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Stochastic transport in the presence of spatial disorder:
Fluctuation-induced corrections to homogenization
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Motivated by uncertainty quantification in natural transport systems, we investigate an individual-based trans-
port process involving particles undergoing a random walk along a line of point sinks whose strengths are them-
selves independent random variables. We assume particles are removed from the system via first-order kinetics. We
analyze the system using a hierarchy of approaches when the sinks are sparsely distributed, including a stochastic
homogenization approximation that yields explicit predictions for the extrinsic disorder in the stationary state due
to sink strength fluctuations. The extrinsic noise induces long-range spatial correlations in the particle concentra-
tion, unlike fluctuations due to the intrinsic noise alone. Additionally, the mean concentration profile, averaged
over both intrinsic and extrinsic noise, is elevated compared with the corresponding profile from a uniform sink
distribution, showing that the classical homogenization approximation can be a biased estimator of the true mean.
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I. INTRODUCTION

Transport processes in natural environments can involve an
interplay between fine-scale disorder in the spatial domain
within which transport takes place and randomness in the
transport process itself. Theoretical models that seek to
characterize outcomes in terms of means and covariances must
therefore account for averages over the noise that is intrinsic
to the transport process and averages over the ensemble of
random domains. Spatial averaging (via asymptotic homoge-
nization or coarse-graining approximations) can be successful
in capturing mean behavior [1,2], but standard techniques
often fail to quantify higher-order uncertainties. Here we use a
simple reactive-transport problem to explore the relationships
between intrinsic and spatial averages, and we present a hybrid
homogenization method that predicts mean quantities and
leading-order fluctuations due to the quenched disorder.

While interactions between intrinsic and extrinsic noise ap-
pear in applications ranging from gene expression to epidemic
modeling [3–6], the problem we address is loosely motivated
by physiology, an area in which predictive models are
increasingly taking account of variability between (and within)
individuals in order to inform personalized medicine [7]. In the
placenta, maternal blood flows in a porous medium formed by
a dense network of branches of villous trees, within which are
capillaries containing fetal blood. Gas and nutrient exchange
between mother and fetus takes place across the syncytiotro-
phoblast layer coating villous trees. Oxygen transfer between
mother and fetus has previously been approximated using a
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simple one-dimensional model in which a chemical species
moves via advection and diffusion past a spatially disordered
array of point sinks [8,9], which take up the species via zeroth-
order kinetics. The concentration of the substance post disorder
average can (in general) be described using a homogenization
approximation; fluctuations around the typical mean behavior
show long-range spatial correlation and have a structure and
magnitude that is sensitive to both the statistics of the sink
distributions and model parameters [8,9]. In some instances,
however, the fluctuations can become as great as the mean field
itself and the homogenization approximation fails.

The present problem extends this work in significant
respects. First, we treat the transport as a stochastic process,
which enables us to exploit results derived for zero-range
processes [10–13]. Second, we assume the sinks operate via
first-order kinetics and have variable strength rather than
position. These features enable us to derive a hierarchy of
descriptions that exploit the problem’s multiscale structure,
while remaining within a linear framework. Third, when the
variance in sink strength is sufficiently small, we show how
fluctuations due to the quenched disorder can be described an-
alytically across a broad range of parameter space of our model
(wider than that accessible to the direct method in Refs. [8,9]).
These results can be used to examine systematic differences
between averages over the sink strengths and averages over the
intrinsic noise. These observations also illustrate differences
between population-averaged results and outcomes predicted
for an individual, and enable us to quantify the variability
induced by the two distinct sources of disorder in the system.

II. MODEL

We frame our model in a generic manner in order to
encompass both discrete and continuous transport processes.
At the discrete level the model provides a simplified repre-
sentation of (for example) the Brownian motion of a virus
particle in a mucus film, with diffusive transport interrupted
by adsorption at discrete sites on entangled macromolecules.
At the continuum level, the model describes elements of
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the transport of a solute in a flow past an array of sinks,
capturing some features of the porous medium encountered
by maternal blood in the placenta or airflow in a pulmonary
acinus. Our main focus is on determining spatial characteristics
of stationary-state particle distributions.

Model definitions and master equation

We consider M discrete sites, labeled i = 1, . . . ,M , equally
spaced in a domain of length L; see Fig. 1 for an illustration.
The model describes one species of discrete particles moving
in this domain. We write ni(t) for the number of particles
located at the ith site at time t . There is no upper limit on
the number of particles that can reside at any site at any one
time. The configuration of the system is determined by the site
occupancies, written as n(t) = (n1,n2, . . . ,nM ).

The model operates in continuous time. We assume there
is an inflow of particles at the left boundary with constant rate
α. Particles do not interact, so the influx is independent of the
occupancy in the first site. In the bulk, each particle may hop
one site to the right or left with rates p and q, respectively.
The total hopping rate from site i to i + 1 is then pni and that
from i to i − 1 is qni . Again there is no interaction between
particles. Particles hopping to the right from the last site leave
the system; the resulting outflow at the end of the chain is pnM .

Particles may also leave the system through a removal
process at a subset of N sites that we call sinks; these are
located at sites i0 + �,i0 + 2�, . . . ,i0 + N�, where N� +
i0 � M . The integer � is the sink-to-sink distance in units of
sites. The particle removal rate at the j -th sink is Sjnj�+i0 ,
j = 1, . . . ,N , if there are nj�+i0 particles at the location of
the sink. Using ei to denote the unit M-tuple with components
eij = δij , the transition rates in the model are therefore

Wn→m(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α m = n + e1

pni m = n − ei + ei+1, i = 1, . . . ,M − 1
qni+1 m = n + ei − ei+1, i = 1, . . . ,M − 1
pnM m = n − eM

Sjni m = n − ei , i = j� + i0,

j = 1, . . . ,N

0 otherwise.

(1)

The sink strengths S = (S1, . . . ,SN ) will be treated as
quenched random variables. They are independently drawn at
the beginning, from a distribution f (Si) with mean S0, variance
S2

0σ
2, and then remain fixed during the transport process.

We denote the conditional probability of finding the system
in configuration n at time t , given a particular sink strength
configuration S, by P (n,t |S). The particles hop according to
a continuous-time Markov process with exponentially dis-
tributed waiting times between events. The time evolution of
the probabilities P (n,t |S) is governed by the master equation

d

dt
P (n,t |S) =

∑
m

[Wm→n(S)P (m,t |S) − Wn→m(S)P (n,t |S)],

(2)

with the transition rates as in (1).
Using the model parameters p and q, and the intersite

distance d = L/(M − 1) and an intersink distance � = d�, we
can identify a mean advection speed and diffusion coefficient
as

u = (p − q)d, D = 1
2 (p + q)d2. (3)

For later reference, we introduce a number of dimensionless
parameters. These include a Péclet number, based on the
intersink distance, which characterizes the relative strength
of advection to diffusion, and a Damköhler number, which
characterizes the relative strength of uptake to diffusion:

Pe = u�

D
= 2(p − q)�

p + q
, Da = S0�

2

D
= 2S0�

2

p + q
. (4)

For the mathematical analysis in Sec. IV below we assume that
the system contains a large number of sites and sinks (M,N �
1). For later purposes, it is useful to introduce the inverse
number of sinks, ε = 1/(N + 1) � 1. Our analysis applies
for cases in which the sinks are sparsely distributed relative to
the sites; we also introduce the ratio δ = 1/� ≈ N/M � 1.
We will refer to the noise due to the stochastic hopping as
the intrinsic noise, and the disorder arising from the quenched
sink strengths as the extrinsic noise. We write averages over
the intrinsic noise (i.e., realizations of the stochastic hopping)
as 〈· · · 〉I and averages over the extrinsic noise (i.e., the sink
strengths) as 〈· · · 〉E .

α pn1 pn3 pn4 pnM−1 pnM

qnMqn5qn4qn2

L

S1n1 SN nM−1

l d

pn2

qn3

S2n4

X = 0 X = 1

FIG. 1. Illustration of the stochastic particle hopping model: qni , pni are the rates of hopping left, hopping right from site i; α is the rate
of inflow at the left boundary; pnM is the outflow rate at the right boundary; Sjni is the removal rate at sink j (site i = j� + i0); and ni is
the number of particles at the ith site. � is the number of regular sites between each pair of sink sites; in this figure � = 3 and i0 = −2. The
long-range dimensionless coordinate X ∈ [0,1] spans the physical length L of the domain.
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For a fixed realization S of the sink strengths we write

ρ(t |S) ≡ 〈n(t)|S〉I =
∑

n

n(t)P (n,t |S). (5)

This describes the (intrinsic) mean number of particles at the
different sites at time t for fixed sinks S. Similarly, we introduce
an (intrinsic) covariance between the occupancies ni and nj ,
again for fixed sink strengths S,

σij (t |S) = 〈ni(t)nj (t)|S〉I − ρi(t |S)ρj (t |S). (6)

We write σ (t |S) for the resulting covariance matrix.
The mean occupancies post intrinsic average in (5) can

further be averaged over the extrinsic uncertainty. We use the
following notation:

ρ(t) ≡ 〈ρ(t |S)〉E =
∫

ρ(t |S)F (S)dS, (7)

writing F (S) ≡ ∏N
i=1 f (Si) for simplicity. The shorthand

ρ(t) ≡ 〈ρ(t |S)〉E is introduced for later convenience; overbars
will be used to indicate averages over the extrinsic noise. The
total expectation in (7) is an average over both sources of noise.
Analogously, we can introduce

σij (t) ≡
∫

σij (t |S)F (S)dS (8)

and the extrinsic covariance,

covE (ρi(t |S),ρj (t |S)) ≡ 〈(ρi(t |S)ρj (t |S)〉E
−〈ρi(t |S)〉E 〈ρj (t |S)〉E .

The total covariance of ni(t) and nj (t) is then defined as

σ tot
ij (t) ≡ 〈〈ni(t)nj (t)〉〉I,E − 〈〈ni〉〉I,E 〈〈nj 〉〉I,E , (9)

where 〈〈· · ·〉〉I,E stands for the combined average 〈〈· · ·〉I〉E .
After a modest amount of algebra one finds

σ tot
ij (t) = σij (t) + covE (ρi(t |S),ρj (t |S)), (10)

an expression of the law of total covariance. The first term
in (10) is an average of the intrinsic covariance (6) over
realizations of the sink strengths. The second term accounts
for correlations between ρi(t |S) and ρj (t |S). These quantities
are each obtained from averaging over the intrinsic noise only
but for a fixed realization of the sink strengths. They will each
depend on the sink strengths drawn and can fluctuate together
across realizations of S.

Finally, we denote quantities in the stationary state of the
dynamics by a superscript “st.” For example, the stationary oc-
cupancies, averaged over the intrinsic noise, will be written as
ρst

i (S). We will write ρst(S) for the vector (ρst
1 (S), . . . ,ρst

M (S)).

III. NUMERICAL SIMULATIONS

In order develop a feeling for the behavior of the model
we first present numerical simulations. These are carried out
in continuous time using the Gillespie algorithm [14,15]. We
discuss two sets of simulations. The first set describes a case of
densely spaced sinks and is for a system of M = 10 sites with
a sink at each site (� = 1, i0 = 0). In the second set, sinks
are more sparsely placed, specifically we use M = 100 sites,
with sinks at every 10th site (� = 10, i0 = 0). The remaining

model parameters are S0 = 1, p = 1, q = 0.5, and α = 100 in
both cases.

A. Densely distributed sinks

We first consider a system with M = 10 sites, with a sink
of strength Si = 1 at each site, resulting in Pe = Da = 2

3 for
the above choices of p and q. There is no extrinsic disorder
in this example. Removal is sufficiently rapid to prevent most
particles from reaching ejection at the last site. Figure 2(a)

FIG. 2. (a) Dynamics of the system for fixed Si ≡ 1. Solid lines
show ni(t), obtained from one single run of the Gillespie simulation;
dashed lines show ρi(t) obtained from 104 samples of the intrinsic

noise; (b) normalized stationary covariance σ st
ij /
√

σ st
ii σ

st
jj ; (c) total

stationary covariance σ tot,st [normalized as in (b)] for Gaussian sink
strengths (unit mean, variance 1/16). Remaining parameters are M =
10, p = 1, q = 0.5, α = 100. Insets show the intrinsic variance σii

[panel (b)] and the total variance σ tot
ii [panel (c)] at each site. In order

to show their raw magnitude, these are not normalized to unity.
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illustrates the intrinsic stochasticity of the dynamics. We
show a single realization of the site occupancies ni(t |S)
(solid lines), superimposed onto the mean occupancies ρi(t |S),
i = 1, . . . ,5, obtained as an average of 104 independent
runs. The intrinsic covariance matrix in the stationary state
σ st

ij is diagonal, see Fig. 2(b). We show in Sec. IV A that
the occupancies nst

i (S) and nst
j (S) for i 
= j are independent

random variables across realizations of the intrinsic noise
whenever S is fixed.

In contrast, the total covariance in the stationary state
will contain off-diagonal contributions when there is extrinsic
uncertainty, as illustrated in Fig. 2(c) for a normal distribution
of sink strengths Si with unit mean and variance 1/16. We
note that a small proportion of the Si can be expected to
be negative in this case; this does not have a significant
bearing on the results in this example. The off-diagonal
covariances imply spatial correlation between the intrinsic
means of the occupancies at different sites across realizations
of the quenched disorder.

B. Sparsely distributed sinks

A sparse distribution of sinks introduces a second length
scale into the problem. This can be seen in Fig. 3(a), which
compares the stationary mean occupancies for fixed sink
strengths Si ≡ 1 (i.e., no extrinsic disorder) and normally
distributed sinks [Si ∼ N (1,1/16)]. The parameters we use
in this example result in Pe = 20/3 and Da = 400/3. The
Damköhler and Péclet numbers are larger than in the pre-
vious example, i.e., sink-to-sink diffusion is weaker than
before. Rapid removal at sinks again prevents most particles
from crossing the whole domain, but the biased hopping
is noticeable between each sink, with pronounced intersink
staircases superimposed on a decaying profile of particle
density. The total mean occupancy is slightly higher in the
case of disordered sinks than in the case of constant sink
strength Si ≡ 1, even though the number of sinks and their
mean strength is the same in both examples; we explore
the origin of this difference below. The intrinsic covariance
in the case without extrinsic disorder (Si = 1 for all i) is
again diagonal, see Fig. 3(b), whereas the total covariance
with disordered sinks in Fig. 3(c) shows long-range spatial
correlations and a multiscale structure. The intrinsic variance
σii at the different sites shares the staircase structure of the
mean occupancies; see the inset of Fig. 3(b). The total variance
at the different sites has a striking nonmonotonic form, as
shown in the inset of Fig. 3(c). This indicates particularly
strong variability immediately downstream of the first sink.

We now explore the origin of the long-range correlations
due to fluctuations in the sink strengths [Figs. 2(c) and 3(c)],
the origins of the elevated total mean occupancy ρst [Fig. 3(a)],
and seek approximations for the patterns of total variance.
Further simulation data are presented in Figs. 5–7 below.

IV. ANALYSIS

We now proceed with a mathematical analysis of the model.
An outline of our approach is illustrated in Fig. 4. We first
briefly comment on the properties of the stationary distribution
of the system (Sec. IV A). For a fixed realization of the sink

FIG. 3. (a) Stationary mean profiles: intrinsic mean with uniform
sinks [ρst(S) with Si = 1, solid] and total mean with variable sinks
[ρst with Si ∼ N (1,1/16), dashed]. Also shown are the leading-
order prediction C(0) from (32) (dot-dashed), supplemented with its
correction σ 2C(F ) obtained from (42) (large dashed). The normalized
site number (i − 1)/(M − 1) measures distance along the entire
domain. (b) Intrinsic stationary covariance for the case without
extrinsic noise; (c) total stationary covariance for the case with
Gaussian disorder. Data are generated from 104 Gillespie runs of the
stochastic model with M = 100, � = 10, p = 1, q = 0.5, α = 100
and shown for t = 200. The covariances in (b) and (c) are normalized
as in Fig. 2. Insets show (b) σii and (c) σ tot

ii .

strengths we carry out an average over the intrinsic stochas-
ticity and obtain the standard rate equations for the first and
second moments of site occupancies; see Sec. IV B. These are
ordinary differential equations (ODE); see also Fig. 4. Given
that there are no interactions between particles (i.e., reaction
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Stochastic
hopping model

Master
equation (2)

ODEs for
moments
(15,16)

PDE for first
moment (20)

Homogenization
approximation
& fluctuations

Exact
trajectories

Moments for
fixed S

Total moments

Average over
intrinsic noise

Gillespie
algorithm

Continuum
limit δ → 0

Large sink
number limit

ε → 0

Solve
numerically

MC with
fixed S

Law of total
expectation/
covariance

MC sampled
over S

Direct
evaluation

FIG. 4. Diagram showing the possible pathways between various
calculation stages in the model. “MC” stands for Monte Carlo.

rates are linear in the particle numbers), these equations close
and do not involve higher-order moments. In a second step
(Sec. IV C), and assuming a sufficiently large injection rate to
ensure large particle occupancy at individual sites and a sparse
sink distribution (δ � 1), we take a continuum limit to derive
a partial differential equation (PDE) for the mean occupancy,
again for fixed realizations of the sink strengths. The PDE
provides a continuum description of particle transport but
retains a discrete representation of uptake at sinks. Then,
assuming a large number of sinks across the domain (ε � 1),
we use a stochastic homogenization approach in Sec. IV D
to obtain approximations for the total mean and covariance
across the spatial domain. Whereas classical homogenization
involves spatial averaging over a periodic microstructure to
derive slow variation over macroscopic length scales, its
stochastic analog goes further by averaging over a disordered
microstructure. In the present case, by assuming the disorder
is weak, we will use the classical formulation as the starting
point of a perturbation expansion in the small sink variance σ 2.
We validate these theoretical predictions against Monte Carlo
simulations in Secs. IV E–IV F. The range of validity of each
of these approximations is assessed as a function of the input
parameters of the model in Sec. IV G.

A. Stationary distribution, fixed sinks

The stochastic model, defined by the transition rates (1), is
a variant of the open-boundary zero-range process (ZRP) [10–
13]. It describes noninteracting particles and includes particle
removal dynamics. The stationary distribution of the open-
boundary ZRP is a product distribution [10,11], i.e., in the
stationary state the site occupancy numbers nst

i , nst
j are pairwise

independent and therefore uncorrelated. This distribution is

independent of the initial condition, due to the ergodicity of the
stochastic system. Following Levine et al.’s arguments [10,11],
it can be shown that these properties are left unchanged by the
addition of particle removal through first-order sinks.

Using the results of Ref. [10], the stationary distribution of
the model can be written in the form

P st(n|S) =
M∏
i=1

P st
i (ni |S), (11)

where the single-site marginal distributions are Poissonian.
Their only parameters are the stationary mean occupancies
ρst

i (S) = 〈nst
i |S〉I , for i = 1, . . . ,M . We have

P st
i (ni |S) =

[
ρst

i (S)
]ni

ni!
exp

(− ρst
i (S)

)
. (12)

Equation (11) can be evaluated if the stationary mean occu-
pancies ρst

i (S) are known. Given the Poissonian nature of these
distributions, we immediately conclude that the (intrinsic) vari-
ance at each site, for a fixed sample of the quenched disorder,
equals the mean, σ st

ii (S) = ρst
i (S). Furthermore, again for a

fixed sample of the disorder, independence in the stationary
state implies that the second moments factorize, 〈nst

i nst
j 〉I =

〈nst
i 〉I〈nst

j 〉I , as earlier seen, for example, in Fig. 3(b). The
total covariance in (10) finally becomes

σ
st,tot
ij = ρst

i δij + covE
(
ρst

i (S),ρst
j (S)

)
. (13)

B. Exact equations for moments, fixed sinks

The time evolution of the means and covariances of the
site occupancies ni can be derived directly from the master
equation (2); see, for example, Refs. [16,17]. It is useful to
define the M × M matrices A(S) and B(n,S) as

Aij (S) ≡ p(1 − δi,1)δi,j+1

− [p(1 − δi,M ) + q(1 − δi,1)]δi,j

+ q(1 − δi,M )δi,j−1 − pδi,Mδi,j

+ δi,j

N∑
k=1

δi,k�+i0Sk, (14a)

Bij (n,S) ≡ p(1 − δi,1)(δi,j − δi,j+1)ni−1

+ [p(1 − δi,M )(δi,j − δi+1,j )

+ q(1 − δi,1)(δi,j − δi,j+1)]ni

+ q(1 − δi,M )(δi,j − δi+1,j )ni+1

+ δi,1δi,jα + δi,Mδi,jpnM

+ δi,j ni

N∑
k=1

δi,k�+i0Sk, (14b)

for i,j = 1, . . . ,M . We note that
∑N

k=1 δi,k�+i0Sk is the
strength of the sink at site i if there is one; this expression takes
the value zero in absence of a sink at i. We also introduce the
vector v with entries vi = αδi,1. Multiplying the expressions
in (2) by n and summing over all configurations n yields

d

dt
ρ(t |S) = A(S)ρ(t |S) + v (15)
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(see Appendix A for details). Similarly, for a fixed sample of
the quenched disorder the intrinsic covariances between the
occupancies ni and nj satisfy [16,17]

d

dt
σ (t |S) = A(S)σ (t |S) + σ (t |S)T A(S)T + B(ρ,S). (16)

When ρst satisfies (15) in the stationary state, it is
easily demonstrated that σij = ρst

i δi,j satisfies (16). This is
a consequence of Poissonian product form of the stationary
distribution in (11).

C. Equations for moments in the continuum limit

We now consider the sites arrayed over a continuous spatial
domain and use (15) to derive a PDE for the first moment of
the stochastic transport process at a fixed realization of sinks.
We approximate ρi(t |S) by a continuous function C(x,t |S),
where x ∈ [0,L] measures distance along the line of sites. One
then has ρi(t |S) = C(xi,t |S) for xi = (i − 1)d, i = 1, . . . ,M .
We retain the discrete locations of the sinks and introduce
S(x) = ∑N

i=1 Siδ(x − ξi), where the ξi = (i0 + i�)d are the
sink locations in real space.

We first consider the interior of the domain and address the
first and last sites separately. For i = 2, . . . M − 1, (15) takes
the form

Ct (x,t) = pC(x − d,t) − [p + q + S(x)]C(x,t)

+ qC(x + d,t), (17)

where the subscript t denotes a partial derivative and where we
have used the definition (14) of the matrix A(S). We introduce
nondimensional variables, denoted by asterisks, as

C∗(x∗,t∗) = C(x,t)/C0, x∗ = x/�, (18a)

ξ ∗
i = ξi/�, t∗ = t/t0, S∗

i = Si/S0, (18b)

where � = d� is the physical distance between successive
sinks and t0 = �2/D is the time scale of diffusion between
sinks. The quantity C0 drops out in (17), but it will be defined
below. We also have

S(x) = S(�x∗) = S0

�

N∑
i=1

S∗
i δ(x∗ − ξ ∗

i ), (19)

where the factor � is included to ensure that
∫∞
−∞ δ(x) dx =∫∞

−∞ δ(x∗) dx∗ = 1. We substitute (18) and (19) into (17) and
expand in δ ≡ 1/� = d/� � 1. At a fixed number N of sinks,
this is valid for large numbers of sites, M . We find

C∗
t∗ (x∗,t∗) = −PeC∗

x∗ (x∗,t∗) + C∗
x∗x∗ (x∗t∗)

− DaC∗(x∗,t∗)
N∑

i=1

S∗
i δ(x∗ − ξ ∗

i ) + O(δ3). (20)

This advection-diffusion-reaction equation is parameterized
by Péclet and Damköhler numbers, defined in (4). With
multiple dimensionless parameters in the problem, it is
important to distinguish carefully how each behaves when we
take the limits of large site and sink numbers, while preserving
low sink density. We analyze this a posteriori in Sec. IV G
below.

The equations at the inflow and outflow boundary sites
differ from the bulk and must be treated separately. Under the
scalings (18) the inflow boundary equation (15) becomes

D

�2
C0C

∗
t∗ |x∗=0 = −pC0C

∗|x∗=0 + qC0C
∗|x∗=δ + α. (21)

We can rearrange (3) to write the rate constants p and q as
D/d2 ± 1

2 (u/d) = (D/d2)(1 ± 1
2 Peδ), respectively. Expand-

ing (21) in powers of δ and rearranging gives

−PeC∗|x∗=0 + C∗
x∗ |x∗=0 + ε = O(δ), (22)

where we have introduced the concentration scale

C0 = αLd

D
= 2α(M − 1)

p + q
. (23)

The time derivative is among the O(δ) terms in (22) that
are neglected in the limit δ → 0; this implies that this
approximation may not capture rapid variations in the inlet
concentration at very early times. The leading-order inflow
condition is obtained as

PeC∗|x∗=0 − C∗
x∗ |x∗=0 = ε. (24)

Similarly, at the outflow boundary we take the final equation
in (15), write it in terms of the nondimensional continuous
variables, and consider only leading-order terms in δ. We find

C∗|x∗=ε−1 = 0. (25)

The PDE system (20), (24), and (25) provides a conve-
nient route for approximating conditional means ρst(S) and,
from (13), the total covariance. Intersink transport is governed
by the advection-diffusion equation (20); the inlet and outlet
conditions are quasisteady, with advection and diffusion
contributing to the imposed flux ε in (24) and advection being
sufficiently strong to enforce zero concentration at the outlet,
see (25).

Since Pe and Da were defined with respect to the intersink
distance � in (4), they appear naturally as parameters in (20).
The parameter ε appears in the domain length (0 � x∗ � ε−1)
and the inlet flux. When Pe = Da = 0, the problem has steady
diffusion-dominated solution C∗ = 1 − εx∗ for which C∗
varies by O(1) across the whole domain, reflecting the balance
between inflow and diffusion across all the sites implicit
in (23). If we now assume ε � 1 and consider increasing
Pe and Da from zero, uptake first becomes important for
Da = O(ε2), when C∗

x∗x∗ balances DaC∗ over a distance ε−1;
advection first becomes important for Pe = O(ε), when C∗

x∗x∗
balances PeC∗

x∗ over a distance ε−1. It what follows, we
therefore formally consider the distinguished limit ε → 0 with
Pe/ε and Da/ε2 remaining O(1); these latter quantities are the
Péclet and Damköhler numbers defined relative to the domain
length L. This ensures that advection, uptake, and diffusion
are all of comparable magnitude.

D. Averaging over extrinsic noise

We now adopt a homogenization approach, spatially
“smearing” the discrete sink locations and averaging over
the sink strengths in (20), (24), and (25). We write the
sink strengths as S∗

i = 1 + σ Ŝi where the Ŝi are independent
random variables with unit variance. When σ is sufficiently
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small, we may work with Ŝi ∼ N (0,1): A small number of
sink strengths will then be negative, but this is not excluded by
our formalism and does not change the outcome; alternatively,
for larger values of σ , we adopt a log-normal distribution.

In the stationary state and dropping asterisks from now on
we must solve

Cxx − PeCx = DaC(x)
N∑

i=1

(1 + σ Ŝi)δ(x − ξi) (26a)

in 0 � x � ε−1, subject to

PeC|x=0 − Cx |x=0 = ε, C|x=ε−1 = 0. (26b)

Splitting the concentration into its deterministic and fluctu-
ating parts, C = C + σĈ, where C ≡ 〈C〉E , we can write

Cxx + σĈxx − Pe(Cx + σĈx)

= Da
N∑

j=1

(C + σĈ)(1 + σ Ŝj )δ(x − j ). (27)

Averaging (27) over the quenched disorder and using the
fact that 〈Ĉ〉E = 0 gives

Cxx − PeCx = Da
N∑

j=1

(C + σ 2〈ĈŜj 〉E )δ(x − j ), (28a)

PeC|x=0 − Cx |x=0 = ε, C|x=ε−1 = 0, (28b)

while the residual Ĉ satisfies

Ĉxx − PeĈx = Da
N∑

j=1

(Ĉ + CŜj )δ(x − j ) + O(σ ), (29a)

PeĈ|x=0 = Ĉx |x=0, Ĉ|x=ε−1 = 0. (29b)

When σ � 1, we may obtain a leading-order approxima-
tion to C by neglecting σ 2〈ĈŜj 〉E in (28), namely

Cxx − PeCx = Da
N∑

j=1

Cδ(x − j ) (30)

subject to (28b). We can use this to find Ĉ in (29), neglecting
the O(σ ) correction in that equation. We will then return to (28)
to compute the O(σ 2) correction to C.

The leading-order approximation for C in (30) contains a
periodic array of sinks of fixed strength. At this level we have
discarded the quenched disorder entirely. A classical two-scale
asymptotic homogenization approximation may be adopted
for this reduced problem [1]. The solution is represented
as a series C = C(0)(x,X) + εC(1)(x,X) + ε2C(2)(x,X) + . . . ,
where we recall that ε = 1/(N + 1) is the inverse number
of sinks in the system. The short-range variable x is treated
independently of the long-range variable X = εx. We recall
that we have dropped asterisks before (26) and that x takes
values in the interval [0,ε−1]; the variable X takes values in
[0,1]. A classical argument, described, for example, in Ref. [8],
shows that the leading-order approximation depends only on

X and satisfies

ε2C
(0)
XX − εPeC(0)

X = DaC(0), 0 � X � 1, (31a)

PeC(0)
∣∣
X=0 − εC

(0)
X

∣∣
x=0 = ε, C(0)|X=1 = 0. (31b)

These are derived formally assuming Pe = O(ε) and Da =
O(ε2), which ensures a leading-order balance of advection,
diffusion, and uptake [8]. This linear problem can be solved
directly and has the following solution:

C(0)(X) = εePeX/2ε sinh[ε−1φ(1 − X)]
1
2 Pe sinh(ε−1φ) + φ cosh(ε−1φ)

, (32)

where φ ≡
√

Da + Pe2/4. The function C(0) varies smoothly
over the length of the domain and provides a leading-order
approximation to C in the limit of infinitely many sinks, ε →
0; higher-order terms C(1),C(2), . . . retain a dependence on
x and capture the jump in the derivative of C across each
sink.

Comparing (30) and (31a) illustrates the nature
of the homogenization approach: The discrete sum
Da
∑N

j=1 C(x)δ(x − j ) has effectively been replaced by the

continuous function DaC(x) in order to obtain the leading-
order homogenized solution C(0). This reflects the “smearing
out” of the sinks and captures the net effect of multiple sinks
over long length scales. While this ansatz is appropriate for
slowly varying functions subject to periodic forcing, it cannot
necessarily be adopted more generally.

Figure 5 illustrates, for four sets of (Pe,Da), how C(0)

captures the sample mean over realizations of (26). The panels
illustrate cases in which (a) strong uptake leads to rapid decay
of the concentration field; (b) elevated advection displaces
the concentration field towards the downstream end of the
domain; (c) advection, diffusion, and uptake are in balance
across the domain; and (d) advection is dominant except in
a narrow diffusive boundary layer upstream of the outlet. In
Figs. 5(a) and 5(c), for which Pe � 1, diffusion dominates
at the intersink scale, leading to smooth sample means. In
contrast, when advection becomes significant at the intersink
scale [as in Fig. 3(a), for which ε = 0.1], C(0) captures the
solution averaged over sinks [with error of O(ε)] but fails
to capture its internal staircase structure. Nevertheless, Fig. 5
illustrates how (32), derived for Pe ∼ O(ε) and Da ∼ O(ε2),
provides a useful approximation across a wide range of nearby
parameter space.

E. Quantifying extrinsic fluctuations

We now seek Ĉ. To solve (29), we neglect the O(σ )
correction that is quadratic in the fluctuations and apply
the homogenization ansatz to the term Da

∑N
j=1 Ĉδ(x − j ),

replacing it with DaĈ(x). The perturbations to sink strengths
Ŝj vary abruptly from sink to sink so we retain their discrete
form, using C ≈ C(0) to estimate the strength of each term.
This yields the approximate system

Ĉxx − PeĈx − DaĈ = Da
N∑

j=1

ŜjC
(0)(εx)δ(x − j ), (33)
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Ĝ

−1

−0.5

0

0 0.2 0.4 0.6 0.8 1

Ĝ
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FIG. 5. Comparison between sample means 〈C〉E calculated from 105 Monte Carlo simulations of the advection-diffusion-reaction
equation (26) (solid) and the homogenization estimate in (32) (dashed). The 99 sinks are normally distributed with σ 2 = 0.01. Parameter
values (Pe,Da) are (a) (ε,ε), (b) (1,ε), (c) (ε,ε2), and (d) (1,ε2), where the physical interpretation of the parameter regime is indicated as a
circled letter (U stands for an uptake-dominated regime, A denotes advection-dominated cases, and D indicates that diffusion dominates). Panel
(c) shows a case in which uptake, advection, and diffusion balance one another. Insets are the corresponding Green’s functions Ĝ(X/ε,0.5/ε)
from (35) and (36).

in 0 � x � ε−1, subject to (29b). It is evident that Ĉ involves
multiple independent components, each forced by an individ-
ual sink. This formulation is related to the so-called Duhamel
expansion in stochastic homogenization, for which formal
convergence results are available [18]; similar approaches have
been adopted in hydrology [19]. The Green’s function Ĝ(x,y)
of (33) and (29b) satisfies

Ĝxx − PeĜx − DaĜ = δ(x − y), 0 � x � ε−1, (34a)

PeĜ|x=0 = Ĝx |x=0, Ĝ|x=ε−1 = 0, (34b)

and takes the form

Ĝ(x,y) =
{
G−(x,y) x � y,

G+(x,y) x > y,
(35)

where

G−(x,y) = e
1
2 Pe(x−y) sinh[φ(y − ε−1)]g(x)

φg(ε−1)
, (36a)

G+(x,y) = ePe(x−y)G−(y,x). (36b)

We have introduced g(x) ≡ Pe sinh(φx) + 2φ cosh(φx).
Like C(0), Ĝ varies by O(1) with respect to the slow variable
X, as illustrated in Fig. 5(c). The arguments of Ĝ, Pe x and φx,
are order unity when Pe = O(ε), Da = O(ε2), and X = O(1).
The function Ĝ shows more rapid variation with position when

Da increases, see Fig. 5(a), or when Pe increases, see Figs. 5(b)
and 5(d).

We write Ĉ in terms of Ĝ and form sums of independent
random variables:

Ĉ(x) = Da
∫ ε−1

0
Ĝ(x,y)

⎡
⎣ N∑

j=1

ŜjC
(0)(εj )δ(y − j )

⎤
⎦dy

= Da
i∑

j=1

ŜjC
(0)(εj )G+(x,j )

+ Da
N∑

j=i+1

ŜjC
(0)(εj )G−(x,j ), (37)

where the integer i is such that i < x � i + 1. The resulting
sum depends on the slow variable X through the slowly varying
functions C(0) and G±. Combining the N independent random
variables and approximating sums with integrals, we obtain
the approximate distribution of Ĉ, in terms of the long-range
coordinate X, as

Ĉ(X)
approx.∼ N

(
0,ε−1Da2

{∫ X

0
C(0)(X′)2G+(ε−1X,ε−1X′)2dX′

+
∫ 1

X

C(0)(X′)2G−(ε−1X,ε−1X′)2dX′
})

. (38)
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FIG. 6. Comparison between sample variance σ 2 varE [Ĉ(X)] and transverse covariance σ 2 covE (Ĉ(X),Ĉ(1 − X)) calculated from 105

Monte Carlo simulations of the ODE (26) (solid, thin-dashed) and the theoretical predictions (38) and (B3) (wide-dashed and medium-dashed),
using the same parameter values as in Fig. 5.

Using (32) and (36) and numerically integrating for different
Pe and Da yields the variance predictions in Fig. 6. These show
good agreement with Monte Carlo estimates. When advection
is strong, the variance increases with distance before falling to
zero at the outlet.

We can also use the approximation for Ĉ to compute the
transverse covariances covT

E [Ĉ(X)] ≡ covE (Ĉ(X),Ĉ(1 − X))
(derived in Appendix B). Figure 6 confirms that the present
analysis captures predictions of Monte Carlo simulations.
Once again, the correlation between mean sink occupancies
varies smoothly over the entire length of the domain, despite
the fluctuations being driven over much shorter length scales.

F. Influence of fluctuations on mean occupancies

We now return to C, using (37) to evaluate 〈ĈŜj 〉E in (28).
Using the fact that covE (Ŝi ,Ŝj ) = δij , we have

N∑
j=1

〈ĈŜj 〉Eδ(x − j )

= Da
N∑

j=1

N∑
k=1

〈Ŝj Ŝk〉EC(0)(εk)Ĝ(x,k)δ(x − j )

= Da
N∑

j=1

N∑
k=1

δjkC
(0)(εk)Ĝ(x,k)δ(x − j )

= Da
N∑

j=1

C(0)(εj )Ĝ(x,j )δ(x − j )

≈ DaC(0)(εx)Ĝ(x,x). (39)

Because C0 and Ĝ are smoothly varying functions, it is
legitimate to employ the homogenization ansatz in the final
step of (39). Thus a refined approximation of C is given by a
homogenized version of (28a) as

Cxx − PeCx − DaC(x) = Da2σ 2C(0)(εx)Ĝ(x,x), (40a)

subject to (28b) and (28c). This linear equation can be split
into two parts, C = C(0) + σ 2C(F ), where C(0) satisfies (31),
and the correction due to fluctuations in the sinks satisfies

C(F )
xx − PeC(F )

x − DaC(F )(x) = Da2C(0)(εx)Ĝ(x,x), (41a)

PeC(F )
∣∣
x=0 = C(F )

x

∣∣
x=0, (41b)

C(F )|x=ε−1 = 0.

Using Ĝ to solve for C(F ) we obtain, in long-range
coordinates,

C(F )(X) = Da2ε−1
∫ 1

0
C(0)(Y )Ĝ(ε−1X,ε−1Y )

× Ĝ(ε−1Y,ε−1Y )dY. (42)
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FIG. 7. Comparison between [(a) and (b)] sample means 〈C(X)〉E (solid) and the theoretical prediction (32) (thin-dashed) and [(c) and
(d)] variances σ 2 varE [Ĉ(X)] (solid) and transverse covariances σ 2 covT

E [Ĉ(X)] (thin-dashed) and the theoretical predictions (38, (B3))
(wide-dashed, medium-dashed), with sink strengths Si distributed lognormally with variance σ 2 = 1. In addition, the wide-dashed line in
panels (a) and (b) shows the prediction of the mean including the correction C(F ) due to extrinsic fluctuations. Parameter values (Pe,Da) are
[(a) and (c)] (ε,ε) and [(b) and (d)] (1,ε) and all other parameters are as in Figs. 5 and 6.

It is straightforward to demonstrate that C(F )(X) is non-
negative. Since C(0)(X) � 0, the condition Ĝ(x,y) � 0 (illus-
trated in Fig. 5) is sufficient for the integral over the product
in (42) to be non-negative. In (36a), the exponential is always
positive, and each hyperbolic function in G−(x,y) is non-
negative for 0 � x,y � ε−1 except for sinh[φ(y − ε−1)] � 0.
Therefore G−(x,y) � 0. Also, the relation (36b) only involves
swapping x and y and an exponential factor, so G+(x,y) � 0.
Hence C(F )(X) � 0.

The correction is illustrated using the example in
Fig. 3. We use ε = 0.1, implying that only limited accu-
racy can be expected of the homogenization approxima-
tion and Pe = O(1), implying that the staircase structure
appears at higher order in ε. In this case, C(0) captures
the decay in the mean concentration with distance rea-
sonably well, while C(F ) captures the correct sense and
magnitude of the correction due to fluctuations in sink
strength.

Finally, to test how well this approach works for larger
sink variances, we present simulations with log-normally
distributed sink strengths, ensuring that Si > 0. Figure 7
compares simulations with σ 2 = 1 against the theoretical
predictions of the mean (32), its correction (42), and the
covariance (B3). The small-σ predictions of mean and variance
provide surprisingly good approximations of both quantities.
We now seek to understand in more detail the range of validity
of the approximation.

G. Size of fluctuations

It is instructive to consider the outcome of the model in
various regions of the space spanned by the parameters Pe and
Da. Figure 8 illustrates three distinct asymptotic regimes for
which diffusion is dominant between sinks. These are evident
from balancing the three terms in (31): (i) diffusion dominates
advection and uptake for Pe � ε, Da � ε2; (ii) advection is
dominant for ε � Pe � 1, Da � Pe2, which is the case in
Figs. 5(b), 5(d), 6(b), and 6(d); and (iii) uptake is dominant for
max(ε2,Pe2) � Da � 1, as in Figs. 5(a) and 6(a). We label
these regimes by circled letters D, A, and U respectively in the
figures. All three effects are in balance for Pe = O(ε), Da =
O(ε2); this is the case in Figs. 5(c) and 6(c). For Pe = O(1) or
larger, advection becomes dominant at the intersink distance;
for Da = O(1) or larger, there is complete uptake across a
small number of sinks.

We can analyze the magnitudes of the contributions to the
total covariance (13) from the intrinsic and extrinsic noise for
each parameter regime. To do so, we estimate the magnitudes
of C(0) and Ĝ by considering the dominant terms in governing
equations (20) and (34) in the different regimes and then
use the estimates σ 2C(F ) ∼ Da2σ 2C(0)G2

±/ε [from (42)] and
σ 2 covE ∼ Da2σ 2[C(0)]2G2

±/ε [from (B3)]. The homogeniza-
tion approximation fails when σ 2C(F ) becomes as large as
C(0) or, equivalently, when the extrinsic fluctuations (measured
by the size of their standard deviation) become as large
as the mean concentration. We note also that covE should
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FIG. 8. A schematic diagram of (Pe,Da)-parameter space, iden-
tifying asymptotic regions for which diffusion (D), uptake (U), and
advection (A) are dominant across the whole domain (with diffusion
being dominant between sinks). The shaded (red) region denotes,
for illustrative values of ε, σ , and C0 (with 1 � C0 � ε−1, σ 2 �
1 � ε1/2σC0), parameter values for which extrinsic fluctuations are
dominant, and the homogenization approximation does not apply.
Hatching represents the regions in which the intrinsic noise becomes
as large as the mean concentration. Points marked (a)–(d) correspond
to the panels in Figs. 5 and 6.

be multiplied by C2
0 and ρst

i by C0 to transform back to
dimensionful variables; see (23). As we are only interested
in the relative magnitude of mean and (co)variance we simply
divide the mean by C0 in Table I, where we summarize our
results, assuming σ is no greater than O(1). The following
picture emerges.

[D] When diffusion is dominant over uptake and advection,
the extrinsic noise is always small because Da2σ 2 � ε3. The
correction to the total mean due to extrinsic fluctuations can
be neglected. The variance is dominated by the intrinsic noise
provided Da2σ 2C0 � ε3. Fluctuations due to intrinsic noise

are small compared to the mean occupancy (i.e.,
√

ρst
i /C0 �

C(0)) provided C0 � 1.
[U] When uptake dominates advection (taking place over a

length scale x ∼ Da−1/2), the correction to the total mean due

to extrinsic fluctuations becomes significant for Da � ε/σ 2,
implying a breakdown in the homogenization approximation;
the example in Figs. 7(a) and 7(c) sits at this threshold.
The intrinsic noise becomes as large as the mean (i.e.,√

ρst
i /C0 � C(0)) for Da � ε2C2

0 . There are therefore two
independent thresholds at which the system becomes strongly
disordered, with the size of the parameter ε1/2σC0 relative to
unity determining which one dominates.

[A] When advection dominates, C(0) and Ĝ exhibit bound-
ary layers of length x ∼ 1/Pe. Extrinsic fluctuations become
dominant for Daσ � ε1/2Pe [the example in Figs. 7(b) and 7(d)
sits just below this threshold] and intrinsic noise becomes as
large as the mean for Pe � εC0.

These thresholds are illustrated in Fig. 8. The conditions on
C0 [see (23)] for intrinsic noise to be small compared to the
mean can be re-expressed in terms of the parameters of the
discrete model as

α � max[(p + q)/M,[S0(p + q)]1/2,�(p − q)], (43)

the three conditions applying in the diffusion-, uptake-, and
advection-dominated regimes, respectively.

V. DISCUSSION

We have investigated a model transport problem that in-
corporates both intrinsic noise associated with the underlying
stochastic hopping process and extrinsic disorder arising from
variability in sink strengths. The former generates independent
fluctuations in site occupancies, represented by a diagonal
covariance matrix, typical of a ZRP. The latter generates
long-range perturbations that can be correlated across the
entire domain. We examined the case in which multiple sinks
are distributed sparsely across the domain, allowing continuum
multiscale approximations to be adopted. While it is natural
to predict mean site occupancies using the ensemble-averaged
sink strength [represented by the leading-order homogenized
solution C(0)], we found this to be a biased estimator of
the true ensemble mean. This is because a locally elevated
(diminished) sink strength leads to global reduction (increase)
in concentration, including at the sink itself. This in turn
leads to a net reduction in the average local uptake rate
CS [represented by 〈ĈŜj 〉E � 0 in (28)]. The homogenized
solution therefore overestimates the uptake rate when there is
variability in sink strength and therefore underestimates the
mean site occupancy.

We used stochastic homogenization to derive explicit
predictions of the fluctuations arising from weak sink disorder
and validated the predicted covariance against simulations.
The transport process has three competing physical effects—
diffusion, advection, and uptake—and a relatively complicated

TABLE I. Estimates of magnitudes of the mean concentration, Green’s function, total variance, and extrinsic covariance in terms of their
scaling dependence on dimensionless parameters.

Regime C(0) Ĝ ρst
i /C0 covE

(
ρst

i ,ρst
j

)
[D] 1 ε−1 (1 + Da2ε−3σ 2)/C0 Da2ε−3σ 2

[U] εDa− 1
2 Da− 1

2 εDa− 1
2 (1 + Daσ 2ε−1)/C0 εσ 2

[A] εPe−1 Pe−1 εPe−1(1 + Da2σ 2ε−1Pe−2)/C0 Da2Pe−4εσ 2

042121-11



RUSSELL, JENSEN, AND GALLA PHYSICAL REVIEW E 94, 042121 (2016)

interplay between these effects is observed. The convergence
of the homogenization approximation to the ensemble mean
is parameter dependent, weakening with increasing mean sink
strength; i.e., with increasing Da in Fig. 8. The condition for
homogenization to fail, σ 2 � max(ε/Da,εPe2/Da2), can be
expressed in terms of the parameters of the discrete model as

σ 2 � max

[
(p + q)N

S0M2
,
(p − q)2N

S2
0M2

]
, (44)

which shows how the effects of disorder become important
when the number of sinks falls and their strength increases.
We estimated the relative magnitudes of intrinsic and extrinsic
noise, showing how the former becomes prevalent as the inlet
flux α diminishes [see (43)]. Our analysis indicates that the
parameter ε1/2σC0 ∼ ε1/2σαM/(p + q) must be small com-
pared to unity for intrinsic noise to dominate extrinsic noise.

In the present study we have not sought to describe
the case of strong quenched disorder, defined by (44) and
indicated by the shaded region in Fig. 8. We anticipate
that individual realizations will deviate significantly from the
ensemble average, making the system non-self-averaging in
this parameter regime. Techniques from condensed-matter
physics, such as the coherent medium approach and related
methods [20,21], could be useful for estimating mean transport
properties. Likewise, we have not addressed time-dependent
variations in detail, for which anomalous transport effects can
be anticipated; this has been illustrated for a related chemical
transport problem in the weak disorder regime [22] and framed
as a continuous-time random walk [23].

Returning to one of our motivating problems, for oxygen
transport in a placental subunit (a placentone), the Péclet
number has been estimated to be of order 103 to 104 [24].
Taking the domain length L to be comparable to the path length
[O(1 cm)] from a spiral artery to a draining decidual vein, this
implies Pe/ε � 103, a regime in which advection dominates
at the microscale. The spatial disorder of villous branches
within the placentone will contribute to fluctuations in the
concentration field induced by variability in uptake strength (as
modelled here). Intrinsic noise due to small particle numbers
can be expected to be negligible; however, the influence of
fluctuations in the flow field induced by the irregular geometry
may be significant [25] and will be addressed elsewhere. An
alternative application for which intrinsic and extrinsic noise
may be of comparable importance concerns the motion of
inhaled nanoparticles (such as viruses or drugs) through the
mucus lining of a lung airway [26,27]: here predominantly
diffusive transport may be mediated by trapping of particles
by large mucin molecules. While the present model describes
a limited number of features of such applications, it provides
a framework for describing the magnitude, structure, and
influence of fluctuations.

The problem we have addressed has a number of obvious
extensions, including spatially correlated or more densely
distributed sinks, random sink locations, nonlinear kinetics
and nonlinear hopping rates, higher spatial dimensions, etc.
These extensions can be adapted to study specific applications
in natural systems involving transport in the presence of spatial
disorder. Of particular significance in terms of predictive
modeling is understanding the nature and magnitude of the

bias in the homogenization prediction. The present approach is
a weak disorder expansion [see (44)] that allows the physical
system to be described as a Gaussian process with slowly
varying mean and spatial covariance. While this approach has
wide applicability as a method of uncertainty quantification,
alternative approaches are needed to address the strong disor-
der case in which extrinsic fluctuations appear at leading order.

ACKNOWLEDGMENT

O.E.J. and T.G. acknowledge support from EPSRC Grant
No. EP/K037145/1.

APPENDIX A: TIME EVOLUTION OF THE MOMENTS OF
THE STOCHASTIC MODEL

1. Master equation and first moment

In this Appendix we briefly summarize the derivation of the
differential equations for the first and second moments of the
stochastic hopping model. This is for a fixed realization of the
sinks and describes an average over the intrinsic disorder only.
The derivation is standard, see, e.g., Ref. [17], but it is useful
to include a brief summary here.

From the master equation (2), one finds

d

dt
〈f (n)|S〉I

=
∑

n

f (n)
d

dt
P (n,t |S)

=
∑

n

∑
m

[f (m) − f (n)]Wn→m(S)P (n,t |S). (A1)

If we choose f (n) = ni , then we obtain the equations gov-
erning the time evolution of the mean occupancies ρi(t |S) =
〈ni |S〉I ,

d

dt
ρi(t |S) = 〈

a
(1)
i (n,S,t)|S〉I , i = 1, . . . ,M, (A2)

where the first jump moment at n is defined as

a
(1)
i (n,S) =

∑
m

(mi − ni)Wn→m(S). (A3)

In our model the changes each reaction produces do not
depend on the present state of the system (the stoichiometric
coefficients are constants). The rates Wn→m(S) only involve
constant terms and terms involving first power of particle
numbers but no nonlinear contributions. The jump moments
are hence of the form

a
(1)
i (n,S) =

M∑
k=1

A
(1)
ik (S)nk + B

(1)
i (S), (A4)

with suitable coefficients A
(1)
ik (S) and B

(1)
i (S). Given

this (affine) linear form, one then has 〈a(1)
i (n,S)|S〉I =

a
(1)
i (ρ(t |S),S), and the equations for the intrinsic mean of the

occupancies take the form

d

dt
ρi(t |S) = a

(1)
i (ρ(t |S),S). i = 1, . . . ,M. (A5)
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In the main text we refer to the matrix A(1) and vector B(1) for
our model (1) by simply A and v. The first jump moments are
given in (14a), with vi = αδi,1. Therefore the time evolution
of the mean occupancies is governed by (15) on writing the
bulk and boundary equations out explicitly.

2. Second moment

Now turning to the covariances, we start from
d

dt
σij (t |S) = d

dt
[〈ninj |S〉I − 〈ni |S〉I〈nj |S〉I ]

= d

dt
〈ninj |S〉I − 〈ni |S〉I d

dt
〈nj |S〉I

−〈nj |S〉I d

dt
〈ni |S〉I , (A6)

for i,j = 1, . . . ,M . Choosing f (n) = ninj in (A1) gives
d

dt
〈nini |S〉I = 〈

a
(2)
ij (n,S)

∣∣S〉I + 〈
nia

(1)
j (n,S)

∣∣S〉I
+ 〈

nja
(1)
i (n,S)

∣∣S〉I , (A7)

where the second jump moments a
(2)
ij (n,S) are defined as

a
(2)
ij (n,S) =

∑
m

(mi − ni)(mj − nj )Wn→m(S). (A8)

Using (A6) with (A2) and (A7), we can write the time evolution
of the covariances in terms of the first and second jump
moments:

d

dt
σij (t |S) = 〈

a
(2)
ij (n,S)

∣∣S〉I
+ 〈

(ni − ρi)a
(1)
j (n,S)

∣∣S〉I
+ 〈

(nj − ρj )a(1)
i (n,S)

∣∣S〉I . (A9)

Noting again the linearity of the reaction rates in the particle
numbers and the fact that the stoichiometric coefficients are
constant, (A9) simplifies to (16) where B = a

(2)
ij (ρ(t |S),S) and

the matrix A
(1)
ik (S) is defined in (A4).

APPENDIX B: LONG-RANGE CORRELATION OF
FLUCTUATIONS

Using the expression (37) for Ĉ(x), we can calculate the
spatial covariance structure of the fluctuations. We introduce
y ∈ [0,ε−1] and Y = εy as the second short- and long-range
variables and define j = �y�. Then, using the bilinearity of
the covariance,

covE (Ĉ(x),Ĉ(y)) = covE

(
Da

{
i∑

k=1

ŜkC
(0)(εk)G+(x,k) +

N∑
k=i+1

ŜkC
(0)(εk)G−(x,k)

}
,

Da

⎧⎨
⎩

j∑
l=1

ŜlC
(0)(εl)G+(y,l) +

N∑
l=j+1

ŜlC
(0)(εl)G−(y,l)

⎫⎬
⎭
⎞
⎠

= Da2

⎧⎨
⎩

i∑
k=1

j∑
l=1

C(0)(εk)C(0)(εl)G+(x,k)G+(y,l) covE (Ŝk,Ŝl)

+
i∑

k=1

N∑
l=j+1

C(0)(εk)C(0)(εl)G+(x,k)G−(y,l) covE (Ŝk,Ŝl)

+
N∑

k=i+1

j∑
l=1

C(0)(εk)C(0)(εl)G−(x,k)G+(y,l) covE (Ŝk,Ŝl)

+
N∑

k=i+1

N∑
l=j+1

C(0)(εk)C(0)(εl)G−(x,k)G−(y,l) covE (Ŝk,Ŝl)

⎫⎬
⎭. (B1)

Since covE (Ŝk,Ŝl) = δk,l , the covariance simplifies to

covE (Ĉ(x),Ĉ(y)) = Da2

⎧⎨
⎩

min(i,j )∑
k=1

C(0)(εk)2G+(x,k)G+(y,k) +
i∑

k=j+1

C(0)(εk)2G+(x,k)G−(y,k)
j∑

k=i+1

C(0)(εk)2G−(x,k)G+(y,k)

+
N∑

k=max(i,j )+1

C(0)(εk)2G−(x,k)G−(y,k)

⎫⎬
⎭

= Da2
N∑

k=1

C(0)(εk)2Ĝ(x,k)Ĝ(y,k), (B2)

042121-13



RUSSELL, JENSEN, AND GALLA PHYSICAL REVIEW E 94, 042121 (2016)

where the piecewise nature of Ĝ takes care of the different sums. Then by approximating the above sums with integrals to leading
order, we have the following expression for the covariance in long-range coordinates:

covE (Ĉ(X),Ĉ(Y )) ≈ ε−1Da2
∫ 1

0
C(0)(X′)2Ĝ(ε−1X,ε−1X′)Ĝ(ε−1Y,ε−1X′)dX′. (B3)

Recall that Ĝ varies by O(1) with respect to the slow variable X when Pe = O(ε), Da = O(ε2).
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