3). Curves for
k = 0.08.

is not fulfilled by the θ regulator and this is why the right
hand side of Eq. (20) has a different behavior. In fact, when
n − 1 derivatives of the inverse propagator with respect to y

are zero at y0, the behavior of the right hand side of Eq. (18)
is as (δwk)−1+1/n, the θ regulator corresponding to the limit
n → ∞.

Equation (26) can now be inverted by observing that, for
the same reasons invoked for the θ regulator, the singularity is
approached but never reached. Accordingly when k → 0, one
can expand Eq. (26) on δwk . At leading order, one obtains

δwk(ρ) = 1

C

(
vdNkd−2πy

d/2−1
0

ρ0 − ρ

)2

(27)

with ρ0 = −3r̃/u. As done for the θ regulator, one can also
obtain a similar expression by integrating directly the flow
equation (16). One obtains the same expression, except that
ρ0 is replaced by an arbitrary function of k, ρ̂0(k), that comes
as an integration constant (independently of ρ). As before, in
the limit k → 0, ρ̂0(k) can be interpreted as the position of the
minimum of the effective potential ρ0(k = 0).

We display in Fig. 7 a numerical solution of the LPA
equation in the large N limit (16) that has been obtained, as
before, using finite differences and an explicit Euler method
with typical parameters �ρ = 0.034 and �t = −10−5. It must
be stressed that to observe numerically the proper behavior of
the solution in the internal region of the potential is much more
numerically demanding than, for example, to study the critical
behavior of these models (in that case one can typically obtain
stable results with �ρ/kd−2 = 0.1 and �t = −2 × 10−3).
The only difference from the θ regulator is that the integrals
over momenta must be done numerically. We employ for this
purpose Simpson’s rule with a regular grid in momenta with 80
steps of a dimensionless momentum step of 0.1. The solution
agrees with the analytical behavior just presented. However,
as with the θ regulator, at a certain value of k, the singularity
is crossed due to numerical lack of precision and consequently
the flow collapses. As with the θ regulator, we present below
a more elaborated method in order to avoid such collapse.
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FIG. 8. Right hand side of Eq. (20) for the exponential regulator
and α = 1 (d = 3). The dotted line point out the position of the
singularity −R̃ = − limy→0 y[1 + r(y)].

Let us now consider the case (ii) (corresponding to α < 2
in the particular case of the exponential regulator). In this
case, the singularity does not work any more as a barrier
and the integral remains bounded when the singularity is
approached. The singularity in that case shows up first at
y = 0, and corresponds to the point where wk(ρ) approaches
−R̃ ≡ − limy→0 y[1 + r(y)]. The integral is not differentiable
at wk(ρ) = −R̃ but remains continuous at this point. In the
particular case of the exponential regulator (7), R̃ = α. As
mentioned before, the flow blows up at a finite scale k0 because
Uk hits the singularity at k = k0. This singularity, which occurs
at finite k, is also observed when numerically integrating the
flow equation. However, this is not very conclusive because
when α > 2, the singularity that should not be reached in
principle is actually reached in practice because of numerical
inaccuracies. In order to be fully convinced that the singularity
is hit, one can exploit the implicit large N solution (20) and
observe that there is a solution for wk = −R̃ when ρ and k

are small enough. In order to see that, one can observe that the
right hand side of Eq. (20) is bounded from above as a function
of wk . As an example, in Fig. 8, the case α = 1 is represented.
One sees that the right hand side presents a singularity but that
it is finite, not diverging. As a consequence, nothing forbids
the large N implicit solution (20) to reach the singularity at
k > 0.

Having discussed the standard numerical solution of the
equation, the implicit analytical solution, and the explicit
analytical solution near the singularity, we present now
an improved numerical solution that exploits the obtained
analytical behavior in the two cases discussed above where
the singularity is avoided: the θ regulator and the smooth
regulator in case (i). The idea is simple and has been already
suggested (but not implemented) in [13]. One can employ
a standard numerical procedure at typical points in a grid,
but in a region where the solution is close enough to the
singularity [and where the analytical solutions (25) or (27)
are therefore justified], one replaces the result of the flow
equation by the analytical expressions (25) or (27), depending
on the chosen regulator. For a given smooth regulator, the
constant y0 can be calculated (by looking at the minimum of
y[1 + r(y)]). For values of ρ at which wk is above a chosen
threshold, one implements a standard numerical solution (finite
differences plus explicit Euler). The value of the integration

10 20 30 40 50
d/(4vd) ρ

-2

-1

0

1

2

3

W
k(ρ

)

FIG. 9. Derivative of the potential at large N and d = 3 as a
function of ρ for various values of k (lower curves are for larger
values of k).

constant ρ̂0(k) is taken in order to require the continuity
between the analytical solution below the threshold and the
purely numerical one above it. It must be stressed that this
algorithm requires the knowledge of the solution in the full
internal region and not only around ρ = 0 as was obtained
in [7,32]. For actual numerical implementations with the θ

regulator we took the value for the threshold at wk = −0.98.
In the case of the exponential regulator, we chose α = 3
(for which y0 � 1.035658) and we chose the threshold value
wk = −2.74. This numerical procedure is completely stable.
The flow can be continued down to k/	 ∼ 1.5 × 10−8 without
encountering any difficulty. From the result of wk one can
reconstruct the dimensionful potential which, as expected, is
convex. The corresponding result is shown in Fig. 9.

The large N limit is not particularly exciting because
the flow equation can be essentially solved analytically and
because physically interesting models correspond to lower
values of N . We merely use it to test various ideas about
the approach to convexity. In the following we exploit such
ideas to more realistic values of N , beginning with the N = 1
and finally generalizing to other values of N .

B. Finite N

We analyze now the the finite N case, where no (even
implicit) analytical solution is known. As done for large N

we consider the corresponding equations (10) and (13) both
analytically and numerically, first with the θ regulator and then
for a generic smooth regulator (the corresponding numerical
implementation is performed for the exponential one).

Consider first the LPA flow equation with the θ regulator
for N = 1:

∂twk = −2wk − 4vd

d
kd−2 3w′

k + 2ρw′′
k

(1 + wk + 2ρw′
k)2

. (28)

Again, let us admit (as clearly seen in the numerical solution
of the equation in d = 3) that the LPA equation displays a low
temperature phase in which there is a minimum of the potential
ρ0(k) with wk(ρ0(k)) = Wk(ρ0(k))/k2 = 0 for any k > 0 and
with ρ0(k = 0) > 0. Repeating a similar analysis to the one
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performed for large N , one concludes that the flow approaches
the singularity where 1 + wk(ρ) + 2ρw′

k(ρ) = 0. In that case
there are, again, two possibilities: either the singularity is never
reached or it is crossed.

It is difficult to give a general analytical proof for finite N

that the singularity is not crossed at any finite value of k, but
the numerical solution of the equations gives clear indications
in this direction for the θ regulator. Under this hypothesis, one
concludes that when k is small enough the flow approaches a
regime when 1 + wk(ρ) + 2ρw′

k(ρ) is small in all the internal
region of the potential but positive. Moreover, in the absence
of singularities for k > 0, wk(ρ) is a regular function of ρ. The
solution of the equation

1 + wk(ρ) + 2ρw′
k(ρ) ≈ 0 (29)

is

wk(ρ) ≈ −1 + Ak/
√

ρ, (30)

where Ak is an arbitrary function of k. One observes that
typical solutions of (29) have a singularity at ρ = 0. However,
by hypothesis the singularity is not reached and consequently
solutions of full flow equations are regular for all values of ρ

(including ρ = 0) when k > 0. One must then restrict oneself
to the only solution among (30) that is regular corresponding to
Ak = 0 for any k. One concludes that 1 + wk(ρ) + 2ρw′

k(ρ) ≈
0 is equivalent to 1 + wk(ρ) ≈ 0 in the entire internal region
of the potential. This is the same behavior as for large N but
for a slightly subtler reason. Moreover, as when N is large, one
can analyze the approach to this regime by expanding Eq. (28)
in δwk(ρ) = wk(ρ) + 1:

4vd

d
kd−2 3δw′

k + 2ρδw′′
k

(δwk + 2ρδw′
k)2

= 2 + O(δwk). (31)

Neglecting the term O(δwk) on the right hand side, one can
solve Eq. (31). The solutions that are regular at ρ ∼ 0 are of
the form

δwk(ρ) = vd

d

kd−2

√
ρ0(k)ρ

ln

(√
ρ0(k) + √

ρ√
ρ0(k) − √

ρ

)
, (32)

where ρ0(k) is an arbitrary function depending on the initial
conditions of the flow. Given that this solution is only valid
for small values of k, a possible k dependence of ρ0 can be
neglected. The value of ρ0(k) is in the k → 0 limit the position
of the minimum of the effective potential. It is interesting to
note that the expression (32) shows quite explicitly a well-
known artifact of the LPA approximation: there is no low
temperature phase, even for N = 1, within this approximation
in d = 2. One observes that the supposedly “small correction”
does not tend to zero for d = 2 breaking the self-consistency
of the analysis. Moreover, explicit numerical solutions do not
find broken phases for that dimension. We will see below that
this difficulty is corrected by the O(∂2) order of the DE.

For generic values of N , the LPA equation with the θ

regulator is

∂twk =−2wk−4vd

d
kd−2

(
3w′

k + 2ρw′′
k

(1 + wk + 2ρw′
k)2

+ (N − 1)w′
k

(1 + wk)2

)
.

(33)

The two convexity conditions to be fulfilled are those of large
N and of N = 1. As explained before, and admitting that both
singularities are not crossed at finite k, both of them imply that
when k is small, δwk(ρ) = wk(ρ) + 1 � 1. As in previous
cases, one can expand Eq. (33) in δwk yielding the differential
equation

ρ0(k) − ρ = 2vd

d
kd−2

(
1

δwk + 2ρδw′
k

+ N − 1

δwk

)
, (34)

where ρ0(k) is an arbitrary function depending on initial
conditions. As before, ρ0(k) can be interpreted when k → 0
as the position of the minimum for the potential, and one
can neglect its k dependence. Equation (34) cannot be solved
analytically except for the previously considered cases (N = 1
and large N ).5 Since it is a differential equation one could
expect that for any ρ0 it has an infinite number of solutions
corresponding to different choices of δwk(ρ = 0). However,
as before, one must require that it be well behaved in all the
domain of validity of the approximation, and in particular for
ρ = 0. This fixes the value of δwk(ρ = 0) in terms of ρ0:

δwk(ρ = 0) = 2vd

d
kd−2 N

ρ0(k)
, (35)

yielding a single regular solution in the domain of validity of
the equation. Equation (34) can be solved numerically easily.
It is convenient to define

u = ρ

ρ0(k)
,

f (u) = δwk(ρ)

δwk(ρ = 0)
, (36)

which yields the following equation for f (u):

1 − u = 1

N

(
1

f (u) + 2uf ′(u)
+ N − 1

f (u)

)
(37)

with the initial condition f (u = 0) = 1. The expression of
δwk(ρ) can be reconstructed from that of f (u) obtained at a
given N and for an arbitrary ρ0(k):

δwk(ρ) = 2vd

d
kd−2 N

ρ0(k)
f (ρ/ρ0(k)). (38)

The form of f (u) for various values of N obtained by
numerically solving Eq. (37) is shown in Fig. 10. It must
be stressed that the correction to δwk ≈ 0 depends on N .
However, for any N one generically approaches the regime
where δwk ≈ 0 but the corresponding function f (u) depends
on N for generic values of ρ in the internal region. Our analysis
is consistent with the previous one because in the ρ → 0
limit the correction matches its large N limit as is expected
from [7,32].

We also solve numerically the LPA equation with the θ

regulator for various values of N with the same procedure
presented before for large N . First, we solve it directly using

5In fact, at N = 0 the case can be handled analytically also. In that
case, a δwk independent of ρ is the solution of (34). If one ask for
the continuity of the solution when N → 0, the solution is [see (35)]
completely fixed.
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FIG. 10. f (u) as a function of u for various values of N .

finite differences for the derivatives and an explicit Euler
algorithm for the evolution in t . Typically the parameters used
are �ρ̃ = 0.1 and �t = −10−5. As can be seen in Fig. 11,
in all cases (including N = 0), a low temperature phase is
found for d > 2 and the numerical solution indicates that
the function wk(ρ) approaches (without crossing) −1 in all
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FIG. 11. Top: wk(ρ = 0) as a function of t = ln(k/	). Bottom:
Wk(ρ0) where ρ0 = limk→0 ρ0(k) as a function of t = ln(k/	). In both
cases, the curves are for N = 4 and d = 3. Comparison between the
direct numerical solution (red circles) and the improved algorithm
(black plain line) in both cases with the θ regulator.

the internal region of the potential. However, as for large N ,
when the solution is too close to the singularity it may happen
that discretization errors lead to an artificial crossing of the
singularity.

It is interesting to note that the numerical implementation
of the LPA equation for N = 1 turns out to be much more
difficult than for N > 1. The reason for this result, at first sight
surprising, is twofold. First, as explained before, for N > 1
the convexity condition wk(ρ) > −1 is imposed directly by
the term of the LPA Eq. (13) proportional to N − 1. The
other term of the right hand side of the equation (the only
one present when N = 1) imposes the weaker constraint
wk(ρ) + 2ρw′

k(ρ) > −1 that eventually leads to the same
consequence [wk(ρ) > −1] but in a much more indirect way
(see above). Numerically this effect seems to be harder to
control. The second and more important reason is that, for
N = 1, the dimensionful physical effective potential Uk=0 has
a discontinuity in its second derivative at the minimum of
the potential (see, for example, [34]). This is simply related
to the fact that for N = 1 the susceptibility [given by the
inverse of 2ρ0w

′
k(ρ0)] is finite both in the high and low

temperature phase (only diverging asymptotically when the
critical temperature is approached). This implies that w′

k(ρ0) >

0 whereas w′
k(ρ < ρ0) → 0 for k → 0 due to convexity of

the potential and so w′
k(ρ) develops a discontinuity when

k → 0. On the contrary, the second derivative of the physical
effective potential is continuous for N > 1, even at the
minimum [w′

k(ρ � ρ0) → 0 when k → 0]. This expresses
the fact that both the longitudinal and transverse suscep-
tibilities of the O(N ) models with continuous symmetries
(N > 1) are infinite for any temperature below the critical
one because of Goldstone mode fluctuations. In practice,
the effective potential for k > 0 remains much more regular
around the minimum for N > 1 diminishing the sources of
instabilities.

In order to improve the stability of the numerical solution,
we employed the same procedure presented above for large N :
we fixed a threshold wthreshold = −0.95, solved numerically the
flow equation (13) when wk(ρ) is above wthreshold, and imposed
the quasianalytical form given by Eq. (38) for w < wthreshold.
The implementation of this procedure proves to be essentially
stable at arbitrary values of t for all N > 1. We must stress
the first point where the singularity related to the numerical
violation of the convexity is ρ = 0. In this concern, this is
the more demanding point and for this reason we analyzed
in detail the behavior of the function wk(ρ = 0). A typical
example of such solution is shown on the top part of Fig. 11.
It shows that the improved algorithm is much more stable
than the direct integration of the equation. However for most
values of t , the flow comes for ρ = 0 from the semianalytical
solution. In order to see the solution for values of ρ where
the semianalytical solution is not implemented for any t ,
it is shown in the bottom part of Fig. 11 the value of
Wk(ρ0) where ρ0 = limk→0 ρ0(k). As expected, Wk(ρ0) → 0
for k → 0. More interestingly, one observes that the numerical
solution can be extended for values of k that are many orders of
magnitude smaller than without the algorithmic improvement.

As before, the numerical solution of Eq. (13) for N = 1
is much more demanding. In fact, the procedure explained
above does not work for N = 1 as efficiently as in the N > 1
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case, although (31) is again a good approximation in all the
internal region of the potential. It turns out that the mismatch
between the second derivatives of the potential at the matching
point corresponding to wthreshold is large enough to generate
numerical instabilities. We must insist on the existence of a
second kind of singularity around the minimum of the potential
at large |t |. The reason, as stated before, is that the physical
effective potential is not analytical in this point. For N > 1
our improved algorithm becomes finally unstable because
the numerical solution becomes sensitive to this late-time
singularity [which, as explained before, is a discontinuity in
the first derivative of Wk=0(ρ) for N = 1 and in the second
derivative for N > 1]. Only after the singularity for ρ = 0
is under control, this second derivative can be studied with
precision.

We analyzed the equation also for typical smooth regula-
tors. Again, there are two different cases, depending on the
position of the minimum of y[1 + r(y)]. As for large N , when
the minimum takes place at a y = y0 > 0, integrals on the right
hand side of the LPA equation can be approximated as in (26).
Accordingly the singularities play the role of a barrier that
cannot be crossed and one arrives at a scenario very similar
to the one of the θ regulator: the singularity is approached
but never crossed. In this case the behavior of the analytical
solution when k → 0 is

δwk ∼ k2(d−2)f (ρ). (39)

For for N = 1 the function f (ρ) can be found analytically,

f (ρ) = 1

C2

[
1

ρ
3/2
0

√
ρ

ln

(√
ρ + √

ρ0√
ρ0 − √

ρ

)
+ 2

ρ0(ρ0 − ρ)

]
,

and for N > 1 it can be obtained by solving the differential
equation:

f + 2ρf ′ = 1[
C
2 (ρ0 − ρ) − N−1√

f

]2 .

In both cases the constant C is related to the minimum as

C = y0[1 + r(y0)]

vdy
d/2
0 r(y0)π

√
r ′(y0) + y0r ′′(y0)/2.

Following the same procedure we can go further in the solution
of the flow equation as shown on the top of Fig. 12. The
improvement is not as good as for the θ regulator. This is due
to the fact that the approach to the singularity is faster [for the
θ regulator the exponent in k is d − 2, see Eq. (35), and for
the smooth regulator the exponent is 2(d − 2), see Eq. (39)]
than for the θ -regulator case. Therefore, the solution becomes
flat faster and the matching point of the improved algorithm
approaches the minimum very quickly. As a consequence, the
physical nonanalyticity around the minimum is approached
also faster. Let us emphasize that the singularity related to the
numerical violation of the convexity is solved by the improved
algorithm in both cases as well. The origin of the differences is
that the physical singularity around the minimum destabilizes
the flow for the smooth regulator faster. For completeness we
include also on bottom of Fig. 12 the evolution of Wk(ρ), as
was done for the θ regulator in order to observe the flow in a
value of ρ where the semianalytical solution is never directly
implemented.
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FIG. 12. Top: wk(ρ = 0) as a function of t = ln(k/	). Bottom:
Wk(ρ0) where ρ0 = limk→0 ρ0(k) as a function of t = ln(k/	). In both
cases, the curves are for N = 4 and d = 3. Comparison between the
direct numerical solution (red circles) and the improved algorithm
(black plain line) in both cases with the exponential regulator for
α = 3.

Having discussed the treatment of the LPA equation in the
various cases and showing a numerical algorithm that is much
more stable than the standard one for all N > 1, we consider
now the next-to-leading order of the derivative expansion.

IV. DERIVATIVE EXPANSION AT ORDER O(∂2)

In this section, we generalize the previous numerical studies
on the approach to a convex free energy at the LPA level to
second order in the derivative expansion. This approximation
corresponds to an expansion to second order of the NPRG
equation in powers of the external momenta; see Eq. (9). We
derived the corresponding NPRG equations and we verified
the equivalence with [35].6 We limit ourselves to a direct
numerical analysis leaving for the future an analytical study
analogous to the one performed for the LPA. This analysis
should again improve the numerical integration of the flow
equations but the number of cases to be studied brings it
clearly beyond the scope of the present article. One aspect

6In the numerical algorithm we use wk(ρ) = Wk/(Zkk
2), Zk(ρ)/Zk ,

and Yk(ρ)/Zk as variables when solving the flow.
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that cannot be addressed at the LPA level is the broken
phase for N = 1 in d = 2 since the running of the field
renormalization factor is neglected which artificially destroys
the broken phase. On the contrary, at order O(∂2) of the DE,
a phase transition is found at finite temperature for N = 1 in
d = 2 [35]. For N > 2, no phase transition is found with this
approximation in agreement with the Mermin-Wagner theorem
and for N = 2, the Kosterlitz-Thouless phase transition is
correctly described [35–37].7

An important difference between the order O(∂2) of the DE
and the LPA is that it is convenient to introduce a prefactor
in the regulator function Rk(q) that evolves with k (as usually
done in the study of the critical regime). This prefactor has
many purposes in the critical regime.8 In the present case let
us consider the inverse propagator (for N = 1 for example):

G−1
k (q) = q2Zk(ρ) + Wk(ρ) + 2ρW ′

k(ρ) + R̂k(q). (40)

For R̂k(q) to regulate efficiently and for all values of k the
small wave number modes, it is necessary that it is at least
of the same order as q2Zk(ρ) up to q ∼ k. As usual, we use
regulators of the form

R̂k(q) = ZkRk(q) (41)

where Rk(q) are the regulator profiles used at the LPA level,
see Eqs. (6) and (7), and Zk is fixed as Zk(ρ) at a particular
value of ρ. The difficulty is that Zk(ρ) depends strongly on ρ

and, not surprisingly, the behavior of this function for ρ larger
or smaller than the minimum of the potential is very different
in the low temperature phase when k → 0. We analyze two
possible choices: ρ larger or smaller than ρ0, the minimum
of the potential when k → 0. As we will see, the appropriate
choice for this point depends on the value of N . On one hand,
when N > 1, we observe that the flow is more stable if Zk is
taken as the value of Zk(ρ) for a ρ > ρ0, in some cases in a
very significant way. For this reason, for those values of N , all
results presented below correspond to this choice of ρ (more
precisely, ρ = 2ρ0). On the other hand, for N = 1, one must
fix the value of Zk for a ρ in the “internal” part of the potential,
as explained below. If this is not done, the flow of the potential
hits the singularity as with the LPA for a regulator not strong
enough. As for the choice of the regulator profile, the main
advantage of the θ regulator (6) is lost at the second order of
the DE because the integrals cannot be performed any more
analytically. We therefore use the exponential regulator (7) in
what follows and we choose a prefactor α larger than 2 to avoid
singularities in the flow; see Sec. III.

The large N case is not particularly useful for the second
order of the derivative expansion, because in that limit, the
LPA equation for the potential becomes exact. We consider
then, first, the single scalar case, generalizing those results to

7The cases with N < 1 in any dimension and, in particular, the
physically interesting case N = 0 require an independent analysis
that goes beyond the present article. In that case, the sign of the
term in the potential equation proportional to N − 1 changes and,
consequently, a different analysis is required.

8For example, this prefactor makes the fixed point condition of
NPRG equations identical to the Ward identity of scale transforma-
tions in the presence of an infrared regulator; see [38].
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FIG. 13. wk(ρ = 0) as a function of t = ln(k/	) for N = 1 and
d = 3 using the exponential regulator (7) with α = 3. Normalization
fixed at ρ = 2ρ0.

the O(N ) case after. An analysis of such theories has been done
a few years ago at the second order of the derivative expansion
in [12] but for d = 4. Here we consider dimensions d < 4
that are generically much richer for scalar theories. Moreover,
an interesting but very weak logarithmic divergence of the
function Z(ρ) + ρY (ρ) was observed in [12]. In d < 4, we
observe clearer and stronger effects because the corresponding
divergence is a power law, as will be discussed below.

A. Single scalar case

As said before, in the N = 1 case, one can simply take
Yk = 0. As seen in Fig. 13, when the renormalization factor
Zk in the regulator profile is chosen for values of ρ in the
“external” part of the effective potential, the flow collapses
after a certain renormalization group “time.” When ρren > ρ0,
the flow blows at a finite RG time because there is no barrier
preventing the singularity to be reached. The reasons are the
following: (i) In the external part, the function Zk(ρ) rapidly
stabilizes and accordingly the function Zk becomes a constant
below a finite value of k. (ii) The flow of Zk(ρ) in the “internal”
part continues to grow without bound. (iii) For all k > 0 in
the internal part, the potential is not convex. Accordingly,
the regulator becomes negligible in the internal part of the
potential and the flattening of the internal part is not strong
enough to avoid the singularity (as is the case for the LPA with
an exponential regulator with α < 2). For N = 1 we therefore
choose Zk as the value of Zk(ρ) at ρ = 0.

With this choice, we observe as in the LPA case that the
effective potential runs in the low temperature phase to a
convex potential that is flat in the “internal” part but that
finally collapses when, due to numerical lack of precision, the
singularity of the flow equation is crossed. We observe sys-
tematically that if the discretization parameters of the program
are improved, the instability appears at larger renormalization
group “times” (indicating that this phenomenon is a numerical
artifact), but, in practice, they are finally reached.

A typical run of the effective potential is shown in Fig. 14
for d = 3. We observe a potential approaching the convexity.
In Fig. 15 the flow of the function Zk(ρ) is presented (also for
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FIG. 14. Top: wk(ρ = 0) as a function of t = ln(k/	). Bottom:
Wk(ρ) as a function of ρ for various values of t ranging from 0 to −1.
In both figures, N = 1 and d = 3 using the exponential regulator (7)
with α = 3 and normalization fixed at ρ = 0.

d = 3). As expected, in the “external” part of the potential the
function Zk(ρ) stabilizes when k → 0, as can be seen clearly
in the inset of Fig. 15. However, one observes that the function
Zk(ρ) seems to diverge when k → 0 for values of ρ in the
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FIG. 15. Zk(ρ) for N = 1 and d = 3 using the exponential
regulator (7) with α = 3. Normalization fixed at ρ = 0. The arrow
shows the last position of the minimum reached by the simulation.
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FIG. 16. ηk for N = 1 and d = 3 using the exponential regula-
tor (7) with α = 3. Normalization fixed at ρ = 0. Observe that, given
that Zk(ρ = 0) and Zk(ρ = 2ρ0) are different, the position of the
singularity is different from the LPA order.

“internal” part of the potential. In order to study how this
divergence takes place, we plot in Fig. 16 the quantity ηk =
−∂t ln Zk that shows the exponent of the divergence of Zk(ρ =
0) as a function of t . We observe that the exponent seems to
stabilize at values ∼1.5 but at that value of t the singularity
is hit and the flow breaks down. It is important to stress that
the running exponent ηk is not the physical exponent that must
approach zero for N = 1 in the broken phase. The present
ηk exponent is extracted from the behavior of Zk(ρ = 0) and
the physical exponent must be extracted from the behavior of
Zk(ρ) at the minimum. As can be seen in the inset of Fig. 15,
the function stabilizes in the external part of the potential.
Accordingly the physical exponent goes to zero, as it must.

As we just explained, for the purpose of having a numerical
algorithm that avoids the singularities related to the convexity
one must take a regulator with a prefactor Zk that evolves with
Zk(ρ = 0) but as shown in Fig. 17 the behavior of Zk(ρ) is
completely different in both points. In Fig. 17 the renormalized
function

Ẑk(ρ) = Zk(ρ)

Zk(ρ = 0)
(42)

is plotted. It seems to approach a finite limit for values of
ρ corresponding to the “internal” part of the potential and,
as expected, to tend to zero in the “external” part [given the
fact that the function Zk(ρ) seems to go to a finite limit in
that regime]. As a conclusion, the second order of the DE
seems to respect the convexity property and the singularity
present in the flow equation for the potential does not seem to
be hit. However, a standard numerical implementation finally
breaks down (as in the LPA) because of the unavoidable lack
of precision.

As said before, contrarily to what happens at the LPA level,
the second order of the DE clearly shows for the single scalar
case a low temperature phase not only in d = 3 but also in
d = 2. This is shown in Figs. 18, 19, and 20. As explained
before, this is one of the most important ingredients absent at
the LPA level and one of the main reasons to go beyond. The

042136-13
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FIG. 17. Ẑk(ρ) as function of ρ for various values of t for
N = 1 and d = 3 using the exponential regulator (7) with α = 3.
Normalization fixed at ρ = 0. The arrow shows the last position of
the minimum reached by the simulation.

results for d = 2 seem to be qualitatively similar to those of
d = 3 for N = 1.

B. Generic O(N) model

In this section we extend the analysis of the second order
of the derivative expansion in the low temperature phase for
N > 1.

In this case, in contrast to the N = 1 one, choosing Zk at
values larger than ρ0 turns out to give a more stable flow than
the one obtained if Zk is fixed at ρ smaller than ρ0. When Zk

is fixed at values larger than ρ0 the flow does not explode until
large values of |t |. Figure 21 shows that, as for LPA, a convex
potential is approached along the flow. As before, we need to
choose a value of α larger than 2 to avoid hitting the singularity.
We employed an Euler algorithm of the same kind as the one
employed in the LPA (without the improvement in the internal
part of the potential). Even if convexity is clearly visible we
are not able to reach very large values of |t |, because of the
same numerical instabilities discussed before. In any case, as
for the LPA approximation, the flow for N > 1 is much more
stable than for the N = 1. It is very plausible that a hybrid
algorithm that exploits the exact behavior of NPRG equations
in the internal region would, as for the LPA case, allow one to
make the flow even more stable.

It is interesting to discuss also the results for the flows of
the functions Zk(ρ) and Yk(ρ). In fact, we prefer to present
the results in terms of the transverse renormalization function
Zk(ρ) and the longitudinal one, Zk(ρ) + ρYk(ρ), as shown in
Figs. 22 and 23. As one can observe, the function Zk(ρ) seems
to reach a limit when k → 0. In contrast, the longitudinal
renormalization factor Zk(ρ) + ρYk(ρ) seems to grow without
bound around the minimum of the potential. This is similar
to what is observed in d = 4 in [12]. However, in the d = 3
the effect is much stronger. In fact, it is expected to growth
proportional to 1/k. This is due to the fact that the longitudinal
propagator behaves as 1/|q| in d = 3 and around the minimum
it also behaves as the inverse of q2[Zk(ρ0) + ρ0Yk(ρ0)]. We
checked this behavior in Fig. 24.
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FIG. 18. Top: wk(ρ = 0) as a function of t = ln(k/	). Bottom:
Wk(ρ) as a function of ρ for different values of t . In both figures, for
N = 1 and d = 2 using the exponential regulator (7) with α = 3 and
normalization fixed at ρ = 0.

In what concerns the behavior of these functions in the
“external” region of the potential, it seems to stabilize faster.
This can be seen in the running of the anomalous dimension
(fixed via the value of Zk at 2ρ0) as can be seen in Fig. 22. One
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FIG. 19. ηk for N = 1 and d = 2 using the exponential regula-
tor (7) with α = 3. Normalization fixed at ρ = 0.
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FIG. 20. Top: Zk(ρ) as a function of ρ. Bottom: Ẑk(ρ) as function
of ρ. In both cases, for various values of t for N = 1 and d = 2
using the exponential regulator (7) with α = 3. Normalization fixed
at ρ = 0. The arrows show the last position of the minimum reached
by the simulation.

observes that ηk goes to zero as expected in the low temperature
phase.

We have thus managed to study the low temperature phase
of O(N ) models in the second order of the DE and shown that
if an appropriate regulator and renormalization condition is
used, one can show clearly that the property of convexity of
the effective potential is respected. The flow finally becomes
unstable for numerical reasons. When N > 1 the flow is much
more stable than in the single scalar case N = 1.

V. CONCLUSIONS

In the present article we analyze the NPRG equations both
at the leading order (LPA) of the derivative expansion and
at next-to-leading order (order ∂2) in the low temperature
phase. These simple approximations performed at the level of
NPRG equations are able, in contrast with most perturbative
schemes, to preserve the convexity of the free energy. Our
study shows that this is only true for certain regulators. In
particular, the most used regulators (the θ regulator and the
exponential regulator) are able to respect the convexity of the
free energy. However, in the case of the exponential regulator,
it is necessary to choose a large enough prefactor. If this is not
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FIG. 21. Top: wk(ρ = 0) as a function of t = ln(k/	). Bottom:
Wk(ρ) as a function of ρ for various values of t . In both figures, for
N = 4 and d = 3 using the exponential regulator (7) with α = 3 and
normalization fixed at ρ = 2ρ0.

done, a singularity of the flow is hit. Contrarily to common
wisdom, quite large prefactors for the exponential regulator
are needed in order to have nonsingular flows. In particular, a
standard exponential regulator with α = 1 gives a singular flow
in the low temperature. This may be surprising because this
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FIG. 22. ηk as a function of t for N = 4 and d = 3 using the
exponential regulator (7) with α = 3. Normalization fixed at ρ = 2ρ0.
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FIG. 23. Top: Zk(ρ) as a function of ρ. Bottom: Zk(ρ) + ρYk(ρ)
as function of ρ. In both cases, for various values of t for N = 4 and
d = 3 using the exponential regulator (7) with α = 3. Normalization
fixed at ρ = 2ρ0. The arrows show the last position of the minimum
reached by the simulation.

regulator works perfectly well in the critical regime showing
that the low temperature phase is even more difficult to handle
that the critical point.

Λ)

ρ 0)+
ρ 0

ρ 0))

FIG. 24. ln [Zk(ρ0) + ρ0Yk(ρ0)] as a function of ln(k/	).

Even if an appropriate regulator is chosen, there is a
practical difficulty: the flow approaches a singularity without
crossing it. As a consequence, even if the singularity is never
hit, the flow becomes numerically unstable for low enough
values of k. In order to deal with this problem many algorithms
have been proposed in the literature. We implement at the LPA
level a very simple algorithm that exploits the exact behavior
of the flow in the “internal” part of the potential and that
makes the flow stable for essentially arbitrary values of k

when N > 1. The N = 1 case turns out to be much more
challenging for various reasons discussed along the article.
The most important one comes from the fact that the physical
longitudinal susceptibility is a continuous function of the
external field for N > 1 but has a discontinuity for N = 1
when k → 0. This makes this case much harder to treat. We
obtain for N > 1 and with a very simple algorithm a flow that
is qualitatively more stable than what was obtained before.

On top of this analysis, we studied the behavior of the flow
in the low temperature phase at order ∂2 of the derivative
expansion. We observe that in order to approach a convex free
energy it is necessary to normalize the field in a different way
in the case N = 1 and in the case N > 1. On one hand, in order
to avoid reaching the singularity of the flow for N = 1 it is
necessary to normalize the field in the “internal” region of the
potential. On the other hand, in the N > 1 case it is necessary
to normalize the field in the “external” part of the potential.
Once these choices are made and an appropriate regulator is
chosen, the flow approaches a convex free energy. Of course,
in practice, the flow becomes numerically unstable when k is
very small and the numerical flow hits the singularity.9

For the future, we are planning to implement the same kind
of algorithm that we presented in the LPA case at second
order of the derivative expansion O(∂2). We are planning
also to make the same kind of analysis in more elaborated
approximations such as the one proposed in [22–24]. We would
like also to try to implement an improved algorithm in these
kinds of approximations.

These improved approximations and algorithms in the low
temperature phase of O(N ) models could be useful in the
analysis of a large variety of physical problems that we are
planning to address, such as the formation of bound states or
the calculation of the phase diagram and the equation of state
for realistic microscopic models. In particular, as mentioned
in the introduction, bound states in the broken phase near
criticality [25] have been recently analyzed with the NPRG
and we plan to exploit the methods developed in the present
article in order to extend those results to more involved cases.
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9The two-dimensional XY case [36] has been studied in
Refs. [35,37]. In that case, the singularity seems always reached [37].
It must be stressed that this low temperature phase is very peculiar.
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