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Inverse Gaussian and its inverse process as the subordinators of fractional Brownian motion
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In this paper we study the fractional Brownian motion (FBM) time changed by the inverse Gaussian (IG)
process and its inverse, called the inverse to the inverse Gaussian (IIG) process. Some properties of the
time-changed processes are similar to those of the classical FBM, such as long-range dependence. However,
one can also observe different characteristics that are not satisfied by the FBM. We study the distributional
properties of both subordinators, namely, IG and IIG processes, and also that of the FBM time changed by
these subordinators. We establish also the connections between the subordinated processes considered and the
continuous-time random-walk model. For the application part, we introduce the simulation procedures for both
processes and discuss the estimation schemes for their parameters. The effectiveness of these methods is checked
for simulated trajectories.
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I. INTRODUCTION

Fractional Brownian motion (FBM) is a Gaussian stochastic
process that is non-Markovian. It belongs to the class of long-
range-dependent (LRD) systems with self-similarity property.
It is also considered as one of the classical second-order
processes with so-called anomalous diffusion behavior. The
process is closely related to fractional Langevin equation
motion [1] and can be considered as a generalization of the
classical Brownian motion (BM). One can find in the literature
many research papers devoted to different theoretical aspects
related to FBM [2–6]. The FBM has been widely used in
several applications such as polymer translocation through a
pore [7] and the dynamics of a tagged monomer [8] and is also
a commonly used probabilistic model in areas such as finance
[9] and hydrology [10].

However, for many real-life data with long-range depen-
dence, the classical FBM cannot be considered an appropriate
model. One of the possible solutions is the time-changed FBM.
In general, the time-changed processes are constructed as the
superposition of two stochastic systems. The first one is called
an external process, while the second one, called an internal
process or a subordinator, is generally a nondecreasing process
with stationary independent increments with right continuous
left limits sample paths. In the literature, one can find different
papers related to processes delayed by subordinators or even
inverse subordinators that are constructed as the inverse
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processes to subordinators [11]. One can also find applications
of subordinated processes to different fields such as financial
time series [12,13], indoor air quality data [14], biology [15],
physics [11], and many other disciplines; see [16] and the
references therein. It is worth mentioning that the idea of
subordination was introduced by Bochner [17].

In this paper we analyze the time-changed FBM with
two different subordinators: the inverse Gaussian (IG) and
its inverse [inverse to the inverse Gaussian (IIG)]. We mention
that the normal inverse Gaussian (NIG) process was introduced
and studied by Barndorff-Nielsen [18]. It is obtained by
subordinating BM having drift with the IG process to model the
financial data. It is a process with stationary and independent
increments with sample paths having jumps. The NIG density
exhibits the so-called semiheavy tails, typically observable
in finance and geophysics [19]. The NIG distribution has
also found interesting applications in a multiscale entropy
description [20]. In this paper we use both IG and IIG processes
as subordinators and indicate their main characteristics.

The time-changed FBM with IG processes in the literature
is known as the fractional normal inverse Gaussian (FNIG)
process [19]. In this paper we extend the results of [19]
and present more interesting properties, especially related
to the long-range-dependence property, infinite divisibility,
simulation of sample paths, and parameter estimation of the
FNIG process. Moreover, as it was mentioned, we analyze also
the FBM time changed by the IIG process. We compare the
main properties of both subordinated processes, such as dis-
tributional characteristics and covariance structures. We show
that both time-changed processes, like FBM, exhibit the long-
range-dependence property. We also present the simulation
procedures for both subordinated processes considered. The
procedures are based on the fact that the analyzed systems are

2470-0045/2016/94(4)/042128(11) 042128-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.042128
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superpositions of two independent mechanisms. Further, we
also propose parameter estimation schemes for both processes.
It is noted that the estimation techniques for both time-changed
systems are different. For the FBM delayed by the IG process,
the estimation method is based on the asymptotic behavior of
the right tail and the fact that the mean square displacement of
the process has the same asymptotic behavior as the classical
FBM. For the FBM delayed by the IIG process, the constant
time periods observable in the trajectory constitute a sample of
independent data from the IG distribution. In order to estimate
the parameters of this distribution, we use here a method based
on the rescaled modified cumulative distribution function. In
order to check the effectiveness of estimation techniques, we
analyze the simulated trajectories of the processes considered.

The rest of the paper is organized as follows. In Sec. II we
introduce the IG and IIG processes and indicate their main
characteristics. In Sec. III we study the FBM time changed
by the IG process and show its properties related to the
asymptotic behavior of distribution characteristics and indicate
the relationship between this process and the continuous-time
random-walk (CTRW) model. In Sec. IV we analyze the
equivalent characteristics of the FBM time changed by the IIG
process. In Sec. V we show how to simulate the subordinated
processes and discuss the methods of estimation of their
parameters. We summarize in Sec. VI.

II. INVERSE GAUSSIAN AND ITS INVERSE PROCESS

A. The IG process

In this section the main properties of the IG process are
given. Some of these results are taken from the literature,
while other results such as the asymptotic behavior of the
probability density function (PDF), tail probabilities, and
asymptotic behavior of moments are presented and used in
the present paper.

Let B(t) be the standard BM and Bγ (t) be the standard
Brownian motion with positive drift such that Bγ (t) = B(t) +
γ t , where γ > 0. The inverse Gaussian process G(t) with the
parameters δ and γ , both positive, is defined by [21]

G(t) = inf{s > 0 : Bγ (s) > δt}. (2.1)

As one can see, the G(t) process can be considered as
the first time the BM with drift γ hits the barrier δt .
The increments G(t + s) − G(s) follow the inverse Gaussian
G(δt,γ ) distribution having the PDF [22]

g(x,t) = δt√
2πx3

eδγ t−(δ2t2/x+γ 2x)/2, x > 0. (2.2)

The IG process G(t) is a nondecreasing Lévy process (i.e.,
process with stationary independent increments) with Lévy
measure π given by [22]

π (dx) = δ√
2πx3

e−(γ 2/2)xdx, x > 0. (2.3)

Let Lx→u(g(x,t)) = g̃(u,t) be the Laplace transform (LT) of
g with respect to the space variable x. Then

g̃(u,t) = E(e−uG(t)) = e−tδ(
√

2u+γ 2−γ ). (2.4)

Therefore, the Laplace exponent �G(u) = δ(
√

2u + γ 2 − γ ).
Note that almost all sample paths of G(t) are strictly increasing
with jumps, since the sample paths of Bγ (t) are continuous and
have intervals where paths are decreasing. It is easy to see that

g(x,t) ∼ δt√
2π

eδγ tx−3/2e−(γ 2/2)x as x → ∞,

where f (x) ∼ g(x) as x → x0 means limx→x0

f (x)
g(x) = 1. Thus,

the tail probability for the IG process satisfies

P(G(t) > x) ∼
√

2

π

δt

γ 2
eδγ tx−3/2e−(γ 2/2)x as x → ∞,

(2.5)

which is exponentially decaying and hence all moments of
G(t) process are finite. Let Kν(ω) be the modified Bessel
function of the third kind with index ν, defined by

Kν(ω) = 1

2

∫ ∞

0
xν−1e−(x+x−1)/2dx, ω > 0. (2.6)

An asymptotic expansion for Kν(ω) for large ω [see Eq. (A.9)
in [23]] is

Kν(ω) =
√

π

2
ω−1/2e−ω

(
1 + μ − 1

8ω
+ (μ − 1)(μ − 9)

2!(8ω)2

+ (μ − 1)(μ − 9)(μ − 25)

3!(8ω)3
+ · · ·

)
, (2.7)

where μ = 4ν2. The qth moment of the G(δt,γ ) distribution
[23] is given by

EGq(t) = Kq−1/2(δγ t)

K−1/2(δγ t)

(
δt

γ

)q

=
√

2

π
δ

(
δ

γ

)q−1/2

tq+1/2eδγ tKq−1/2(δγ t). (2.8)

Using the fact that Kν(ω) ∼ √
π
2 e−ωω−1/2 for large ω [23], we

obtain

EGq(t) ∼
(

δ

γ

)q

tq as t → ∞. (2.9)

From [24], the density functions g(x,t) of G(t) satisfy

∂2g

∂t2
− 2δγ

∂g

∂t
= 2δ2 ∂g

∂x
.

When γ = 0 the above equation is closely related to classical
heat equation with time and space variables interchanged. Now
let us consider the sequence X1,X2, . . . ,Xn such thatEXi = μ

and Var(Xi) = 1, i = 1,2, . . . ,n. Then we define the rescaled
sum

T m
n =

n∑
i=1

(
1√
m

(Xi − μ) + γ

m

)
, n � 1, m > 0.

Using Donsker’s theorem, it follows that T m
[mt] ⇒ B(t) + γ t

in (D,J1), as m → ∞, where D is the Skorohod space and J1

is the Skorohod metric. Consider the supremum process

Mm
n = sup

0�j�n

T m
j . (2.10)
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FIG. 1. Relation between the process G(t) and its inverse H (t).
Observe that constant periods of H (t) occur accordingly to the jumps
of the process G(t).

Then

Gm
t = min

{
n � 0 : Mm

n > t
}

(2.11)

is the first-exit time of Mm
n . As shown in [24], m−1Gm

t ⇒ G(t)
in (D,J1) as m → ∞, where G(t) is the IG process.

B. The IIG process

This section focuses on the IIG process. The results found
are further used in deriving the properties of FBM time
changed by IIG process.

The inverse to the inverse Gaussian process, denoted by
H (t), is the right continuous inverse of G(t), defined by

H (t) = inf{s > 0 : G(s) > t}, t � 0. (2.12)

Since the sample paths of G(t) are strictly increasing with
jumps, the sample paths of H (t) are continuous and are
constant over the intervals where G(t) has jumps. In Fig. 1
we illustrate the relationship between the H (t) and G(t)
processes. Note that H (t) can also be considered as a first-
passage time. For a general increasing non-negative process
G(t) with stationary independent increments corresponding
to infinitely divisible distribution, the inverse process defined
in (2.12) is always well defined [25]. We should mention
that the general inverse subordinators have found various
applications in probability theory. The connection between
inverse subordinators and the theory of renewal processes can
be found, for instance, in [26,27].

Note that

{H (t) � x} = {G(x) � t}
= {

sup
s�t

Bγ (s) � δx
}

= {
δ−1 sup

s�t

Bγ (s) � x
}

(2.13)

and hence H (t)
L= δ−1 sups�t Bγ (s), where

L= means equiva-
lence in law (or distribution). Thus the PDF of H (t) can also be

viewed as the density of supremum of BM with drift Bγ (t). For
a general strictly increasing process G(t) with density function
g(x,t) and Laplace exponent �G, the density function h(x,t)
of the first-exit time process H (t) has the LT [28]

Lt→s(h(x,t)) = 1

s
�G(s)e−x�G(s). (2.14)

Since G(t) is a strictly increasing process with the Laplace
exponent �G(u) = δ(

√
2u + γ 2 − γ ), we obtain from (2.14)

the LT of h(x,t), the PDF of the H (t) process, with respect to
the time variable t , given by

Lt→s(h(x,t)) = 1

s
δ(

√
(2s + γ 2) − γ )e−xδ(

√
(2s+γ 2)−γ ).

(2.15)

For q > 0, let Mq(t) = EHq(t) be the qth-order moment of
the process H (t). Let M̃q(s) denote the LT of Mq(t). Using
[29], it follows that

M̃q(s) = 1

s[δ(
√

(2s + γ 2) − γ )]q

∼
{ 1

(δ
√

2)q
1

s1+q/2 for γ = 0(
γ

δ

)q 1
sq+1 for γ > 0

(2.16)

as s → 0. Using the Tauberian theorem [30], it follows, as
t → ∞, that

Mq(t) ∼
⎧⎨
⎩

1
(δ

√
2)q

tq/2

	(1+q/2) for γ = 0(
γ

δ

)q tq

	(1+q) for γ > 0.
(2.17)

Unlike the IG process, the one-dimensional distributions of
the IIG process are not infinitely divisible and can be seen as
follows. Note that for u > 0,

P(H (t) > x) = P(G(x) � t) = P( − uG(x) � −ut)

= P(e−uG(x) � e−ut ) � Ee−uG(x)

e−ut

= eut−xδ(
√

2u+γ 2−γ )

� e−δ2x2/t+δγ x−γ 2t/2.

Thus − lnP(H (t) > x) � δ2x2

t
− δγ x + γ 2t

2 . Hence,

lim sup
x→∞

− lnP(H (t) > x)
x ln x

= ∞,

which implies, by Corollary 9.9 of [31], that H (t) is Gaussian
if H (t) is infinitely divisible. This is a contradiction and hence
H (t) is not infinitely divisible. We state this result in the
following proposition.

Proposition 1. The one-dimensional distributions of the IIG
process are not infinitely divisible.

To find the exact tail behavior of H (t), we employ Laplace’s
method [32], which is a general technique that allows us to
generate an asymptotic expansion for Laplace integrals for
large x. More precisely, suppose an integral has the form

I (x) =
∫ b

a

m(y)exφ(y)dy,
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where m(y) and φ(y) are real-valued continuous functions.
Suppose φ(·) has a global maximum at y = b, m(b) �= 0, and
φ′(b) �= 0. Then, for large x (see [32]),

I (x) ∼ m(b)exφ(b)

xφ′(b)
. (2.18)

Since G(x) has density g(y,x), defined in (2.2), we have

P(H (t) > x) = P(G(x) � t)

= δx√
2π

eδγ x

∫ t

0
y−3/2e−(γ 2/2)ye−(δ2/2y)x2

dy

∼ 2

δ
t1/2e−(γ 2/2)t x−1eδγ x−δ2x2/2t , (2.19)

which follows by using (2.18) and noting that m(y) =
y−3/2e−(γ 2/2)y , φ(y) = − δ2

2y
, and φ attains global maximum

at y = t .
Next we obtain the fractional partial differential equation

(FPDE) satisfied by the PDF of the IIG process. The Riemann-
Liouville (RL) fractional derivative of order α for the function
f (·) is defined by [33]

∂α

∂tα
f (t) = dm

dtm

[
1

	(m − α)

∫ t

0

f (τ )

(t − τ )α+1−m
dτ

]
, (2.20)

where α ∈ (m − 1,m). Consider the Laplace transform of the
shifted fractional RL derivative given by [34]

Lt→s

{(
c + ∂

∂t

)ν

f (t)

}

= (c + s)νLt {f (t)} − (c + s)ν−1f (0), s > 0. (2.21)

We define Lt→s(h(x,t)) = ĥ(x,s). Using (2.15) we obtain

∂

∂x
ĥ(x,s) =−δ(

√
(2s + γ 2) − γ )ĥ(x,s)

=−δ(
√

(2s + γ 2)ĥ(x,s)

− (2s + γ 2)−1/2h(x,0))

− δ(2s + γ 2)−1/2h(x,0) + δγ ĥ(x,s).

Inverting the LT on both sides of this equation with the
help of (2.21) and using L−1[(s + a)−1/2] = e−at /

√
πt yields

following result.
Proposition 2. The PDF h(x,t) of the IIG process solves

following FPDE involving the shifted power of the fractional
derivative

∂

∂x
h(x,t) =−δ

(
γ 2 + 2

∂

∂t

)1/2

+ δγ h(x,t) − δ
√

2
e−γ 2t/2

√
πt

δ0(x), (2.22)

with the initial condition h(x,0) = δ0(x), the Dirac delta
function concentrated at origin.

For γ = 0 and δ = 1/
√

2, Eq. (2.22) reduces to

∂

∂x
h(x,t) = − ∂1/2

∂t1/2
h(x,t) − δ0(x)√

πt
,

which is the FPDE corresponding to the density of |B(t)|.

It follows from (2.10) and Theorem 13.4.1 in [35] that

Mm
[mt] ⇒ sup

0�s�t

[B(s) + γ s] in space D,

which is the same process as H (t). Hence, for δ = 1, Mm
[mt] ⇒

H (t) in D as m → ∞. Moreover, let

Hm
t = min

{
k � 0 : Gm

k > t
}

(2.23)

be the first-exit time of the process Gm
k defined in (2.11). We

show that Hm
t converges weakly to the IIG process H (t).

Proposition 3. As m → ∞, it follows that

m−1Hm
t ⇒ H (t) in (D,J1). (2.24)

Proof. First we establish the wconvergence of finite-
dimensional distributions (FDDs). Note that as m → ∞,

P
{
m−1Hm

ti
� xi, i = 1,2, . . . ,k

}
= P

{
Hm

ti
� mxi, i = 1,2, . . . ,k

}
= P

{
Gm

[mxi ] � ti , i = 1,2, . . . ,k
}

(by 2.23)

= P
{
Mm

[mti ] � xi, i = 1,2, . . . ,k
}

(by 2.11)

→ P{H (ti) � xi, i = 1,2, . . . ,k}.
Hence, m−1Hm

t

FDD=⇒ H (t). Moreover, sample paths of Hm
t

are monotonic and sample paths of H (t) are continuous,
since sample paths of G(t) are strictly increasing. Hence,
H (t) is continuous in probability. Then the result follows by
using Theorem 3 in [36], which states that in this situation
convergence of the FDD is sufficient for weak convergence.�

In the next section we consider the IG and IIG processes as
subordinators, i.e., processes that can replace the time of other
processes. We analyze here the fractional Brownian motion
as the external process. We will prove the main properties
of the subordinated processes and introduce simulation and
estimation procedures for the parameters corresponding to
both systems.

III. FRACTIONAL BROWNIAN MOTION DRIVEN BY THE
IG PROCESS

Fractional Brownian motion is a stationary-increment self-
similar process that exhibits the so-called long-range depen-
dence. It is also considered as a main model appropriate for the
description of so-called anomalous diffusion phenomena. An
anomalous diffusion property can be recognized, for example,
by time-averaged mean square displacement (TAMSD). For
a sample {Xi, i = 1,2, . . . ,n} with stationary increments, the
TAMSD is defined as [37]

Mn(τ ) = 1

n − τ

n−τ∑
k=1

(Xk+τ − Xk)2. (3.1)

For FBM, it is known that the TAMSD Mn(τ )
L= τ 2H , where

L= means equivalence in law and H ∈ (0,1) is a parameter,
called the Hurst exponent. We classify the FBM process with
H = 1/2 as exhibiting linear dynamics. The process exhibits
subdiffusive behavior if H < 1/2 and the superdiffusive be-
havior if H > 1/2. The FBM was introduced by Kolmogorov
[38,39] and very often is considered as an extension of the
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classical BM. The FBM with index H is the mean-zero
Gaussian process BH (t) defined as follows for t > 0 [38,40]:

BH (t) =
∫ ∞

−∞
[(t − u)H−1/2

+ − (−u)H−1/2
+ ]dB(u), (3.2)

where (x)+ = max(x,0). For fixed t , the PDF of BH (t) is given
by

fBH (t)(x) = 1√
2πtH

e−x2t−2H /2, x ∈ R. (3.3)

Further, the covariance function of FBM with fixed s and as
t → ∞ behaves as

E(BH (s)BH (t)) = 1
2 [s2H + t2H − (t − s)2H ]

∼ Hst2H−1. (3.4)

The FBM time changed by the IG process G(t) introduced in
(2.1) is defined by

X(t) = BH (G(t)), (3.5)

under the assumption that BH (t) and G(t) are independent.
In the following sections, the distributional properties of

FBM time changed by the IG process are discussed. The
CTRW connection was discussed in [24] and is provided
here for completeness. More importantly, we establish the
asymptotic behavior of the marginal density, the infinite
divisibility, the long-range dependence of the process X(t),
and the ergodicity property.

A. Distributional properties of FBM time changed
by the IG process

It is known that for standard normal random variable Z and
for q > 0,

E|Z|q =
√

2q

π
	

(
1 + q

2

)
≡ cq. (3.6)

Using the self-similarity property of FBM and the indepen-
dence of BH (t) and G(t), it follows, as t → ∞, that

E|X(t)|q = EGqH (t)E|BH (1)|q

= cqEGqH (t) ∼ cq

(
δ

γ

)qH

tqH . (3.7)

Proposition 4. The density function fX(t)(x) of FBM time
changed by the IG process has the asymptotic behavior

fX(t)(x) = O(Mx−2(1+H )/(1+2H )e−Nx2/(1+2H )
), (3.8)

while the tail probability P(X(t) > x) has the asymptotic
behavior

P(X(t) > x) = O

(
M(1 + 2H )

2N
x−3/(1+2H )e−Nx2/(1+2H )

)
(3.9)

as x → ∞, where

M = δteδγ t

√
πH (1 + 2H )

2
1

4H
− 1

2

(
γ 2

H2
1

2H
+2

) 1
2(1+2H )

(3.10)

and

N = (1 + 2H )

(
γ 2

H21/2H+2

)2H/(1+2H )

. (3.11)

Proof. It follows that

fX(t)(x)

= δt

2π
eδγ t

∫ ∞

0

1

yH+3/2
exp

[
−

(
x2

y2H
+δ2t2

y
+γ 2y

)/
2

]
dy

� δt

2π
eδγ t

∫ ∞

0

1

yH+3/2
exp

[
−

(
x2

y2H
+ γ 2y

)/
2

]
dy

= δt

2πH
eδγ t21/4H−1/2

∫ ∞

0
z1/4H−1/2

× exp

(
−x2z − γ 2

21/2H+1
z−1/2H

)
dz

= C

∫ ∞

0
zc−1e−x2z−az−b

dz = Ch(x2) (say),

where C = δt
2πH

eδγ t21/4H−1/2, c = 1
4H

+ 1
2 , a = γ 2

21/2H+1 , and
b = 1

2H
. Using Example 2 of [41], we have, for large x,

h(x2) ∼
(

ab

x2

)c/(b+1)

e−λ(1+1/b)

√
2π

λ(b + 1)
, (3.12)

where λ = (abx2b)1/(b+1). This implies, as x → ∞, that

h(x2) ∼
√

2π

b + 1
(ab)

(2c−1)
2(b+1) x

− (b+2c)
(b+1) e− (b+1)

b
(ab)

1
(b+1) x

2b
(b+1)

(3.13)

Thus, we have, as x → ∞,

fX(t)(x) = O(Mx−2(1+H )/(1+2H ))e−Nx2/(1+2H )
.

�
For H < 1/2 it follows that

lim sup
x→∞

− lnP(X(t) > x)
x ln x

= ∞.

Thus, again by an application of Corollary 9.9 of [31], X(t) is
not infinitely divisible for H < 1/2. For H � 1/2, a different
approach is required. The generalized gamma convolutions
(GGCs) were introduced in [42] and have turned out to be
a powerful tool in proving infinite divisibility of various
distributions. A distribution on R+ is said to be a GGC if it is
the weak limit of finite convolutions of gamma distributions
[31]. Note that G(t) is infinitely divisible and hence G(t)2H

is also infinitely divisible for 2H � 1 by using a result from
[43]. Using the result in [44], X(t) = BH (G(t)), which is a
variance mixture of normal distribution, is infinitely divisible
for 1/2 � H < 1. Thus, we have following result for the
infinite divisibility of X(t).

Proposition 5. The one-dimensional distributions of the
process X(t) are infinitely divisible if and only if 1/2 �
H < 1.

Next we obtain the covariance function of process X(t).
Using standard conditioning argument and the relationship

042128-5
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E(X(s)X(t)) = 1
2 [E(X2(t)) + E(X2(s)) − E(X(t) − X(s))2]

with (3.7), it follows that

EX(t)X(s) = δ√
2π

(
δ

γ

)2H−1/2

× [t2H+1/2eδγ tK1/2−2H (δγ t)

+ s2H+1/2eδγ sK1/2−2H (δγ s)

− |t − s|2H+1/2eδγ (|t−s|)K1/2−2H (δγ (|t − s|))].
(3.14)

For fixed s and large t , it follows from (2.7) that

EX(t)X(s) ∼ Hs

(
δ

γ

)2H

t2H−1, (3.15)

which is similar to the asymptotic behavior of covariance of
FBM given in (3.4).

Next we discuss the LRD property of the process X(t). A
finite variance stationary process W (t) is said to have the LRD
property [22] if

∑∞
k=0 γk = ∞, where

γk = Cov[W (t),W (t + k)].

Further, for a nonstationary process W (t) an equivalent
definition is given by the following definition.

Definition 1. Let s > 0 be fixed and t > s. Then the process
W (t) is said to have the LRD property if

Corr[W (s),W (t)] ∼ c(s)t−d as t → ∞, (3.16)

where c(s) is a constant depending on s and d ∈ (0,1).
The process X(t) is nonstationary. Using (3.7), we have

Corr[X(s),X(t)] ∼ Hs1−H tH−1 and hence by Definition 1,
X(t) possesses the LRD property for all H .

Since the FBM and IG processes both have stationary
increments, the process X(t) also has stationary increments.
A stationary random process is also ergodic if the nth-order
ensemble average is the same as the nth-order time average. We
mention that the ergodicity properties of FBM and fractional
Langevin motion are studied in [4]. The problems of ergodicity
and nonergodicity of anomalous diffusion models is also
discussed in [45]. Note that if a process is mean [or mean
square displacement (MSD)] ergodic then one can estimate the
mean (or MSD) using a sufficiently large single sample path
of the process. The ensemble average MSD for the increments
of X(t) is given by

E(X(t + τ ) − X(t))2

= E(BH (G(t + τ )) − BH (G(t)))2

=
√

2/πδ

(
δ

γ

)2H−1/2

|τ |2H+1/2eδγ |τ |K2H−1/2(δγ |τ |)

∼
(

δ

γ

)2H

|τ |2H for large τ.

In this paper we show by simulation that the realized values
of the TAMSD are concentrated around the ensemble average
MSD for a different lag parameter τ . In Fig. 2 we present
the theoretical ensemble average MSD (red solid line) and
the realized TAMSD (blue star line) for the process X(t) for

0 5 10 15 20
0

2

4

6

8

0 5 10 15 20
0

20

40

60

80

τ

TAMSD
ensemble average MSD

FIG. 2. Comparison of the TAMSD (blue star line) and ensemble
average MSD (red solid line) for the process X(t) for the case with
H = 0.3 and γ = δ = 1 (top) and H = 0.7 and γ = δ = 1 (bottom).

two sets of parameters, namely, H = 0.3 and γ = δ = 1 (top
panel) and H = 0.7 and γ = δ = 1 (bottom panel).

B. The CTRW connection

Given independent identically distributed random variables
Yn representing the random jumps of a particle, the simple
random walk Sn = ∑n

i=1 Yi locates the particle position after
n steps. Let Xn � 0 be independent identically distributed
waiting times between particle jumps; the random walk Tn =∑n

i=1 Xi gives the time of the nth jump. The counting process
defined by N (t) = max{n � 0 : Tn � t} counts the number of
jumps until time t . Further, SN(t) = ∑N(t)

i=1 Yi gives the position
of the particle at time t . As discussed in [24], the FBM time
changed by the IG process can be obtained as the limit of a
random walk with correlated jumps separated by independent
identically distributed waiting times. More precisely, let Yn

be a stationary linear process defined by Yn = ∑∞
j=0 cjZn−j ,

where the Zn are independent identically distributed and cj are
real constants such that

∑∞
j=0 c2

j < ∞. Further, Yn are, with
mean zero and finite variance, independent of the independent
identically distributed waiting times Xn. Suppose that the
variance σ 2

n of the sum Sn = ∑n
j=1 Yj varies regularly at

∞ with index 2H for some 0 < H < 1, and for some con-
stants K > 0 and ρ > 1/H let E(S2ρ

n ) � K[E(Sn)2]ρ . Then,
as m → ∞,

σ−1
[m]SGm

t
⇒ BH (G(t)) in space (D,J1). (3.17)

IV. FRACTIONAL BROWNIAN MOTION DRIVEN BY THE
IIG PROCESS

We next discuss the FBM time changed by the IIG process
H (t), defined in (2.12). This system is defined by

Y (t) = BH (H (t)), (4.1)

where the processes BH (t) and H (t) are assumed to be
independent. In the following sections the asymptotic behavior
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of moments, the long-range dependence, and the CTRW
connection of the process Y (t) are discussed.

A. Distributional properties of FBM time changed by
the IIG process

As in the previous case, we discuss the properties of the
one-dimensional distribution of the process Y (t) defined in
(4.1). Using (2.17) and (3.6), it follows that

E|Y (t)|q = EHqH (t)E|BH (1)|q

∼
⎧⎨
⎩

cq

(δ
√

2)qH

tqH/2

	(1+qH/2) for γ = 0

cq

(
γ

δ

)qH tqH

	(1+qH ) for γ > 0,
(4.2)

where cq is defined in (3.6). Next we discuss the covariance and
LRD behavior of the process Y (t). The covariance structure
for time-changed FBM is discussed in [46]. However, the
authors have not explicitly discussed the covariance structure
for time-changed FBM by the inverse of the inverse Gaussian
process. Here we provide an explicit asymptotic behavior for
the covariance structure of Y (t). The covariance function for
Y (t) for s < t is given by (see Theorem 3.1 in [46])

EY (s)Y (t) = M2H (s) + 2H

∫ s

0
M2H−1(t − y)dM1(y),

where Mq(t) is the qth-order moment of H (t). For fixed s and
large t , we have∫ s

0
M2H−1(t − y)dM1(y)

∼
(

γ

δ

)2H−1 1

	(2H )

∫ s

0
(t − y)2H−1M ′

1(y)dy

∼
(

γ

δ

)2H−1 1

	(2H )
(t − s)2H−1M1(s)

∼
(

γ

δ

)2H−1 1

	(2H )
t2H−1M1(s).

Thus EY (s)Y (t) ∼ M2H (s) + ( γ

δ
)2H−1 2H

	(2H ) t
2H−1M1(s). For

γ > 0, using (4.2), it gives

Corr[Y (s),Y (t)] ∼
(

δ

γ

)2H

	(1 + 2H )s−H M2H (s)t−H

+
(

δ

γ

)
4H 2s−H M1(s)tH−1.

Hence, the process Y (t) also has the LRD property, similar to
the FBM and the time-changed FBM by the IG process.

Since the second moment of the Y (t) process is a nonlinear
function for large t , we conclude that the process is anomalous
diffusive. Further, the process Y (t) is not stationary and it does
not have stationary increments, hence it is nonergodic.

B. The CTRW connection

In this section the CTRW connection of FBM time changed
by the IIG process is established. Let Yn be the linear process
and Sn be the partial sum process discussed in Sec. III B. For
Hm

t defined in (2.23), we have following result.

Proposition 6. As m → ∞,

σ−1
[m]SHm

t
⇒ BH (H (t)) in (D,J1). (4.3)

Proof. Theorem 4.6.1 in [35] yields σ−1
[m]S[mt] ⇒ BH (t).

Further, Proposition 3 establishes that m−1Hm
t ⇒ H (t). Using

the independence of underlying sequence Xn and Zn, it
follows that (σ−1

[m]S[mt],m
−1Hm

t ) ⇒ (BH (t),H (t)) in D × D.
Since BH (t) has continuous sample paths, the result follows
using Theorem 13.2.2 of [35] along with the continuous
mapping theorem. �

V. SIMULATION AND ESTIMATION METHODS

In this section simulation and estimation methods for the
introduced processes are given. Similar methodology can be
used for other time-changed processes with time change as
subordinators and inverse subordinators.

A. Fractional Brownian motion driven by the IG process

In this section we present the simulation procedure and the
method of parameter estimation for the FBM time changed
by the IG process. The simulation of the X(t) process
defined in (3.5) is based on the assumption that this system
is a superposition of two independent mechanisms, namely,
fractional Brownian motion BH (t) and the inverse Gaussian
process G(t). Therefore, we need to simulate separately
both processes and take their superposition at the end. The
procedure of simulation of the FBM is described in detail,
for example, in [40] and we refer the reader to this reference
for further information. The algorithm of the simulation of the
IG process G(t) for time points t1 = 1/n,t2 = 2/n, . . . ,tn = 1
can be divided into the following steps.

(i) Since the inverse Gaussian process G(t) has independent

and stationary increments, Fi ≡ G(ti) − G(ti−1)
d= G(dt) ∼

G(dt,1) for i = 1,2, . . . ,n and dt = 1/n. So we generate n

independent identically distributed inverse Gaussian variables
Fi as follows (see [22]), assuming δ = γ = 1.

(a) Generate a standard normal random variable N .
(b) Assign X = N2.
(c) Assign Y = dt + X

2 − 1
2

√
4dtX + X2.

(d) Generate a uniform [0,1] random variable U .
(e) If U � dt

dt+Y
, return Y ; otherwise return (dt)2

Y
.

(ii) Assign G(t0)=0 and G(ti)=
∑i

j=1 Fj , i =1,2, . . . ,n.
(iii) G(t1),G(t2), . . . ,G(tn) are n simulated values of the IG

process at times t1,t2, . . . ,tn, respectively.
In order to simulate the trajectory of G(t) process for

t1,t2, . . . ,tn not belonging to the [0,1] interval we need to
rescale the time and take an appropriate value of the δ

parameter and in this case dt = δ/n. At the end, we can obtain
the X(t) = BH (G(t)).

The exemplary trajectory of the FBM time changed by the
IG process is given in Fig. 3. Here n = 1000, γ = δ = 1, and
H = 0.3 (top panel) and H = 0.7 (bottom panel).

The estimation algorithm of the parameters corresponding
to the FBM time changed by the IG process is based on the
main property of the X(t) process, namely, the asymptotic
behavior of TAMSD for the processes X(t) and BH (t) is the
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FIG. 3. Exemplary trajectories of the FBM time changed by the
inverse Gaussian process for γ = δ = 1 and H = 0.3 (top) and H =
0.7 (bottom).

same:

Mn(τ ) = 1

n − τ

n−τ∑
k=1

[X(k + τ ) − X(k)]2

L= 1

n − τ

n−τ∑
k=1

G(τ )2HBH (1)2

L= τ 2H .

The problem of asymptotic behavior of the TAMSD for
subordinated processes is also discussed in [47,48]. However,
those works discuss the models where the waiting times of
corresponding CTRW models have a heavy-tailed distribution
and hence the TAMSD changes the behavior in contrast to
the TAMSD of the external process. This is in contrast to the
case considered in this paper, where the waiting times of the
corresponding CTRW model are finite.

Thus, we estimate the H parameter by fitting the power
function τ 2H to the TAMSD calculated for real data by
using the least-squares method. The TAMSD-based method
of estimation of the Hurst exponent is well known. However,
one can find other techniques that can be used in the problem
of estimation of the H parameter [49–51].

The parameters γ and δ can be estimated on the basis of
the moments’ asymptotic behavior of the FBM time changed
by the inverse Gaussian process (3.7). More precisely, if the
number of trajectories of the process X(t) is available for each
t , we can calculate the empirical moment of the appropriate
order and compare it to the theoretical one given in (3.7). This
comparison allows for estimation of the parameters γ and δ. In
order to check the effectiveness of the estimation procedure,
we simulate 300 trajectories of the FBM time changed by the
IG process. For each trajectory, we estimate the H parameter
by using the method based on the TAMSD and the parameters
corresponding to the inverse Gaussian process. To simplify
the calculations, we assume that γ = 1 and estimate only the
δ parameter on the basis of the second moment. In Table I
we present the median of the estimated values for two sets

TABLE I. Median of estimated values of the parameters H and
δ for FBM time changed by the inverse Gaussian process. The 95%
confidence intervals for estimated parameters are given in square
brackets.

Theory Estimate Theory Estimate

H = 0.3 0.3047 H = 0.7 0.6953
[0.2,0.35] [0.63,0.75]

δ = 1 1.0821 δ = 1 0.9734
[0.97,1.20] [0.87,1.02]

of parameters: H = 0.3 and δ = 1, and H = 0.7 and δ = 1.
Moreover, in Table I we present also the 95% confidence
intervals for estimated values. As one can see, the estimated
values coincide with the theoretical counterparts.

B. Fractional Brownian motion driven by the IIG process

The procedure of simulation of the FBM time changed
by the IIG process, similar to the previous case, is based
on the assumption that the process Y (t) defined in (4.1) is
a superposition of two independent trajectories. The first one
is a realization of FBM BH (t), while the second one is the
IIG process H (t). Then we need to have two independent
realizations of both systems. Since the procedure of simulation
of FBM is discussed above, we focus here only on the
simulation of the process H (t), which is the inverse of the
G(t) process. In order to simulate the approximate trajectory
of the general inverse of the other process, we define H�(t)
with the step length � as follows:

H�(t) = [min{n ∈ N : G(�n) > t} − 1]�, n = 1,2, . . . ,

where G(�n) is the value of the process G(t) evaluated at �n.
In our case, the G(t) process is the IG one and the procedure
of simulation is described above. Finally, the trajectory of the
process Y (t) is obtained as the superposition of FBM and the
process H (t). In Fig. 4 we present the exemplary trajectories
of the FBM time changed by the IIG process H (t) for two
different sets of parameters, namely, H = 0.3 and γ = δ = 1,
and H = 0.7 and γ = δ = 1. From the trajectories we observe
the constant time periods typical for processes time changed
by inverse processes.

The estimation procedure of the parameters of FBM driven
by the IIG subordinator is divided into two steps. We will
make use of the fact that constant time periods in trajectories
of the process Y (t) correspond to the jumps of the process
G(t). In the first step, we divide the analyzed time series into
two vectors. The first one (vector G) represents lengths of
constant time periods observed in the data, i.e., the number of
consecutive observations that are on the same level. According
to the idea of constructing the inverse subordinators, the
vector G constitutes a sample of independent identically
distributed random variables from the same distribution as the
subordinator. The second vector BH arises after removing the
constant time periods and it constitutes a trajectory of FBM.
This scheme is a standard procedure in the analysis of the
processes subordinated by inverse subordinators and was used
in multiple applications; see, for instance, [52].
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FIG. 4. Exemplary trajectories of the FBM time changed by the
inverse to the inverse Gaussian process for γ = δ = 1 and H = 0.3
(top) and H = 0.7 (bottom).

In the second step, we separately analyze the vectors G and
BH . On the basis of constant time periods, we estimate the
parameter δ from the inverse Gaussian distribution given by
the PDF (2.2) for γ = 1. The proposed methodology of fitting
the distribution parameter δ corresponding to the IG process is
based on the minimum distance estimation applied to the IG
distribution. This procedure was proposed in [53] for different
inverse subordinators and we here briefly sketch their idea.
Let K and L denote two functions with a common support
on R. The distances considered are the Kolmogorov-Smirnov
distance DKS,

DKS(K,L) = sup
x∈R

|K(x) − L(x)|,

the Cramér–von Mises distance DCvM,

DCvM(K,L) =
∫ ∞

−∞
[K(x) − L(x)]2dL(x),

and the Anderson-Darling distance DAD,

DAD(K,L) =
∫ ∞

−∞

[K(x) − L(x)]2

L(x)[1 − L(x)]
dL(x).

In our estimation procedure we consider the distance be-
tween the rescaled modified cumulative distribution function
and empirical distribution function obtained for the vector
G. The modified cumulative distribution function (CDF) of a
given distribution with the CDF F (·) can be expressed as [53]

F̃ (n) =
∫ n+1

n

F (x)dx. (5.1)

The rescaled modified cumulative distribution function is
defined in the following way:

G(0) = 0,

G(n) = F̃ (n) − F̃ (0)

1 − F̃ (0)
for n � 1. (5.2)

TABLE II. Median of estimated values of the parameters H and δ

for FBM time changed by the inverse of the inverse Gaussian process.
The 95% confidence intervals for estimated parameters are given in
square brackets.

Theory Estimate Theory Estimate

H = 0.3 0.3093 H = 0.7 0.6880
[0.2777,0.3380] [0.6375,0.7187]

δ = 1 DKS = 1.001 δ = 1 DKS = 1.0401
[0.811,1.178] [0.807,1.182]
DCvM = 0.997 DCvM = 1.0197
[0.841,1.143] [0.852,1.155]
DAD = 0.998 DAD = 1.0230
[0.845,1.146] [0.859,1.161]

Under the assumption that γ = 1, we find the parameter δ0

that minimizes the distance between the empirical CDF and
the rescaled modified CDF, i.e., satisfies the condition

D
(
Gδ0 ,F̂

) = inf
δ∈�

D(Gδ,F̂ ), (5.3)

where D is one of the distances introduced (DKS, DCvM, and
DAD), F̂ is an empirical CDF, G is a rescaled modified CDF
defined in (5.2), and � is the parameter space of δ. The
estimation of the Hurst parameter H is done on the basis of
the vector BH , the procedure based on the TAMSD behavior
has already been described in Sec. V A.

Similar to the previous case, we simulate 300 trajectories
of the process Y (t) and for each of them we estimate the
unknown parameters. The δ parameter is estimated by using
the three mentioned distances, namely, DKS, DCvM, and DAD.
We consider here two sets of parameters: H = 0.3 and δ = 1,
and H = 0.7 and δ = 1. The results obtained are presented in
Table II. Similarly, like in Table I, we present also the 95%
confidence intervals for the estimated values.

VI. CONCLUSION

One of the classical models used for the description of
long-range-dependent processes is the fractional Brownian
motion. One can find various applications of FBM in different
disciplines, including physics, biology, and finance. However,
for many real time series, which exhibit the long-range-
dependent property, FBM cannot be used directly. Therefore,
there is a need to introduce extensions of the classical model
in order to keep the main properties of FBM and cover other
characteristics adequate to analyzed phenomena. Generally,
time-changed FBM models generate a long-range-dependent,
semi-heavy-tail distribution, non-Gaussian behavior at small
lags and Gaussian behavior at large lags, which is a common
model requirement for modeling of hydraulic conductivity
fields in geophysics [54]. In this paper we have studied two
processes based on FBM. The first one is the FBM time
changed by the inverse Gaussian process, known especially
from the financial data description. The second process
considered is the FBM delayed by the so-called inverse to
the inverse Gaussian process. We have discussed the main
properties of the IG and IIG processes. The IG process is
known in the literature and here some results such as tail
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behavior and asymptotic behavior of moments are established.
The features of the IIG process are not known in the literature.
We have presented here, for example, the moments and their
asymptotic behavior as well as the connections between the
PDF of the IIG process and fractional partial differential
equations.

We have also discussed the properties of FBM time changed
by the IG and IIG processes. The first system considered is
discussed in the literature. We have extended the theory related
to this system and examined, for instance, the long-range-
dependence property, infinite divisibility, and estimation of
parameters. Our results generalize and complement the results
available on the normal inverse Gaussian process whose
density is known to solve the relativistic diffusion equation
from statistical physics. We have presented a second process,
namely, FBM delayed by the IIG process. We have compared
the main properties of FBM time changed by the IIG process
with similar features for FBM with the IG subordinator and
indicated the differences between them. It is worth mentioning
that the examined time-changed processes can be used for
real-life applications. The first process considered can be
used for data that exhibit the long-range-dependence property
with non-Gaussian structure. This behavior is characteristic
for many real time series. The second process considered,
namely, FBM delayed by the IIG system, has very specific
behavior, namely, constant time periods, which is typical
for processes delayed by inverse subordinators. Moreover,
this process exhibits also a long-range dependence that is
typical for anomalous diffusion systems. We observe such
characteristics, for example, in financial time series such as
interest rates, where there are some time intervals with small
volatility (so-called trapping behavior) and visible long-range
dependence. The proposed subordinated processes can also be
used on physical phenomena, for instance, to model data that
exhibit some properties of FBM, but cannot be described by

the classical Gaussian self-similar processes. An example of
this kind can be found in [55], where the authors discovered
self-similar properties of transport mediated by molecular
motors on filament networks in in vitro and in vivo data. On
the other hand, some characteristics indicate behavior related
to a process that is between FBM and a CTRW. We also
refer the reader to [56], where the diffusion in the plasma
membrane of living cells is analyzed. The data are found
to display anomalous dynamics; however, the mechanism
underlying this diffusion pattern remains highly controversial.
The authors show that an ergodic process and a nonergodic
process coexist in the plasma membrane, which indicates that
the existing models cannot be directly used to model such data.
The proposed models in the paper can be useful in this context
also.

To facilitate the possible applications of both processes
considered to real phenomena, we have proposed the estima-
tion procedures. The estimation techniques result from the
properties of the processes, such as the TAMSD and the
moments’ behavior for the FBM time changed by the IG
process and the TAMSD behavior and the existence of trapping
events for FBM delayed by the IIG process. The presented
theoretical results can be very useful in real data analysis.
By comparing the empirical characteristics (such as empirical
moments or the empirical cumulative distribution function)
calculated for real time series with the theoretical counterparts,
we can easily identify the possible probabilistic model that
generates the data. The effectiveness of estimation methods
and algorithms is compared for simulated trajectories. We have
shown also the step-by-step procedures of simulations for both
processes.
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[21] D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd

ed. (Cambridge University Press, Cambridge, 2009).
[22] R. Cont and P. Tankov, Financial Modeling with Jump Processes

(Chapman & Hall/CRC, Boca Raton, 2004).

042128-10

https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevLett.115.210601
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.81.021103
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1016/j.bpj.2012.09.040
https://doi.org/10.1016/j.bpj.2012.09.040
https://doi.org/10.1016/j.bpj.2012.09.040
https://doi.org/10.1016/j.bpj.2012.09.040
https://doi.org/10.5506/APhysPolB.43.1157
https://doi.org/10.5506/APhysPolB.43.1157
https://doi.org/10.5506/APhysPolB.43.1157
https://doi.org/10.5506/APhysPolB.43.1157
https://doi.org/10.1103/PhysRevLett.102.120602
https://doi.org/10.1103/PhysRevLett.102.120602
https://doi.org/10.1103/PhysRevLett.102.120602
https://doi.org/10.1103/PhysRevLett.102.120602
https://doi.org/10.1103/PhysRevLett.111.210601
https://doi.org/10.1103/PhysRevLett.111.210601
https://doi.org/10.1103/PhysRevLett.111.210601
https://doi.org/10.1103/PhysRevLett.111.210601
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1029/WR004i005p00909
https://doi.org/10.1103/PhysRevE.84.011134
https://doi.org/10.1103/PhysRevE.84.011134
https://doi.org/10.1103/PhysRevE.84.011134
https://doi.org/10.1103/PhysRevE.84.011134
https://doi.org/10.1088/1469-7688/2/1/301
https://doi.org/10.1088/1469-7688/2/1/301
https://doi.org/10.1088/1469-7688/2/1/301
https://doi.org/10.1088/1469-7688/2/1/301
https://doi.org/10.1016/j.physa.2011.07.007
https://doi.org/10.1016/j.physa.2011.07.007
https://doi.org/10.1016/j.physa.2011.07.007
https://doi.org/10.1016/j.physa.2011.07.007
https://doi.org/10.1103/PhysRevE.86.031128
https://doi.org/10.1103/PhysRevE.86.031128
https://doi.org/10.1103/PhysRevE.86.031128
https://doi.org/10.1103/PhysRevE.86.031128
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1685/journal.caim.483
https://doi.org/10.1685/journal.caim.483
https://doi.org/10.1685/journal.caim.483
https://doi.org/10.1685/journal.caim.483
https://doi.org/10.1073/pnas.35.7.368
https://doi.org/10.1073/pnas.35.7.368
https://doi.org/10.1073/pnas.35.7.368
https://doi.org/10.1073/pnas.35.7.368
https://doi.org/10.1111/1467-9469.00045
https://doi.org/10.1111/1467-9469.00045
https://doi.org/10.1111/1467-9469.00045
https://doi.org/10.1111/1467-9469.00045
https://doi.org/10.1007/s11009-010-9201-z
https://doi.org/10.1007/s11009-010-9201-z
https://doi.org/10.1007/s11009-010-9201-z
https://doi.org/10.1007/s11009-010-9201-z
https://doi.org/10.1088/0256-307X/24/6/017
https://doi.org/10.1088/0256-307X/24/6/017
https://doi.org/10.1088/0256-307X/24/6/017
https://doi.org/10.1088/0256-307X/24/6/017


INVERSE GAUSSIAN AND ITS INVERSE PROCESS AS . . . PHYSICAL REVIEW E 94, 042128 (2016)

[23] B. Jorgensen, Statistical Properties of the Generalized Inverse
Gaussian Distribution, Lecture Notes in Statistics Vol. 9
(Springer, New York, 2009).

[24] A. Kumar, M. M. Meerschaert, and P. Vellaisamy, Stat. Probab.
Lett. 81, 146 (2011).

[25] M. Magdziarz, J. Stat. Phys. 135, 763 (2009).
[26] J. Bertoin, K. van Harn, and F. W. Steutel, Stat. Probab. Lett. 45,

65 (1999).
[27] A. N. Lageras, J. Appl. Probab. 42, 1134 (2005).
[28] M. M. Meerschaert and H. Scheffler, Stochast. Process. Appl.

118, 1606 (2008).
[29] A. Kumar and P. Vellaisamy, Stat. Probab. Lett. 103, 134 (2015).
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