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Liquid-liquid critical point in a simple analytical model of water
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A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase
diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules.
A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two
neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding
interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion
coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same
trends with temperature as in real water and are in good general agreement with Monte Carlo simulations.
The model exhibits also two critical points for liquid-gas transition and transition between low-density and
high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion
coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a
high-density liquid, and the third region contains low-density liquid.
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I. INTRODUCTION

The structure and thermodynamics of water and aqueous
solutions are of great importance for chemistry and biology.
Water molecules have a simple formula (H2O), but it is a highly
complex liquid. It has many anomalous properties due to the
ability to form intermolecular hydrogen bonds. It is believed
that these anomalies are related to the hypothetical second
critical point between two liquid phases in a supercooled
region [1]. This critical point was first discovered by computer
simulations of the ST2 water model [2]. Much of the
subsequent research was focused on proving or disproving the
existence of liquid-liquid critical point (LLCP) and results to
this day remain mixed [3–11]. Studies of water in ST2 as well
as other models continue to support the LLCP hypothesis, but
there is limited experimental evidence to back these claims up
because the supposed LLCP is well below the homogenous
nucleation temperature of water [12–14]. The anomalous
properties of water and the possibility of liquid-liquid phase
transition can be explained if water is viewed as a mixture of
two interconvertible organizations of hydrogen bonds whose
ratio is controlled by thermodynamic equilibrium [8,15–17].
The two-scale models have often been used as a way of
explaining the thermodynamic and dynamic anomalies of
liquid water. These models separate states of water into two
different groups, one corresponding to low-energy low-entropy
configurations and the other to high-energy high-entropy
configurations. In these models water properties are modeled
as a mixture of two different liquids. There exist also models
which are extensions of the van der Waals equation with
two microscopic states: hydrogen-bonded states (low-density
water) and van der Waals states (high-density water) like
the model by Poole et al. [18]. There is another group of
lattice models [19,20] where water is presented as a lattice
fluid in which bond formation depends strongly on molecular
orientations and local density. These models are able to
qualitatively reproduce the known thermodynamic behavior
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of water, including the behavior of supercooled water, and
describe how the predictions of lattice-gas models are relevant
to understanding liquid and amorphous solid water, but it is
more difficult to use them for description of solvation effects.
Tanaka [21,22] has a simple model of water that focuses on
medium-range ordering in water. He introduces an additional
bond order parameter next to a density order parameter. In
the model he recognizes that in any liquid locally favored
structures with low configurational entropy are formed in a sea
of random, normal liquid structures with high configurational
entropy. Anisimov and coworkers [3,6,8,9,15,16], on the other
hand, describe water as a competition between an ideal entropy
of mixing and a nonideal part of the Gibbs energy of mixing.

The aim of this work is to apply a statistical mechanical
model we developed for a two-dimensional (2D) Mercedes-
Benz model [23,24] to a three-dimensional (3D) Mercedes-
Benz (MB) model of water. A previous version of the MB
model dates back to the early 1970s [25–28]. Recently, a 3D
Ben-Naim model was reinvented by Bizjak et al. [29,30] and
Dias et al. [31,32] and studied using computer simulations
[29–32] and integral equation theory [30]. Models are advan-
tageous since they separate the hydrogen-bonding effect from
others. The realistic models include many geometrical details
and types of interactions, including electrostatic, hydrogen-
bonding, and van der Waals interactions, which creates the
difficulties in computational treatment and interpretation of
obtained results. According to the 3D MB model, each water
molecule is a Lennard–Jones sphere with four arms oriented
tetrahedrally to mimic formation of hydrogen bonds. In a
statistical mechanical model, which is based on Urbic and
Dill’s (UD) model [23] being directly descendant from a
treatment of Truskett and Dill (TD), who developed a nearly
analytical version of the 2D MB model [33,34], each water
molecule interacts with its neighboring waters through a van
der Waals interaction and an orientation-dependent interaction
mimicking formation of hydrogen bonds.

II. THEORY

In the analytical theory, the structure of the liquid state
is a perturbation from an underlying hexagonal (ice) lattice
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FIG. 1. One layer of the hexagon of the icelike lattice structure
and a pair interaction used for bookkeeping to avoid triple counting.

(Fig. 1). Each water molecule is located close to one grid
point which can be occupied by a single molecule. In the
model, we focus on a single water molecule on the grid and
its interactions with the neighbor molecule. Each molecule
can be in one of three possible orientational states relative
to its clockwiselike positioned neighbor on the lattice: (i) a
hydrogen-bonded (HB) state, (ii) a van der Waals (vdW) state,
or (iii) a nonbonded (NB) state where the two water molecules
do not interact. This is presented in Fig. 2. First we compute
the isothermal-isobaric statistical weights �i of the states as
a functions of temperature, pressure, and interaction energies
[23,24]. In the HB state the test water molecule can point one
of its four hydrogen-bonding arms at an angle θ to within
π/3 of the center of its neighbor water. In this case it forms a
hydrogen bond [24] (see Fig. 2) and the interaction energy of

FIG. 2. The three states of the model: (1) hydrogen bonded, (2)
van der Waals, and (3) nonbonded.

the test water with its neighbor is then

uHB(θ ) = −εHB + ks(1 + cos θ )2, 0 < θ < π/3, (1)

where εHB is an HB energy constant of the maximal strength of
an HB and ks is the angular spring constant that describes the
weakening of the hydrogen bond with angle. We treat this type
of hydrogen bond as a weak bond [23], as it does not cooperate
with neighboring hydrogen bonds. The isothermal-isobaric
partition function �HB of this state is calculated as an integral
of this Boltzmann factor over all angles φ, θ , and ψ and over
all the separations x, y, and z of the test molecule relative to its
clockwise neighbor. In the vdW state, the test water molecule
forms a contact with its clockwiselike positioned water, but
there is no hydrogen bond. The energy of this state is

uLJ (θ ) = −εLJ , 0 < θ < π/3. (2)

The isothermal-isobaric partition function �LJ of this state is
obtained by the same procedure as for the HB state. In the last
possible state, the test water molecule does not interact with
its neighbors so the energy is

uo(θ ) = 0. (3)

Upon obtaining the isobaric-isothermal ensemble Boltzmann
weights of the three possible states of each water molecule and
the partition function for a full hexagon of six waters can be
written as

Q1 = (�HB + �LJ + �o)6, (4)

where the subscript 1 indicates a single hexagon. The total
partition function for each hexagon, by taking into account
also higher cooperativity in ice [23,24], is given by

Q1 = (�HB + �LJ + �o)6 − �6
HB + δ�6

s , (5)

where δ = exp (−βεc) is the Boltzmann factor for the cooper-
ativity energy εc, which applies only when six water molecules
all collect together into a full hexagonal cage. The terms on
the right side of this expression simply replace the statistical
weight for each weakly hydrogen-bonded full hexagonal
cage with the statistical weight for a cooperative strongly
hydrogen-bonded hexagonal cage. �s is the Boltzmann factor
for a cooperative hexagonal cage. It differs from �HB only
in the volume per molecule vs instead of vHB [23,24]. Now
we combine the Boltzmann factors for the individual water
molecules to get the partition function for the whole system
of N particles; the population of different states can be
calculated [23,24] and all the other thermodynamic properties
from simple derivations of the partition function as described
previously [23,24,33,34]. The attraction beyond pair is treated
in the mean-field attractive level with energy [35] −Na/v

among hexagons, where a is the van der Waals dispersion
parameter [23,33,34] and v is the average molar volume. The
parameters needed for calculations can be obtained directly
from the interaction pair potential between two 3d MB water
particles (εHB = 1, rHB = 1, ks = 80, εHB = 0.1, a = 0.045,
εc = 0.18, and σLJ = 0.7) [29,30].

III. RESULTS AND DISCUSSION

Analytical theory has additional approximations compared
to Monte Carlo simulations, which is why we first checked

042126-2



LIQUID-LIQUID CRITICAL POINT IN A SIMPLE . . . PHYSICAL REVIEW E 94, 042126 (2016)

 1

 2

 3

 0.1  0.2  0.3  0.4

V
* /N

T*

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0.1  0.2  0.3  0.4

κ*

T*

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0.1  0.2  0.3  0.4

α*

T*

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0.1  0.2  0.3  0.4

c p
*

T*

FIG. 3. Temperature dependence of the molar volume, thermal expansion coefficient, isothermal compressibility, and heat capacity for
pressures p∗ = 0.19 (green) and p∗ = 0.12 (red) and comparison of analytical theory (lines) with results of computer simulations (symbols)
[29,30].

the quality of the predictions of the analytical theory. We
calculated the temperature dependence of the density, heat
capacity, isothermal compressibility, and thermal expansion
coefficient for reported pressures [29,30]. For a 3D MB
model it was previously shown that the Mercedes-Benz water
qualitatively correctly reproduces the anomalies of water
[29,30] for these quantities. Analytical results are presented
in dimensionless units, normalized to the strength of the
optimal hydrogen bond εHB and hydrogen bond separation rHB

(T ∗ = kBT /εHB, uex∗ = uex/εHB, V ∗ = V/r3
HB , and p∗ =

pr3
HB/εHB). In Fig. 3 a comparison of predictions of the

present theory (lines) for the molar volume V ∗/N , the thermal
expansion coefficient α∗, the isothermal compressibility κ∗

T ,
and the heat capacity C∗

p vs temperature to NPT Monte
Carlo simulations [29,30] (symbols) of the 3D MB model
with the same parameters is shown. The calculations of the
theory were performed at a reduced pressure of p∗ = 0.12
and 0.19. The theory is in good general agreement with
the simulations, including the density maximum (minima in
molar volume). The thermal expansion coefficient is negative
at low temperatures, which is consistent with computer
simulations and with experiments for water. The Monte Carlo
simulations of MB water do not show an experimentally
observed minimum in the isothermal compressibility versus
temperature. On the other hand, the present theory predicts a
minimum in κ∗

T . This is consistent with scattering experiments
[36]. At low temperatures, our present model shows a drop in
C∗

p as the temperature is reduced.
Being satisfied with the prediction of the model, we

continue our research by calculating the density of 3D MB

water as a function of temperature along isobars (up to
p∗ = 0.25) and determine critical points of the model. Results
are shown in Fig. 4. In this pressure range, upon increase of
temperature density increases, reaches a maximum, and then
decreases. The 3D MB model exhibits two critical points: the
liquid-gas critical point (C1) at T ∗

C1 = 0.116 6, p∗
C1 = 0.011 5,

ρ∗
C1 = 0.467, and the liquid-liquid critical point (C2) at T ∗

C2 =
0.077 9, p∗

C2 = 0.167, and ρ∗
C2 = 1.295. There exists also a

region of pressures between both critical points where we have
only one fluid phase, at higher pressures we have two liquid
phases, and at lower pressures the liquid and the gas phases.
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FIG. 4. Temperature dependence of the density for various
pressures (red solid line), high-density liquid–low-density liquid co-
existence line (green long-dashed line), liquid-gas density coexistence
line (pink dotted line), and maximum densities (green dashed line).
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FIG. 5. Low-density fraction fs and high-density fraction fHB as
a function of temperature for various isotherms (p∗ = 0.06–0.23).

The model also gives us a chance to study what is happening
with populations of different states. According to Mishima
and Stanley, if the intermolecular potential of a pure fluid
exhibits two minima, the interplay between the two indicates
that a liquid-liquid separation may be present [12]. In our
theory we have two states with different energies and volume,
which is equivalent to having a potential with two minima.
The initial 3D MB potential has a Lennard-Jones (LJ) minima
and HB minima. There is also competition in the model
between translation and orientational order. In Fig. 5 we plotted
populations of low-density and high-density fractions as a
function of temperature at different pressures. Upon heating
of water cage structures of solid phase are converted by
phase transition into closed-packed hydrogen bond structures
of high-density phase or slowly change for pressures lower
than critical pressure (C2). All this is in agreement with
the prediction of the two-state thermodynamics in the model
by Holten et al. [9], as well as for a two-state model
for TIP4P/2005 water [37]. Experimental IR results [38]
for structural change of confined water upon crossing the
Widom line show same temperature dependence of the relative
population of high-density amorphouslike and low-density
amorphouslike water species, as predicted by our model for
pressures outside the phase transition region.

Figure 6 contains the phase diagram of the noncrystalline
phases of a 3D MB model of water. The phase diagram of
a 3D MB fluid shows regions where at given pressure and
temperature two coexisting phases are present separated by
coexisting lines: gas and liquid by the gas-liquid coexisting
line and two liquid phases by the liquid-liquid coexisting line.
These lines terminate at the critical point. The model predicts
a liquid-liquid coexistence curve with a negative derivative
dp

dT
, as predicted for real water [39]. It has been recently
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FIG. 6. Phase diagram of the noncrystalline phases of water. Red
solid line is liquid-liquid and green dashed line liquid-gas coexistence
line.
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FIG. 7. Coexistence line (red solid line) with position of extremes
of heat capacity (green long-dashed line), isothermal compressibility
(blue dashed line), and thermal expansion coefficient (pink dotted
line) for liquid-liquid (left) and liquid-gas (right) transition and
supercritical region.

reported that for supercritical water there exist different
regimes that are not separated by any first-order line of
transition as in the subcritical region [40]. The two regions
are separated by the so called Widom line that connects
the maxima of the thermodynamic response functions upon
approaching the critical point from the single supercritical
phase. Figure 7 shows calculated coexistence lines for both
phase transitions as well as maximums of heat capacity,
isothermal compressibility, and thermal expansion coefficient
(in case of C2 minima in thermal expansion coefficient) in the
single-phase region after the critical point. All these curves
are related to the Widom line. Starting from the critical point
the curves first follow a similar path. In case of C1, the
maxima of compressibility deviates from the other two lines
at some distance from the critical point and later the other
two lines also separate. For both critical points, lines for heat
capacity and isothermal compressibility terminate while lines
for thermal expansion coefficient continue and terminate only
when bumping into the gas-liquid coexisting line and at zero
temperature, like those observed for van der Waals gas [41].
In the framework of the van der Waals equation it has been
possible to obtain exact analytical expressions for these lines
in the region of a supercritical fluid and to determine how
far from the critical point a single Widom line for different
thermodynamic values may be established. Our model has
limiting behavior for the van der Waals model [24] but can
also predict two liquid phases. For the model coexistence lines
and the curves of maxima and minima in the thermal expansion
coefficient divide the phase space into three regions, as shown
in Fig. 8. Each region contains one phase. In one part we have
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FIG. 8. Phase space of water model is split into three parts: LD-
low-density liquidlike phase, HD- high-density liquidlike phase, and
G- gaslike phase.
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the gas region, in the second high-density liquid, and the third
region contains low-density liquid.

IV. CONCLUSIONS

Summing up, we can conclude that in the analytical model
for 3D MB water it has been possible to obtain analytical
expressions for thermodynamic properties and a phase diagram
including Widom lines in the regions of supercritical fluids.
The 3D MB model has a similar noncrystalline phase diagram
as real water, and Widom lines for the thermal expansion
coefficient with coexistence curves divide the phase space

into three regions, each containing its own fluid phase. It is
expected that a system with richer internal freedom, meaning
having more than two states, can have a richer phase space
with even more divisions.
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