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Role of Ito’s lemma in sampling pinned diffusion paths in the continuous-time limit
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We consider pinned diffusion paths that are explored by a particle moving via a conservative force while
being in thermal equilibrium with its surroundings. To probe rare transitions, we use the Onsager-Machlup
(OM) functional as a path probability distribution function for transition paths that are constrained to start
and stop at predesignated points in different energy basins after a fixed time. The OM theory is based on a
discrete-time version of Brownian dynamics, and thus it possesses a finite number of time steps. Here we explore
the continuous-time limit where the number of time steps, and hence the dimensionality, becomes infinite. In
this regime, the OM functional has been commonly regularized by using the Ito-Girsanov change of measure.
This regularized form can then be used as a basis of a numerical algorithm to probe transition paths. In doing
so, time again is discretized, progressing in fixed increments. When sampling paths, we find that numerical
schemes based on this regularized continuous-time limit can fail catastrophically in describing the path of a
particle moving in a potential with multiple wells. The origin of this behavior is traced to numerical instabilities
in the discrete version of the continuous-time path measure that are not present in the infinite-dimensional limit.
These instabilities arise because of the difficulty of satisfying, in finite dimensions, the conditions imposed by
Ito’s lemma that was an essential ingredient in the derivation of the regularized continuous-time measure. As an
important consequence of this analysis, we conclude that the most probable diffusion path is not a physical entity
because the thermodynamic action is effectively flat and cannot be minimized.
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I. INTRODUCTION

Much of the current work in the study of diffusion processes
is grounded in an expression for the probability of a succes-
sion of states of a spontaneously fluctuating thermodynamic
system [1–5]. This expression, famously reported in the 1953
article of Onsager and Machlup [6], has become known as
the Onsager-Machlup (OM) functional. As in the original
1953 article, we represent the fluctuations by white noise,
spatially and temporally uncorrelated, and whose amplitude is
given by the fluctuation-dissipation theorem. The underlying
motion is then expressed in terms of Brownian dynamics. Here
we explore an extension of these works, which leverages the
continuous-time limit of the OM functional [7] to sample paths
and show that numerical algorithms based on this commonly
used approach possess instabilities that render the algorithms
unreliable.

The OM functional can be used to study rare events
[1,8–10]. But what does one mean by “rare”? For the purposes
of this paper, we divide rare events into two groups: those
consistent with thermodynamics and those that are not. As
an example of the latter, what we call extremely rare events,
consider the very small probability that all the molecules in
a room might migrate to one corner. Even though this is
allowed by statistical mechanics, if we observed such an event,
we would have witnessed a violation of thermodynamics.
We are not, nor were Onsager and Machlup [6], interested
in these extremely rare events. We are interested in rare events
that are consistent with thermodynamics, ones that are driven
by the fluctuations inherent in a thermodynamic system.

In the 1970s, the original OM functional was extended to
the continuous-time limit using Girsanov theorem to express
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the Radon-Nikodym derivative. And with the assistance
of Ito’s lemma, the stochastic integration was eliminated.
This continuous-time probability measure, which we will
refer to as the Ito-Girsanov measure, generated considerable
attention [11–24]. This limiting procedure has been accepted
as a method that can be used to look at rare events by con-
structing probabilities for pinned diffusion paths [9,13,25–29].
An extension of this limiting procedure, proposed by Gra-
ham [13], and later Eyink [30], stressed the generalization of
a “least-action” principle to describe particle motions, which
then led to the notion of the thermodynamic action.

In this paper, we concentrate on the use of this Ito-Girsanov
continuous-time limit of the OM function in path-sampling
schemes. In particular, we show that such numerical imple-
mentations suffer from catastrophic instabilities. Furthermore,
we show that there is no “action” to minimize: the path
probabilities are independent of the details of the particle
motions as these probabilities are a result of the noise that
originates in the thermal bath. This statement may come as a bit
of a surprise since the maximizer of Ito-Girsanov probability
provides the center of a ball of maximum probability of the
limiting OM functional; see Dürr and Bach [12]. Remember
that in the derivation of the Ito-Girsanov measure, one uses a
substitution justified by Ito’s lemma. Underlying Ito’s lemma is
a hidden assumption that in the diffusion path, the noise history
and the path positions are not correlated with one another.
Any structure in the maximizers of the Ito-Girsanov measure
are washed out and canceled by the “entropic” effect of the
multiplicity of paths in infinite dimensions that are inherent
in the continuous-time limit. Since computer algorithms must
have a finite representation, they do not contain this infinite
multiplicity and thus they do not give the correct weight to
this entropic effect. Consider an analogy to an example in
equilibrium thermodynamics. There, energy minima exist but
entropy plays an important role, as the free-energy minimum
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gives the physical state. As one takes the continuous-time limit,
the number of dimensions, the number of degrees of freedom,
grows because in Brownian dynamics, the paths are rough
with structure even at the tiniest of timescales. In the limiting
process, the entropic effects arising from the growing number
of degrees of freedom nullify the importance of this ball. As
we see below, in the continuous-time limit, any variation in
the Ito-Girsanov expression is immaterial compared to the
effect of the path multiplicity. Thus the most probable path
(MPP) is not a physical entity for a particle being buffeted by
spontaneously fluctuating Brownian forces.

The organization of this paper is as follows. We begin
presenting details of the system dynamics and present the
mathematical framework that we are studying. After estab-
lishing the groundwork, we closely examine the idea that
the path probability distribution is effectively flat, and thus
there is not a “thermodynamic action” to minimize. We show
that unphysical paths are produced by numerical simulations
that are based on the Ito-Girsanov measure. We then closely
examine the numerics and expose the origins of the unphysical
nature of the paths. Finally, we summarize and end with a
discussion of the impact of the results reported here.

II. BROWNIAN DYNAMICS AND THE
CONTINUOUS-TIME PATH PROBABILITY

Throughout this paper, we will consider a particle in contact
with a heat reservoir at a temperature ε. It is moving under the
influence of a potential V(x) with the deterministic force being
F (x) = −V′(x). Note that although the equations are written
for the one-dimensional case for clarity, the formalism can
easily be extended to higher dimensions and for a collection
of particles.

The main focus of this paper is on methods for sampling
paths of particles that are moving according to Brownian
dynamics. The underlying equation of motion is given by the
stochastic differential equation (SDE):

dx = F (xt ) dt +
√

2 ε dWt, (1)

where dWt is the standard Wiener process that represents the
(uncorrelated) Gaussian noise. Using a discrete time step, �t ,
one typically uses the Euler-Maruyama algorithm [31] as an
approximate method for propagating the position as a function
of time. In particular,

xi+1 = xi + F (xi) �t +
√

2 ε �t ξi, (2)

where ξi is a Gaussian random variate with mean zero and unit
variance. Successive applications (N times) of this equation
produces a sequence of positions {xi}, which is called a
path. Onsager and Machlup [6] used the underlying thermal
fluctuations to write the path probability in terms of the path
variables themselves, namely,

− lnPp = C + �t

2 ε

N∑
i=1

1

2

[
xi+1 − xi

�t
− F (xi)

]2

, (3)

where C is a constant that is unimportant for this paper.
This equation defines what is sometimes called the thermo-
dynamic action and other times, the OM functional. At this
point, it is important to emphasize that the path probability,

FIG. 1. A plot of the double-well potential used in this paper [see
Eq. (6)]. A narrow (quadratic) well, on the left, is separated from the
broad well on the right by a unit energy barrier.

Pp ∝ �i exp (− 1
2ξ 2

i ), is generated from a large set of Gaussian
variates whose origins rest in the thermal reservoir and are
independent of the system under study. If one labels each set
and then plots Pp as a function of this index, one would find
that the path probability is almost constant. In the absence of
forces, this is intuitively obvious: for free Brownian motion,
no path is more probable than any other (paths of the same
duration). When a force is present, the expression for the path
probability,Pp ∝ �i exp (− 1

2ξ 2
i ), is unchanged. Thus, even for

diffusions with nonzero forces, all paths of the same duration
are equally probable. Any outliers are the extremely rare events
that are not thermodynamically significant.

In the continuous-time limit, the path probability diverges,
as it can be informally written as Pp ∝ exp (− 1

2

∫ T

0 dt | dW
dt

|2).
In this limit, using Ito calculus and the Girsanov theorem, the
Radon-Nikodym derivative is used to express the change in
the measure [7] as

dPp

dQp

= exp

[
− 1

4ε

∫ T

0
dt |F (xt )|2 + 1

2ε

∫ xT

x0

dxt F (xt )

]
,

(4)

where T is the duration of the path, Pp is the continuous-time
limit of Pp, Qp is the measure associated with free Brownian
motion, and the path starts at x0 and ends at xT . One can
eliminate the stochastic integral [the last term in Eq. (4)] by
using Ito’s lemma. The Ito-Girsanov change of measure is
defined to be

dPp

dQp

= exp

{
− 1

2ε

[
V(xT ) − V(x0) +

∫ T

0
dt G(xt )

]}
, (5)

where the function G(x) is defined as G(x) = 1
2 |F (x)|2 −

ε V′′(x). It is this equation [Eq. (5)] that we use as the basis
of numerical algorithms for sampling paths in the continuous-
time limit.

We have constructed a one-dimensional potential to high-
light one of the key components of the measure. Looking
at Eq. (5), the Ito-Girsanov expression seems to favor regions
where the curvature of the potential is the greatest, independent
of the value of the potential itself. For this reason we consider
the potential (see Fig. 1)

V(x) = 2−26(8 − 5x)8 (2 + 5x)2, (6)
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which has two degenerate wells with a barrier of unity at the
origin. A narrow (quadratic) well is on the left and a wide well
is on the right. By making the wells degenerate, we eliminate
the large (exponential) dependence due to energy differences,
and we accentuate the curvature effects by making one well
much wider than the other.

III. EQUIVALENCE OF PATH PROBABILITY

We now turn to a general discussion of the idea of a most
probable path (MPP) in the OM formalism by examining the
relative probability of paths. As in any continuous distribution,
while the probability of any one path is zero, the relative
probability of two paths is well-defined. First consider paths
generated by free Brownian motion, where the potential acting
on the system is zero. All paths of a fixed length in this free case
will have equal probability (relative to one another), except
for extremely rare instances that are not thermodynamically
significant. The path probability Pp is governed by the
underlying Gaussian noise, Pp ∝ �i exp (− 1

2ξ 2
i ), where the

set {ξi} is independent of the position of the particle. For
free Brownian motion, it is easy to accept that, for finite
representations, the expression for Pp, is the same value for
all paths. This result holds for paths of fixed length as the
size of the time increment becomes infinitesimally small and
is put on a more formal basis by invoking large deviation
results [32]. Furthermore, when one adds a deterministic force,
the expression for the path probability Pp is unchanged, and
leads to the conclusion that all paths of the same length
are equally probable. The physical interpretation of this
statement is that the noise originates in the heat bath [33]
and has no knowledge of the underlying forces inherent in the
system.

To illustrate the above point, consider the following
“thought” experiment. For a conservative force, consider
sampling the Boltzmann distribution using the Brownian
dynamics as expressed by Eq. (2). Take the starting point,
x0, to be arbitrary and integrate the SDE over a fixed time,
T , that is long compared to any barrier hopping time. Using
a nonzero but small time step, �t , one uses Nr = T/�t

Gaussian random variates. Keeping the same set of random
numbers, but simply permuting the order, redo the integration.
This procedure provides Nr ! possible paths, each with identical
probabilities. For large enough T and small enough �t , the set
of endpoints, xT , should be distributed in a manner that is close
to Boltzmann. Here it is important to recognize that it is not the
path probability that creates the distribution, as all paths are
identically probable. Rather it is the path density that drives
the correct distribution of the endpoints. Positions along a long
path reflect the thermodynamic Boltzmann distribution. Thus,
when one generates an ensemble of such paths, the endpoints
must also reflect the Boltzmann distribution. A large number
of paths of the ensemble will end near the potential minimum;
a smaller number near the maximum.

We have partially performed this numerical experiment
(calculation) for the potential defined in Eq. (6). We chose
Nr = 2 × 106 random numbers, Gaussian distributed with
mean zero and variance one. Out of the possible Nr ! paths
we followed over 400 000 of them using the Euler-Maruyama
algorithm, with �t = 0.0005. The endpoints were then

FIG. 2. The histogram of endpoints of the set of trajectories with
equal probability. Here the endpoints of 472 640 different trajectories
are shown. The solid curve is the normalized Boltzmann distribution,
exp (−V/ε)/Z, for the temperature ε = 0.25, and potential given by
Eq. (6).

collected and their histogram is displayed in Fig. 2. Evidently
the distribution looks to be very close to the Boltzmann
distribution in spite of the fact that each path has the identically
equivalent path probability. Similar results are expected when
one generates independent sets of random numbers instead of
using the permutations of the original set.

The noise is a consequence of the random fluctuations of
the thermal reservoir, and in the SDE given in Eq. (1), the
noise is not correlated with the position of the particle. By
inspecting Eq. (5), we see that it gives different probabilities
for different paths: some paths are more probable than others.
This is accomplished by correlating the noise with the positions
through the function G. It is clearly incorrect to interpret the
Ito-Girsanov expression in this manner.

IV. AWAY FROM THE CONTINUOUS-TIME LIMIT

One of the uses of the OM functional is to incorporate it into
a scheme to sample paths that are constrained at both ends. The
aim is to efficiently generate an ensemble of paths that include a
transition over an energy barrier. When the barrier is large
compared to the typical thermal energy, the transition is a rare
event. We wish to explore barrier hopping that is consistent
with thermodynamics, where the driving noise reflects the
fluctuating random effects that originate in a thermal bath and
thus are independent of the particle’s position.

The quandary is that for a very simple one-dimensional
example, the generated paths quickly become unphysical when
using the Ito-Girsanov form, Pp, for the path probability. Long
paths, generated with small time steps, are expected to be
consistent with equilibrium thermodynamics. First we address
the question of what happens away from the continuous-time
limit and show that it is possible to use an algorithm that
generates a collection of paths that are consistent with the
Boltzmann distribution. Then we show that when we use Ito-
Girsanov expression, given by Eq. (5), we obtain results that
are unphysical.

To understand how the time discretization affects the
numerical solution to the SDE we used both Eq. (3) and the
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FIG. 3. The fraction of the path in the broad well, B(s), is shown
as a function of the sampling index, s. These are results for three
calculations. We started with the same input path where B(0) ≈ 0.6,
and had a path length of T = N �t = 150, and a time step along
the path of �t = 0.005. The lower (red) curve corresponds to the
results using the Ito-Girsanov expression. While the upper curves,
green (light gray) and blue (dark gray), are the results of using the
functionals [Eqs. (3) and (7)], which are based on a discrete time grid.
The straight line (at 0.92) corresponds to the equilibrium value.

following form of the path probability Ps
p:

− lnPs
p = C + �t

2 ε

N∑
i=1

(
1

2

∣∣∣∣xi+1 − xi

�t
− F (xi)

∣∣∣∣
2

− Ji

)
,

(7)

where Ji = 2 ε
�t

ln [1 − �t
2 F ′(xi)], and xi is the midpoint of xi

and xi+1. This expression, Ps
p, is related to the Stratonovich

representation of the diffusion process (see Elber and Shal-
loway [34]). As indicated by Van Kampen [35], for the
problem described by Eq. (1), the limits of both the Ito
and Stratonovich discretizations are equivalent. However, as
Lavenda [20] pointed out, Eq. (7) must differ from Eq. (3) since
the Jacobian term Ji strays from unity. In the continuous-time
limit Ji ⇒ ε F ′(xi), which provides the Laplacian term in
the definition of G, giving the same limit as seen in the
Ito-Girsanov expression in Eq. (5).

In sampling Pp and Ps
p, we generated a sequence of

paths at a temperature ε = 0.25, constrained to start in the
narrow well and to end in the broad well and used a HMC
implementation [36] using the “Implicit Algorithm” in Beskos
et al. [37]. We use the Heaviside function � to define the
function B(s) to be the fraction of the path that is contained in
the broad well, namely,

B(s) = 1

T

∫ T

0
dt �

(
x

(s)
t

) ≈ 1

N

∑
i

�
(
x

(s)
i

)
,

where the sampling index is denoted as s, and the correspond-
ing path is { x

(s)
i }.

As can be seen in Fig. 3, using either of the path probabilities
given by a discrete sum, we find an ensemble of paths that are
concentrated in the wide well. All paths are constrained to
undergo at least one transition; we find only one transition
in the majority of paths, and a smaller number of paths
that undergo multiple transitions. Using either expression, the
percentage of the time spent in the broad well is, on average,

approximately 85%, which is much closer to the equilibrium
value of 90%. This is the type of behavior that one expects
for paths consistent with the Boltzmann distribution. Away
from the continuous-time limit, we found a behavior that is
close to the physical result. In the next section, we show that
these are in stark contrast to calculations that sample the path
probability expression given by the Ito-Girsanov expression
[Eq. (5)].

V. UNPHYSICAL RESULTS

Now we turn to the results found when sampling from
the path probability given by the Ito-Girsanov expression,
Pp [Eq. (5)]. Results generated using the Ito-Girsanov ex-
pression have been questioned before. For example, in Adib’s
paper [38], the origins of the poor performance when using the
Ito-Girsanov expression were not understood. The potential
used in this work [Eq. (6)], was designed to highlight effects
on transition paths of the potential-curvature terms in the Ito-
Girsanov expression. With degenerate wells, these curvature
terms enhance the time the particle will spend in the narrow
well. From the form of Pp, the curvature of the narrow basin
would seem to enhance the probability of paths that spend a
long time there; see the early paper of Weiss and Häffner [23].
Indeed, the MPP [39] would be highly concentrated in the
narrow well.

We used the Ito-Girsanov formula with the method devel-
oped by Beskos et al. [40], referred to here as the path-space
hybrid Monte Carlo (psHMC), using a temperature ε = 0.25,
to generate a sequence of paths constrained to start in the
narrow well and to end in the broad well. In Fig. 3, we
plot B(s) using the described procedure (red curve), showing
that the paths quickly become unphysical in that the particle
spends the vast majority of the time in the narrow well. Such
paths are inconsistent with the equilibrium thermodynamical
distribution where the particle would be expected to be found
in the broad well about 90% of the time. Although only one
sampling set is presented here, we note that this effect is robust
in that similar results are obtained for a range of parameters.

VI. NUMERICAL ASPECTS

To summarize the previous section; we found that the
discrete version and the continuous-time limit of the OM
functional generate opposing behavior when sampling pinned
paths for a particle moving in a simple double-well potential.
We generated an ensemble of paths that were consistent with
the Boltzmann distribution by using discrete forms of the OM
functional with an HMC algorithm with an Ito discretization or
with a Stratonovich discretization, away from the continuous-
time limit. Conversely, we generated an ensemble of paths that
were concentrated in the narrow well using the Ito-Girsanov
expression using the psHMC algorithm.

The key to understanding numerics behind these results
is to examine the “cross term” in Eq. (3). Using the Taylor
expansion of V(xi+1), the cross term can be written as

(xi+1 − xi)F (xi) = V(xi+1) − V(xi) + ε �t F ′(xi) + �i,

(8)
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where to second order in �x, the expression for �i is

�i ≈ (
1
2 (xi+1 − xi)

2 − ε �t
)
F ′(xi). (9)

If one ignores �i , Eq. (8) is a discrete form of Ito’s lemma.
The first term on the right-hand side of Eq. (8) gives the
change-in-potential term in Eq. (5) (as it telescopes under
summation), while the second term gives the Laplacian term
in the Ito-Girsanov expression. Examining

∑
i �i , we see

that it is small only when the noise, embodied by �x2 and
the position are not correlated, or when F ′ is a constant.
Remember that the noise and positions being uncorrelated is
a consequence of the original SDE [Eq. (1)], and therefore it
is a requirement for generating thermodynamically consistent
paths. Over short timescales, due to the rapid variation in
the noise term, the high-frequency contributions can be
ignored [41]. But this is not sufficient; the small-frequency
contributions must also be negligible.

Away from the continuous-time limit, one uses Eq. (3) or
Eq. (7) which can be considered as discrete versions of Eq. (4).
The quadratic form of these measures ensure that

∑
i �i

remains small. However, for a nonvanishing value of the time
step, �t , nothing in the Ito-Girsanov expression, Eq. (5), con-
strains

∑
i �i and the sum is free to grow to maximize the Ito-

Girsanov expression. As discussed above, in the continuous-
time limit, the variation in the Ito-Girsanov expression is not
relevant, as the path multiplicity swamps any such variation.

As shown above, by numerically sampling this measure,
we observe large values of

∑
i �i when using the psHMC

algorithm. In the psHMC algorithm the implied noise history
and the particle position are intertwined as one searches for
the paths that have the larger probabilities as indicated by the
Ito-Girsanov expression. During the search, correlations are
introduced into the low end of the frequency spectrum while
the path evolves under the (deterministic) Hamiltonian flow.
The implication of such low-frequency correlation is that the
thermal bath is no longer independent of the system and thus
the fluctuations are no longer thermodynamic, and entropy is
spuriously generated [42]. Remember that this behavior is a
consequence of not having properly included the effect of the
infinite number of degrees of freedom. In finite-dimensional
implementations of the Ito-Girsanov expression,

∑
i �i is

unconstrained; in the continuous-time limit,
∑

i �i ⇒ 0. The
conclusion must be that although Ito’s lemma is valid in infinite
dimensions, its use in finite dimensions creates instabilities
in numerical schemes based on the Ito-Girsanov expression,
Eq. (5).

The resulting paths (not shown here) using the psHMC
method look like a noisy version of the so-called MPP [39].
In particular, for the first 95% of its length, the path can be
described as an OU process in the narrow well. In the last 5%
of the path, a transition is made into the broad well. Note that
this probability advantage increases exponentially as the path
length increases.

To explore the instability, it is instructive to use a spectral
representation, that is to rewrite the path in terms of a sine
transform, namely

xt = x0 + t

T
(xT − x0) +

√
2

T

∑
n

an

ωn

sin(ωnt), (10)

with ωn = nπ/T . In the psHMC method the effective Hamil-
tonian can be expressed as

Heff = 1

2

∑
n

a2
n + 1

2 ε

∫ T

0
dt G(xt ) + 1

2

∑
n

b2
n, (11)

with bn being the momentum conjugate to an. Hamilton’s
equation for the (algorithmic) time evolution is

∂bn

∂τ
= −an − 1

2 ε

√
2

T

∫ T

0
dt

sin(ωnt)

ωn

∂G

∂x
. (12)

Remember that an underlying condition when using Ito’s
lemma was the noise history and the positions remain uncorre-
lated. The consequence of this condition is that the coefficients
{bn} are i.i.d., since they are related to the sine transform of
the noise. For those frequencies where the second term on the
right-hand side of Eq. (12) dominates, the algorithm pushes
the path to the minimum of the (effective) energy, which is
an unphysical result. To remain in the physical regime, the
second term on the right-hand side of Eq. (12) must be small
compared to the first. For large frequencies, the second term is
indeed small. For intermediate frequencies, if the path length
T is not large enough, the second term will dominate. At the
lowest frequencies, since ωn = nπ /T , when T is large then
the second term dominates in Eq. (12). Although this is not a
rigorous proof, it looks as though, for any path length T and
nonzero �t , an instability exists.

At low temperatures, a particle spends exponentially long
times in a metastable energy basin before hopping over
the confining barrier. It was hoped that one could sample
short transition paths, thereby bypassing these long waiting
times. Using the Ito-Girsanov expression in such a method
evidently fails spectacularly. It is surprising that instability in
the numerics comes from the low, rather than high, frequency
contributions. Should not the time increment, �t , play an
important role? As �t shrinks, the multiplicity begins to
override the variation in the Ito-Girsanov expression. However,
for any nonzero value of �t , one has thrown away an infinite
number of frequencies and a corresponding number of degrees
of freedom. The multiplicity that remains does not seem to be
sufficient to override the variation. We have failed to design an
algorithm on a finite grid that honors the assumption made by
using Ito’s lemma. And we do not see a way to ameliorate the
catastrophe produced when using the Ito-Girsanov expression
on a finite-time grid. It remains an open question if it is indeed
possible to do so. It may be that we have to turn to other
approaches, such as the one by Orland and coworkers [43].

VII. RANDOM WALK METROPOLIS

We now turn to another way of eliminating the effects of
the troublesome cross term, given in Eq. (8). By eliminating
correlations between the noise and the position, one can ensure
that

∑
i �i ⇒ 0. We can do this by using a simple sampling

method, the random walk metropolis (RWM) algorithm, which
restricts the region of path space being explored. We use
RWM to sample Pp, Eq. (5), proceeding as follows: First,
create a Brownian path that starts and ends at the origin.
A new Brownian bridge is generated and then combined
with the current path (with the sum of the squares of the
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FIG. 4. Results for the calculation using the RWM algorithm
starting from a randomly generated Brownian bridge. As a function
of iteration number, a plot of the fraction of the path which resides in
the broad well (black curve) and the equilibrium value (dotted line).

mixing coefficients being unity). A proposed path is generated
from the Brownian bridge by shifting the starting point to be
x0 = 0.4 and the ending point to be xT = 1.6. The acceptance
or rejection of this new path is based on Pp [Eq. (5)]. This
procedure was repeated thousands of times and generated the
results displayed in Fig. 4. As shown in this figure, the starting
Brownian bridge evolves to a path that is concentrated in the
broad well. The fraction of the time that the path spends in the
positive half plane begins at a value below 0.40 and settles to
a value larger than 0.95. This result differs from the sampling
of the Ito-Girsanov expression using the psHMC method,
as shown above, because the noise in a Brownian Bridge is
not correlated with the path position (by construction). In the
absence of correlations, the discrete version of Ito’s lemma is
obeyed to sufficient accuracy to avoid the instabilities shown
in Eq. (12).

VIII. CONCLUSION

In this paper, we examined algorithms designed for sam-
pling pinned diffusion paths using the continuous-time limit of
the Onsager-Machlup functional. The OM functional is based
on Brownian dynamics and provides a way of understanding
the double-ended path-sampling problem [13]. It had been
accepted that in the continuous-time limit, the Onsager-
Machlup functional could be replaced by the Ito-Girsanov
change of measure [Eq. (5)] in computational algorithms as a
way of handling the infinities inherent in such a limit. We have
shown here that this is inappropriate. First, direct sampling
gives unphysical results when using the same values of the
algorithmic parameters, which produced sensible results using
methods based on finite sums, Eq. (3) or Eq. (7). Second, in-
terpreting the Ito-Girsanov change of measure as a probability
distribution favors some paths over others even though paths of
the same duration must have the same probability. Numerical
algorithms, being finite-dimensional, fail to capture this effect
when using the Ito-Girsanov path measure.

It was previously observed that the MPPs for many
potentials appeared to be unphysical [39], which should have
been taken as an indication that something was amiss. Now we
understand why. To derive the Ito-Girsanov expression, Eq. (5)
as the continuous-time limit of the OM functional, Eq. (3), one

uses Ito’s lemma, which assumes that noise and positions are
not correlated. In this limit any variation in the measure is
overwhelmed by the infinite degrees of freedom inherent in
the continuous-time process. However, when determining a
MPP, one is asking for the optimal noise for a path subject to
the boundary conditions. This question and the assumption are
in opposition. The MPP is indeed optimal in some sense, but
its construction is based on violating the above assumption.
We therefore conclude that the MPP is unphysical as it is no
longer related to the original SDE where the noise must be
spatially and temporally uncorrelated, i.e., unoptimized.

For example, we now see that the results for the �-
limit for a particle moving in the two-dimensional potential
studied by Pinski et al. [44] can also be reinterpreted as
a consequence of the same phenomena. Namely, the gen-
eralization of Eq. (3) to two dimensions (x and y) would
have each Cartesian component being separately squared.
Thus, the large-deviation [45] paths follow the gradients
of the potential. When progressing to the continuous-time
limit and using the Ito-Girsanov expression, the (quadratic)
structure is lost and one can find maximizers that follow an
equipotential line instead [44], where the x component of the
force combines with the y component of the displacement
(and vice versa). Such maximizers exist only when the noise
and the path are correlated, which, as we noted above, is
unrelated to the original SDE. Such maximizers are contained
in the Ito-Girsanov formula only because one has disregarded
the overwhelmingly dominant path multiplicity. When using
the Ito-Girsanov expression, Eq. (5), one finds that catastrophic
damage can be done to the integrity of the sampling method.

We would like to emphasize that the use of the original OM
functional, Eq. (3), is an appropriate method for exploring
paths that describe barrier hopping. One can generate physical
ensembles of paths using Eq. (3), but these algorithms may
be computationally demanding as the full Hessian is required,
rather than the Laplacian in the continuous-time case. Such
algorithms still need development before they can become
useful.

The theory of classical path integrals is very similar to Feyn-
man’s approach to quantum mechanics [46]. In calculating
quantum path integrals, the classical path is the most probable
as it corresponds to the minimum action. The quantum action
is a complex number and the phase plays the crucial role. In
the vicinity of the classical path the phase is stationary. The
contributions to the propagator from paths that are close to
the classical path are the same to second order in the path
differences. The total contributions to the propagator from
paths that are far away from the classical path are small due
to cancellations cause by the phase factors. The difference
then is that the classical path integrals are not complex, all
contributions are real, and the most probable diffusion path is
not a physical entity.

The consequences of the ideas presented in this article
reach deep into the literature. Here is a partial list, by no
means comprehensive, of the works affected by our results: For
probing the folding of proteins, several works [1,8–10,47,48]
suffered from using the Ito-Girsanov as a path measure in
a finite-dimension path space or from placing too much
importance on MPPs. The use of the OM functional as the
foundation of a thermodynamic action which can be minimized
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is noted in many general articles such as McKane’s entry [49]
in an encyclopedia, reviews by Touchette [32], by Smith [2],
and by Qian [4]. As indicated above, the action is derived from
noise produced by the thermal bath, which has no knowledge
of the system that is under study. The noise, and thus the
action, is unphysical for an optimized path. The work of Speck
et al. [3] uses the optimal trajectory in explaining the role of
entropy production. Using the optimal trajectory as a starting
point, they found that a “kink” in the action is smeared out by
fluctuations. This is consistent with our conclusion, but we go
a step further and indicate that the action itself is completely
flat when all the effects of fluctuations are included.

To conclude, we reiterate an idea of Still et al. [50], who
examined the flow of information in a system evolving through

a stochastic process. Any information flow is a direct result of
the response of the environment to the changes in the system.
In ideal Brownian dynamics, the heat bath does not respond to
such changes, and thus no information flows. And as we have
shown here, the absence of this feedback ensures that noise is
never optimized, that the “action” cannot be minimized, and
the most probable path is a misnomer as it rarely occurs.
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