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Resummed mean-field inference for strongly coupled data
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We present a resummed mean-field approximation for inferring the parameters of an Ising or a Potts model
from empirical, noisy, one- and two-point correlation functions. Based on a resummation of a class of diagrams
of the small correlation expansion of the log-likelihood, the method outperforms standard mean-field inference
methods, even when they are regularized. The inference is stable with respect to sampling noise, contrarily to
previous works based either on the small correlation expansion, on the Bethe free energy, or on the mean-field
and Gaussian models. Because it is mostly analytic, its complexity is still very low, requiring an iterative
algorithm to solve for N auxiliary variables, that resorts only to matrix inversions and multiplications. We test
our algorithm on the Sherrington-Kirkpatrick model submitted to a random external field and large random
couplings, and demonstrate that even without regularization, the inference is stable across the whole phase
diagram. In addition, the calculation leads to a consistent estimation of the entropy of the data and allows
us to sample form the inferred distribution to obtain artificial data that are consistent with the empirical
distribution.
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I. INTRODUCTION

In a context of ever-increasing data availability, the task
of inferring a probability distribution given measured data
has become ubiquitous. This task is referred to as statistical
inference, applications of which can be found in the study of
bird flocks [1], finance [2,3], neuroscience [4–6], and genomics
[7–9]. These last two fields of research are particularly active,
due to recent advances both in multielectrode array recording
for the former and in sequencing technology for the latter.
These advances provide increasing, high-quality datasets,
for hundreds or thousands of neurons or amino-acids and
nucleotides. Such large quantities of data call for statistical
modeling, for example, in order to be able to predict the
conformation of a protein domain from the sole knowledge
of the corresponding genetic sequence [10]. Such modeling
can then be tested against the ground truth provided by the
well-studied chemistry and biology of neurons and amino
acids, as, for example, x-ray spectroscopy or nuclear magnetic
resonance give access to protein conformations, collected into
databases such as the protein data bank (PDB) [11]. This
approach has been followed very successfully in recent works
on the problem of protein folding [8].

The theory of statistical inference has benefited a lot
from the contribution of statistical mechanics since the
seminal contribution of Jaynes who introduced the principle
of maximum entropy [12]. A more modern point of view that
illustrates the introduction of statistical mechanical models is
given by information geometry [13], which sees the space of
all probability distributions spanning a given statistical model
as a nonflat manifold, with coordinates given by the parameters
of the model. This manifold is, of course, high-dimensional
(for discrete datasets like neuronal recordings or genomic
sequences) or infinite-dimensional (for datasets taken from
continuous variables). The inference can in turn be seen as an
optimization over this manifold [14].

If the dataset is put under a binary form, we can represent it
by an M×N table {σ (τ )

i }τ=1···M
i=1···N , where M is the number of mea-

surements, and N the number of interacting agents (neurons,
amino acids, traders, . . . ). A full representation of the data is
obtained through its (empirical) moments, the first two being
the frequencies f M and pairwise correlations pM defined by

f M
i = 1

M

M∑
τ=1

σ
(τ )
i , pM

ij = 1

M

M∑
τ=1

σ
(τ )
i σ

(τ )
j , (1)

and higher-order moments read

pM
i1,...,ik

= 1

M

M∑
τ=1

σ
(τ )
i1

· · · σ (τ )
ik

, ∀ k = 3 . . . N. (2)

The model parameters can be seen as dual variables that
enforce these specific moments. The probability distributions
that are, by definition, normalized, while having the fixed
set of empirical moments f M, pM, . . . are taken from an
exponential family:

P (σ ) = 1

Z
eF (σ ),

F (σ ) =
N∑

i=1

hiσi +
∑
i<j

Jij σiσj +
N∑

k=3

∑
i1<···<ik

J
(k)
i1···ik σi1 . . . σik .

(3)

In this dual representation, the model parameters h,J, . . .

are fixed by successive Legendre transformations, so that they
minimize the entropy,

S[h,J ; f , p] = ln Z[h,J] −
∑

i

hifi −
∑
i<j

Jijpij

−
N∑

k=3

∑
i1<···<ik

(
J

(k)
i1···ik

)
pi1···ik , (4)
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which, when evaluated at the optimal parameters and at
the empirical moments, represents the Kullback-Leibler
divergence between the empirical distribution and the inferred
one. Minimizing this Kullback Leibler divergence is clearly
equivalent to the maximum likelihood estimation of the pa-
rameters h,J, . . . , while providing a geometric interpretation.

In real-world datasets, the number of measurements M

is not infinitely large compared to N , and this renders
the estimations of the empirical moments noisy, and one
typically needs a much larger set of measurements to correctly
evaluate correlations than to evaluate frequencies. This means
in practice that a large number of three- and higher-order
correlations are unreliable, while even pairwise correlations
must be considered as potentially unreliable. Indeed, current
challenges in neuroscience and genomics operate precisely
in a regime where N/M ∼ 1, both N and M are O(102) −
O(103), and the (connected) correlations between the agents
cM = pM − t f M f M are not small. In such situations, a
sensible choice is to perform the inference on the submanifold
of distributions that match only the first and second empirical
moments. Such a limited procedure already gives access to
information on the underlying network on which the agents
operate, through the pairwise couplings J . This information
can in turn be used to perform, for example, community
detection tasks, or contact prediction in the case of the protein
folding problem [8].

The inference problem is thus ultimately specified by the
evaluation of the entropy,

S[ f , p] = inf
h

inf
J

⎛
⎝ln Z[h,J] −

N∑
i=1

hifi −
∑
i<j

Jijpij

⎞
⎠, (5)

such that the fields and couplings h∗ and J∗ that solve the
inverse problem are given by

h∗
i = −δS[ f , p]

δfi

and J ∗
ij = −δS[ f , p]

δpij

. (6)

A direct method to numerically optimize Eq. (5) reaches
unreasonable computation times already for N � 20 [15–17].
Some speed-up can be obtained by resorting to Newton’s
method, which requires in this case the computation of the
Fisher information matrix [18]. See Ref. [19] for an application
to neuroscience, unfortunately limited to the good sampling
case for the moment. However, the complexity of this method
is still exponential, and more advanced methods must be used
when the number of units is too large, typically larger than a
few hundreds.

Another kind of procedure is the pseudolikelihood max-
imization (PLM) [20–23], which replaces the standard
maximum-likelihood estimator for the fields and couplings
by a pseudolikelihood [24], i.e., it maximizes

〈
ln

N∏
i=1

P (σi |{σj }j �=i)

〉
M

, (7)

with respect to the fields and couplings. In cases where the
distribution is that of the Ising model, this leads to finding the

optimum for the functional

LPL[h,J] =
∑

i

hi〈σi〉M + 2
∑
i<j

Jij 〈σiσj 〉M

−
∑

i

〈
ln cosh

(
hi +

∑
j (�=i)

Jijσj

)〉
M

. (8)

When sampling is large enough (M 	 N ), the data averages
〈•〉M can be replaced by ensemble averages, and LPL[h,J]
is maximized for the same h∗ and J∗ as obtained from the
entropy, ensuring that the method is consistent in the limit
of large sampling. However, in the regime we are interested
in, i.e., M ∼ N , with both N and M large, and cM large,
the method reaches its limits [25]. Furthermore, the method
numerically optimizes over N + N (N − 1)/2 variables, and
thus needs to resort to an uncontrolled number of iterations for
this very large number of unknowns.

Here we focus instead on analytic methods, which will
be most suitable in the future for applications to very large
datasets. Our goal is to find approximate functional forms for
S[ f , p] and obtain an analytical estimate of its minima, in
order to reduce the potentially large (and sometimes uncon-
trolled) number of iterations that have to be performed with
PLM or the Newton’s method. A crude first approximation is
the independent model, which, for Ising (±1) variables, gives
ZIM[h] = ∏N

i=1 2 cosh (hi), leading to the entropy

SIM[ f ] = −
∑

i

[
1 − fi

2
ln

(
1 − fi

2

)

+ 1 + fi

2
ln

(
1 + fi

2

)]
. (9)

Of course, this approximation does not allow us to reproduce
the strong correlations that are observed in realistic datasets,
and one has to go further. A possible approach is to perform
the two Legendre transforms in Eq. (5) sequentially. The first
transform leads us to define a Gibbs free energy,

G[ f ,J] = inf
h

(
ln Z[h,J] −

N∑
i=1

hifi

)
, (10)

from which the entropy is deduced using

S[ f , p] = inf
J

⎛
⎝G[ f ,J] −

∑
i<j

Jijpij

⎞
⎠. (11)

Approximations for G can be obtained for instance through
small J expansions, also known as high-temperature expan-
sions [26,27]. The first order in J is the naive mean-field
approximation,

GNMF[ f ,J] = SIM[ f ] +
∑
i<j

Jijfifj + O( J2). (12)

Unfortunately, using this approximation, the second Legendre
transform cannot be performed since the optimization over J
would give the equation

pij = fifj , (13)
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which has no solution when the data are correlated. To
circumvent this problem, many works have been devoted to the
so-called linear response method [28]. Instead of performing
the second transformation one takes advantage of the exact
relation,

χ−1
ij = −δ2G[ f ,J]

δfiδfj

, (14)

where χ is the connected correlation function of the model at
fixed frequencies f and couplings J . The inference for the
couplings is done in that case by searching for the J∗ that
satisfy Eq. (14) with the exact correlation function χ replaced
by the correlation function measured in the data χ → cM.
When the lowest-order approximation in Eq. (12) is used,
this procedure is termed naive mean-field inference (NMF),
or direct coupling approximation (DCA) for its generalization
to nonbinary variables [8]. Going to second order in J in
the expansion of G leads to the so-called Thouless-Anderson-
Palmer (TAP) procedure, used, for example, for machine
learning in Ref. [29]. The corresponding Gibbs free energy
reads

G[ f ,J] = GNMF[ f ,J] + 1

2

∑
i<j

LiiJ
2
ijLjj + O( J3), (15)

where L is the (diagonal) matrix of self-correlation of
independent variables obtained through

(L)−1
ij = −δ2SIM[ f ]

δfiδfj

= 1

1 − f 2
i

δij . (16)

Whatever order in the small J expansion is used, resorting to
linear response leads to incoherences because the diagonal part
of Eq. (14) cannot be satisfied properly. A host of works have
been devoted to correct with ad-hoc methods this consistency
problem, that all relate to the so-called adaptive TAP approach
of Opper and Winther [30], and that are usually termed
diagonal matching methods [31–36].

The next logical step, following the tradition of theoretical
physics, is to use further diagrammatic resummations. Resum-
ming two-spin diagrams in the Gibbs free energy leads to the
Bethe approximation. To obtain the Bethe free energy, one
calculates the contribution to G of all pairs of variables (i,j )
interacting independently from the other pairs. One obtains the
result

G[ f ,J] ≈ SIM[ f ] +
∑
i<j

�Gij [ f ,J], (17)

where �Gij is the difference between the free energy of
the isolated pair (i,j ) (interacting through the coupling Jij ),
and the free energy of two independent variables i and
j . Explicit formulas are cumbersome and can be found
in Refs. [37,38]. The Bethe approximation is often solved
by message-passing algorithms [34,35,38–40]. Unfortunately,
these analytical methods are generically unable to infer
correctly inside a low-temperature phase, when correlations
are strong or sampling is low; see, for example, Refs. [38,41].
In addition, the Bethe approximation is exact on trees, whereas
strongly interacting units define (by definition) very densely
connected interaction graphs that contain many loops [40,42].

Since the correct procedure is to perform the second
Legendre transform with respect to J , the natural step is to use
the small J expansion in Eq. (15) and turn it in an expansion
of the entropy in powers of connected correlations. This is the
small-correlation expansion of Sessak and Monasson (SM)
developed in Ref. [41]. We define an off-diagonal correlation
matrix c̃ ≡ c − L, and the small-correlation expansion is an
expansion in powers of c̃, the first term of which is easily
deduced from the TAP free-energy in Eq. (15) to find

S[ f , p] = SIM[ f ] − 1

2

∑
i<j

c̃2
ij

LiiLjj

+ O(c̃3). (18)

Higher-order terms can be calculated, however, since the
correlations in realistic data are large [41] the obtained series is
divergent, and resummations must be used. The natural thing to
do is to resum ring diagrams, which leads to the approximation

S ring[ f , p] ≈ SIM[ f ] + 1
2 Tr[ln c − ln L]. (19)

However, this method, even coupled to two-spin and three-spin
resummation was found to be extremely sensitive to sampling
noise [41], rendering it impractical.

Finally, another alternative to find a theoretically well-
founded approximation for S is the adaptive cluster expansion
(ACE) of Refs. [43,44]. One expands the partition function in
the equivalent for spin systems of the virial coefficients and
gradually incorporates more and more diagrams depending on
their information content, measured through their contribution
to the entropy S. The starting point of the expansion is the
independent spin model, and one can then incorporate the
interactions between units by considering again the pairs of
spins as independent, which gives an approximation for the
entropy,

S[ f , p] ≈ SIM[ f ] +
∑

pairs i,j

�S (2)
ij [ f , p], (20)

similar to the two-spin diagrams resummation for G described
above. However, in the case of ACE, the summation runs over
a given set of pairs i,j , which must be chosen beforehand.
This procedure can be continued by taking into account larger
and larger subsets of spins (called “clusters” in that context)
into account. The adaptive cluster expansion selects relevant
clusters of spins depending on their final contribution to the
entropy S. However, when clusters are too large (already for
triplets of spins in the case of q > 2), it is too cumbersome
to perform the double Legendre transform analytically, and
the algorithm selects a trial set of clusters in the expansion of
Z[h,J], and optimize numerically over h and J to compute
the entropy S. The algorithm is very efficient in avoiding
oversampling, and optimal either when sampling noise is large
or when the interaction graph of the units is sparse enough:
in both cases, only small clusters of spins will be selected (in
these cases the algorithm was shown to be able to saturate the
Cramér-Rao bound for the variance of the maximum likelihood
estimator [43]). However, the complexity of the algorithm is
exponential in the size of the clusters that have to be taken
into account. When the interaction graph is dense and the
correlations are large, and when the number of states q is
large, for example, for protein data, or when the number of
units N is large, the algorithm hits its limits. For example,
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N = 27 strongly coupled amino acids (i.e., with q = 20 or
21) in a lattice model of protein already pushes the algorithm
to its limits; see Ref. [45] for an example.

One of the main sources of difficulty in the inference
problem is the presence of sampling noise. Whereas the
functional ln Z[h,J] − ∑

i hifi − ∑
i<j Jijpij is always a

strictly convex function of h,J , whatever the values of f
and p are, it is not guaranteed to have its minimum at a finite
value of the fields and couplings. To bypass this limitation, one
can simply add a regularization term, which has the Bayesian
interpretation of adding a prior to the parameters h and J . With
the addition of the regularization term the posterior probability
can be maximized instead of the likelihood, which leads to
considering a modified entropy functional,

Sreg[ f , p] = inf
h,J

(
ln Z[h,J] − ∑

i fihi

−∑
i<j pijJij − 1

M
ln Pprior[h,J]

)
, (21)

where Pprior[h,J] is the prior probability on h and J . One
can consider, for example, the class of Ln regularization on
the couplings only, which leads to minimizing over J (since
the fields are not regularized at all) the regularized Gibbs free
energy,

Greg[ f ,J] = G[ f ,J] + η

nM
‖J‖n

n, (22)

where ‖ • ‖n is the Ln norm, and η is the strength of the
regularization. The cases n = 1 or 2 are very popular in the
statistics community since the former selects sparse models
and the latter selects models with small parameters. With this
addition, the inference problem has now a unique and finite
solution. For these reasons, the PLM and ACE algorithms
need such a regularization to not be trapped in locally flat
directions during their numerical optimizations over p. As
far as analytical schemes are concerned, we see that the
regularization term must, by construction, be proportional to
the inverse number of samples, i.e., should be small when
sampling is large. In principle, this issue can thus be taken into
account perturbatively once the perfect sampling problem has
been tackled.

The paradigmatic illustration of the necessity of regulariza-
tion is given by the NMF inference, which amounts to invert the
data correlation matrix, as can be seen by solving the inference
problem starting from the ring entropy shown in Eq. (19), or
indifferently from the NMF+linear response scheme:

J NMF
ij = − δS ring[ f , p]

δpij

∣∣∣∣
pM

= −(cM)−1
ij . (23)

The empirical correlation matrix cM is usually rank-deficient in
realistic datasets, preventing NMF to be applicable as is. The
fact that the correlation matrix is not invertible corresponds
to a situation where the functional ln Z[h,J] − ∑

i hif
M
i −∑

i<j Jijp
M
ij is minimized by infinite values of some of the

couplings or fields. However, in effect the problem is that
the ring entropy in Eq. (19) is not differentiable at f M, pM.
We see that in that case two issues get mixed: the nonexistence
of the solution to the unregularized inference problem and the
fact that the ring entropy is ill-behaved. Adding a regularization
term as discussed above restores the ability of NMF to
infer coupling parameters; see Refs. [46,47] for examples of

applications to realistic data. Another possibility is to add
pseudocounts to the data before computing the one- and
two-point marginals, that is, in the case of binary variables
perform the modifications [48]

f M
i → (1 − α)f M

i ∀ i,

pM
ij → (1 − α)pM

ij + αδij ∀ i,j. (24)

The same kind of modification can be applied for multi-index
variables, see Ref. [8] for protein data, which amounts to add a
prior to unobserved data [49]. Both types of regularization
allow one to compensate for the rank deficiency of cM,
and restore the ability of the mean-field inference to infer
couplings. Interestingly, it was found that for NMF, large
regularizations η (of the order of M) must be chosen to have
a quantitative result, which is not the case for ACE, where
the regularization can (and should) be chosen of the order
one. This particular feature points toward a pathology in the
analytical formulations at hand, that is not present in the more
direct, methods like ACE and PLM, that numerically optimize
over J .

In this paper, we continue the procedure of diagrammatic
resummations for the entropy functional, initiated in Ref. [41],
in order to obtain an inference procedure that is stable with
respect to sampling noise. Instead of relying on a small
correlation expansion, and inspired by a field theoretic point
of view, we set up a “loop expansion” of the entropy (not to be
confused with the loops of an interaction graph) and show that
it contains and generalizes the majority of analytical methods
that are based on mean-field methods or high temperature and
small correlation expansions. Our procedure is shown to resum
a large number of diagrams in the small correlation expansion
of SM, including those leading to NMF inference and diagonal
matching methods, thus providing a unifying picture for all
these works, along with an inference algorithm that is able to
infer quantitatively fields and couplings across the whole phase
diagram of spin glasses, without being critically sensible to
sampling noise as in Ref. [41]. Despite introducing an iterative
scheme to solve for N auxiliary variables, the complexity of
the algorithm is still very low, since it requires only matrix
inversions and multiplications. We demonstrate that even deep
in the spin-glass regime, and in the presence sampling noise,
our inference procedure still produces meaningful results,
whereas other analytical methods fail badly when they are
not regularized. A key feature of our approach is that it does
not rely on inversion of the correlation matrix, thanks to the
introduction of N auxiliary variables that are fixed solely
by the data itself, so that the method works even when cM

is rank deficient, without relying on any pseudocount or L1

or L2 penalties. Indeed, we argue that the class of diagrams
that we resum give large contributions in the under sampling
regime N ∼ M , so that their omission in previous works led to
inference schemes that were unstable when sampling is poor.

The plan of the paper is the following: in Sec. II, we derive
in details our main results given in Eqs. (37), (38) and (40),
(41). In Sec III, we make the connexion with the well-known
high-temperature and small-correlation expansions, as well
as the diagonal matching tricks. The reader uninterested
by technical details can safely skip to Sec. IV, where we
test our results on the Sherrington-Kirkpatrick model. We
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show that our method (without regularization) outperforms
the other analytical inference methods, even when they are
regularized. We show that on top of being stable across the
whole phase diagram, our method provides meaningful fields
and couplings, also at the level of individual probabilities
of configurations, a feature that is inaccessible to most of
the other methods, and poorly performed by NMF combined
with regularization and diagonal matching, or by the Gaussian
model. In Sec. V we adapt the expansion to Potts variables,
and in Sec. VI we push the expansion to the next order. Finally,
we give our conclusions in Sec. VII.

II. RESUMMED MEAN-FIELD APPROXIMATION

We seek for an approximation of S based [using Eq. (11)]
on an expansion of G in terms of a small parameter, while
improving upon previously known approximations of the
Gibbs free energy, such as the high-temperature expansion.
For that purpose, we use the following exact equation for the
Gibbs free energy, known as the Wetterich equation in the
context of quantum field theory [50]:

∂βG[ f ,β J] =
∑
i<j

Jijχij (β) +
∑
i<j

Jijfifj ,

where (χ(β)−1)ij = −δ2G[ f ,β J]

δfiδfj

. (25)

This equation has been the starting point to nonperturbatively
tackle a variety of problems stemming from quantum and
statistical field theories [51], with recent development for
classical and quantum lattice models [52–54]. Here the
function χ is the exact correlation function of the Ising model,
and thus solving Eq. (26) exactly is as hard as computing
the partition function directly, and one has to resort to
approximate solutions. One could expand in powers of J to
straightforwardly recover the high-temperature expansion of
Refs. [26,27], followed by a Legendre transform with respect
to J to recover the results of Ref. [41]; see Sec. III and
Appendix B for details.

Instead, we first formally integrate Eq. (25) and obtain (see
also Ref. [30])

G[ f ,J] = S IM[ f ] +
∑
i<j

fiJij fj +
∫ 1

0
dβ

∑
i<j

Jijχij (β).

(26)

We see that under this integral form, the naive mean-field
result is obtained when the integral is dropped. Starting from
this observation, we build a functional Gε, which interpolates
between the mean-field result and the exact one, defined by
the solution to the system

Gε[ f ,J] = GNMF[ f ,J] + ε

∫ 1

0
dβ

∑
i<j

Jijχij (β,ε),

where (χ(β,ε)−1)ij ≡ −δ2Gε[ f ,β J]

δfiδfj

. (27)

This particular choice of dependencies on ε ensure that the
ε → 0 limit recovers the NMF result, while the ε → 1 limit
recovers the full theory. We then construct a corresponding

interpolating entropy Sε by setting

Sε[ f , p] = inf
J

⎛
⎝Gε[ f ,J] −

∑
i<j

Jij [fifj + ε(pij − fifj )]

⎞
⎠,

(28)

implying Sε=0 = S IM and Sε=1 = S. Our procedure thus
constructs a new kind of expansion of the entropy starting from
the independent model approximation (and correspondingly,
an expansion of the Gibbs free energy starting from NMF).

We now assume that Gε and Sε are analytic functions of ε

and seek for their series expansions in powers of ε, which read

Gε =
+∞∑
k=0

εkG(k), Sε =
+∞∑
k=0

εkS (k). (29)

These expansions are the counterpart, for spin systems, of the
well-known loop expansions originated from quantum field
theory [55,56]. We show in Appendix A another formulation of
this expansion in terms of a saddle-point evaluation of a certain
path integral, that makes this connection clearer. However, the
point of view we adopt is by far more effective, when actual
calculations are concerned, than the field theoretic one.

Starting from the expansion to order one in ε of Gε, we
deduce the expansion of χ (β,ε) in powers of ε, leading to

χ (β,ε) = χ (0)(β) + ε χ (0)(β)
δ2G(1)[ f ,β J]

δ f δ f
χ (0)(β) + O(ε2),

(30)

where

[χ (0)(β)]−1
ij = −δ2GNMF[ f ,β J]

δfiδfj

= L−1
ij − βJij . (31)

Inserting these results in Eq. (26), we obtain after a trivial
integration the first order result

G(1)[ f ,J] = − 1
2 Tr[ln(L−1 − J) − ln L−1]. (32)

Our first order (in ε) approximation for the Gibbs free energy
is thus

Gε[ f ,J] = SIM[ f ] +
∑
i<j

Jijfifj

− ε

2
Tr[ln(L−1 − J) − ln L−1] + O(ε2). (33)

The net effect of our first-order procedure is to resum ring
diagrams in the Gibbs free energy. This could have been
done by hand simply by looking at the series expansion given
by the high-temperature expansion and was indeed shown in
Ref. [44]. However, we will show in Sec. V that our method
gives a systematic procedure, which could not be performed
by hand beyond the first order.

Starting from this improved Gibbs free energy, we evaluate
the first-order contribution to the entropy. The optimal cou-
plings J∗, which minimize G, are obtained, to first order in ε,
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by solving the equation

cij ≡ pij − fifj = (L−1 − J∗)−1
ij + O(ε) ∀ i < j. (34)

Keeping in mind that by definition J∗ is a symmetric matrix
with zeros on the diagonal and with J ∗

ij for i < j outside
the diagonal, Eq. (34) therefore gives N (N − 1)/2 nonlinear
equations for the N (N − 1)/2 unknowns J ∗

ij , which could be
solved for example numerically. It is crucial to keep in mind
that Eq. (34) cannot be inverted in a matrix sense because we
do not have an equation for i = j . A naive inversion would
lead to the ring entropy discussed in Sec. III and recovers the
NMF+linear response result for the couplings. We assume
now that a solution has been found for this system. In that
case, we can define a diagonal matrix D (which depends on f
and p) by

Dii = (L−1 − J∗)−1
ii − cii ∀ i. (35)

We have now the property, valid in the matrix sense, that

L−1 − J∗ = (c + D)−1, (36)

which allows a posteriori to find the explicit value of J∗
and D by evaluating on and out of the diagonal. We find, on
the diagonal, a set of N equations that solve the N unknown
elements of D (importantly, independent of J∗),

(c + D)−1
ii = L−1

ii ∀ i. (37)

A numerical procedure to compute D is discussed in Ap-
pendix C. We finally get the equation for the inferred couplings
by evaluating Eq. (36) outside the diagonal:

J ∗
ij = −(c + D)−1

ij + O(ε) ∀ i < j. (38)

Note that the matrix D is a tool to formally invert Eq. (34)
and is thus very different from the diagonal-matching tricks
sometimes used to solve the inconsistency of the NMF or TAP
approximations [33]. A direct comparison between the small
correlations expansions of both Eqs. (34) and (38) readily
confirms that they both contain the same diagrams; see the
discussion in the next section.

The equation for the fields is easily deduced from the
relations

h∗
i = − δSε

δfi

∣∣∣∣
p

= − δGε

δfi

∣∣∣∣
J∗

, (39)

and we find

h∗
i = tanh−1(fi) −

∑
j (�=i)

J ∗
ij fj + ε

Difi(
1 − f 2

i

)2 + O(ε2). (40)

From the approximation for the couplings in Eq. (38) we obtain
our resummed mean field (RMF) approximation for the cross-

entropy:

SRMF[ f , p] = SIM[ f ] − ε

2
Tr(DL−1)

+ ε

2
Tr(ln (c + D) − ln L) + O(ε2). (41)

The calculation can be easily continued to second order in ε for
Potts or Ising variables, and to third order for Ising variables,
although it becomes gradually more tedious, the number terms
increasing rapidly (see Sec. V).

III. CONNECTIONS WITH PREVIOUS
ANALYTICAL APPROACHES

We now discuss the connections between our RMF ap-
proximation and previous works, such as the small correlation
expansion of SM, and clarify the effect of the matrix D
introduced to invert Eq. (34). First of all, let us note that one
can recover the Plefka expansion (high temperature, i.e., small
J , expansion) of G[ f ,J] up to arbitrary order starting from
the Wetterich equation, as shown in Appendix B. Of course,
the expansion in ε resums an infinite number of terms in power
of J , and is thus much more powerful. For example, at order
ε, Eq. (33) expanded to order J2 gives back the TAP result of
Eq. (15) (after setting ε = 1).

We have checked explicitly that the expansion of Gε to
order ε3 indeed contains all terms of its expansion to order
J4. In addition, we show formally in Appendix D that the ε

expansion of Gε at order εn contains all terms of the Plefka
expansion to order Jn+1. The fact that Gε at order εn is exact
to order Jn+1 obviously transfers to the expansion of Sε, and
this proves that our approximation scheme contains the small
correlation expansion while resumming a further (infinite)
class of diagrams at each order in ε.

Starting from Eq. (41), the small correlation expansion of
SRMF reproduces the expansion of Ref. [41], for example,
at the lowest order one finds back the lowest order in the
small correlation expansion shown in Eq. (18). In Ref. [41],
the authors devised resummations of the small correlation
expansion. In particular, they resum an infinite series of terms
for the couplings (i �= j ) that corresponds to the ring entropy
given in Eq. (19). These diagrams correspond to the diagrams
shown in the first line in Fig. 2.

Note that the optimization equation for the couplings
derived from S ring corresponds to the NMF result JNMF =
−(cM)−1 usually obtained using linear response, a method
that is not consistent since we have in that case

−δ2GNMF

δfiδfi

= 1

1 − f 2
i

�= (c−1)ii , (42)

and this equation is not satisfied for i = j . But once more,
we stress that the Legendre transform of GNMF with respect to
Jij is not well defined and thus SNMF does not exist strictly
speaking, althoughS ring would be the closest, and most natural,
proxy for it. This feature explains why the linear response
method is successful in general: it allows one to resum a
certain class of higher-order diagrams of the second Legendre
transform, without having to explicitly perform the Legendre
transformation, as it is indeed well known in statistical field
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theory [55]. This, however, comes at the cost of inconsistencies
on the diagonal part of the inverse correlation matrix.

A very interesting fact, to our knowledge not yet discussed
in the literature, is that the fields obtained from S ring corre-
spond to the fields obtained from the NMF with the diagonal
matching trick (which has been shown to be equivalent to the
adaptive TAP method in the direct problem [36]). Indeed, we
find

h
ring
i = tanh−1(fi) −

∑
j (�=i)

J
ring
ij fj + (

(c−1)ii − L−1
ii

)
fi, (43)

which is the same result obtained from the NMF diagonal
matching free energy,

GDM[ f ,J] = GNMF[ f ,J] + 1

2

∑
i

�i

(
1 − f 2

i

)
, (44)

using linear response [33], that we recall now for the sake of
completeness. Linear response for GDM gives

hi = tanh−1(fi) −
∑
j (�=i)

Jijfj + �ifi,

(c−1)ij = −Jij + δij

(
1

1 − f 2
i

+ �i

)
, (45)

which yields, when solved for hi and Jij , Eqs. (43) and
(23). Therefore, using S ring gives a more rigorous way to
derive the NMF inference than linear response of adaptive
TAP, or diagonal matching trick, as it is based on the proper
object to perform the inference, the entropy, which in that
case corresponds to the resummation of all ring diagrams.
This is also an a posteriori justification of the improvement
of the diagonal trick upon the more “naive” NMF fields
(corresponding to Eq. (43) without the last term), since h

ring
i

corresponds to a more consistent inference based on S ring.
We want now to compare the RMF entropy with the ring

entropy, which contains both NMF and the diagonal matching
method for the fields. To do so, we need to expand the matrix D
in power of the off-diagonal part of the correlation matrix c. We
call c̃ the matrix with elements cij , and zeros on the diagonal.
To alleviate the notations, we define a rescaled correlation
matrix �,

� ≡ L−1/2 c̃L−1/2 (46)

(note that � inherits from c̃ the property that it has zeros on its
diagonal), and the small correlation expansion amounts to an
expansion in powers of �. We define a rescaled D̃ matrix by

D̃ ≡ L−1/2 DL−1/2, (47)

and Eq. (37) then becomes

(1 + � + D̃)−1
ii = 1 ∀ i, (48)

which is easily expanded in powers of � to find

D̃ii = (�2)ii − (�3)ii

+
⎛
⎝(�4)ii − (�2)2

ii −
∑
j,k

2
ij

2
jk

⎞
⎠ + O(�5). (49)

The diagrammatic representation of this expansion is shown
in Fig. 1 up to order 4 in �, and this shows that D resums

FIG. 1. Diagrammatic expression of the small-correlation expan-
sion of the rescaled D̃ matrix. Open circles represent the site i, the
lines are � factors and filled circles mean summation over a site index.

rings of c̃ going from the site i through an arbitrary number of
intermediary sites before going back to i. From the expansion
of D, we deduce the expansion of rescaled couplings,

J̃ ≡ L1/2 J∗L1/2, (50)

which is shown diagrammatically in Fig. 2. The first line of the
expansion corresponds to the (truncated) sum of ring diagrams
corresponding to the NMF couplings, whereas the other terms
come from the expansion of the D matrix. We also see that
S ring is recovered, and thus NMF and the diagonal matching
trick, if one takes D = 0. Indeed we have, after setting ε = 1,
the relation

SRMF = S ring + 1
2 Tr[ln(1 + c−1 D) − L−1 D], (51)

which demonstrates that our framework indeed goes beyond
these previous methods in terms of diagram resummations. A
final remark is that, as already stated above, the introduction
of the D matrix was done only in order to push the analytical
calculations further, and it is easily verified that the small
correlation expansion of Eq. (34) coincides with the expansion
of Eq. (38) combined with the expansion of D, i.e., to the
diagrams of Fig. 2. The introduction of D is thus in no way
necessary and does not correspond in any way to some kind
of diagonal matching method.

We have shown the small-correlation expansion of RMF,
but of course the couplings in Eq. (38) contain an infinite
number of diagrams beyond those shown in Fig. 2. A typical
diagram contributing to D, which is resummed by our approxi-
mation, is shown in Fig. 3. All such “cactus diagrams” [57] are
resummed in D, and the usual ring diagrams contributing to
the NMF result must be dressed at each vertex by all such
diagrams to obtain the RMF couplings (see Fig. 2 for an
illustration: the single � link on the first line is dressed by
the first two contributions to D to give the diagrams ont the
second line).

FIG. 2. Diagrammatic expression of the small-correlation expan-
sion of the couplings obtained through RMF. Same notations as
described in the caption of Fig. 1, with one open circle representing
the site i and the other the site j . The first line corresponds to the
truncated expansion of NMF couplings to order �4 (ring diagrams),
the other terms coming from that of D.
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FIG. 3. A typical diagram contributing to D̃, same conventions
as described in the caption of Fig. 1.

This clearly shows that our approximation resums a whole
class of “cactus” diagrams in addition to the simple ring
diagrams that lead to NMF. This resummation would be very
hard to guess simply upon looking at the diagrams of the
small-correlation expansion of Ref. [41], which explains why
it has been overlooked.

Finally, in Ref. [41], the authors combine their ring
resummation with the resummation of all two-spin diagrams
(and even three-spin diagrams in the f = 0 case), and we show
in Appendix E that the same procedure can be applied in our
framework, since one simply has to identify the contribution
of two- or three-spin diagrams in the RMF result. We leave the
issue of testing the RMF plus two-spin inference procedure
for future work, and focus on the simpler RMF inference in
the following.

IV. TESTS ON THE SHERRINGTON-KIRKPATRICK
MODEL

In order to test our approach, we analyze the standard SK
model, which consists of N spins interacting with random
gaussian couplings Jij of zero mean and standard deviation
σJ = J/

√
N , with N = 10 spins for σJ ∈ [0.1,0.9] in the

presence of a random Gaussian magnetic field hi , of zero mean
and standard deviation σh = 0.3. As the high temperature
expansion becomes exact as N → ∞, a small number of
spins is actually an interesting test case. We have performed
Monte Carlo simulations for 100 realizations of the disorders
per σJ , and generated various sets for M ranging from 102

to 104 spin configurations, as well as exact computations
of the correlation functions, still doable for N = 10. Note
that, in the finite sampling cases, our simulations were not
necessarily thermalized in the strongly correlated regime (i.e.,
for σJ � 0.3), implying possibly strongly biased evaluation
of the averages, meaning that f M and cM can be (and in
some cases were) quite different from their exact values for
a given realization of the disorder, even for large M . These
frequencies and correlations were used as input in Eq. (41)
to obtain the inferred RMF fields and couplings h∗ and J∗.
Figure 4 shows that the quality of the inference is insensitive
to sampling if M is large enough, and there is almost no
difference between M = 103 and perfect sampling, although
cM might be singular, especially at large σJ (see discussion
below). We will thus concentrate on low sampling, which is
the most interesting case for biophysics applications. We also
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FIG. 4. Average Pearson correlation rJ [see Eq. (53) and its
discussion] between the true couplings and the couplings inferred
from RMF for various sampling M = 102–104, as well as in the
perfect sampling limit (“exact”). Inset: average Pearson correlation
rh between the true fields and the fields inferred from RMF, same
legend.

find that the couplings are typically of the correct order of
magnitude, though smaller than the true ones. That is, if aJ

is the slope of the linear regression of J∗ against the true
J , we typically have aJ � 1. We exemplify this in Fig. 5,
which shows the probability distribution of aJ obtained from
a hundred realizations of the disorder at σJ = 0.7. We observe
that the distribution is picked around 0.25, but has a long
tail. The study of the distribution of aJ , for RMF and other
inference methods, is an interesting one that we leave for future
work.

We now discuss our results for the inference compared
to other analytical methods, before showing that the RMF
inference is good enough to generate new data, which are
similar to the original data.

0 1 2 3 4 5 6 70

1

2

3

4

FIG. 5. Probability distribution of aJ obtained from a hundred
sampling of the disorder at σJ = 0.7.
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A. Comparison to other methods

To assess the validity of our approach, we have also
computed the inferred fields and couplings coming from other
inference methods, such as the first and second order of
the high-temperature expansion (NMF and TAP), the Bethe
approximation (BA), as well as the resummed small correlation
expansion of SM [41]. The corresponding expressions for the
coupling can be found, for example, in Ref. [38]. (The expres-
sion of fields for the resummed small correlation expansion
has not been published in the literature, and we have therefore
not inferred those.) Note that TAP and BA are based on the
linear response of the Gibbs free energy, and that for NMF we
have used the “ring” results of Sec. III, which we have shown
to be equivalent to the so-called NMF (plus linear response)
with diagonal matching. For simplicity on the following when
we refer to NMF we mean this procedure of using the
lowest order in the high-temperature expansion plus the linear
response method to estimate the couplings, plus the diagonal
matching method to correct the fields. Furthermore, all of these
approaches involve the inversion of the correlation matrix c.
However, in the strongly correlated regime, the data are very
polarized and many values of pairs of spins are never observed,
leading to either rank-deficient, or nearly singular, cM matrices,
due to imperfect sampling. One way to cure this problem is to
use a pseudocount α = 2/M [48], which is the solution shown
here. In the case of NMF, we have also used two different
regularizations (with parameter η = 1), a L2 regularization
[44,48] as well as the somewhat different regularization of
Ref. [47]. These have not changed the results qualitatively,
and are thus not shown. It was argued in Ref. [48] that large
values of pseudocounts or L2 regularizations should be used to
compensate for deficiencies of the mean-field approximation,
so that we also have used a constant regularization η = 0.2×M

for all M , without any notable change. Finally, we have also
tested the so-called Gaussian model [49] with regularization,
and found results very similar to those of the regularized
NMF+linear response+diagonal matching method, so that we
show only the latter for simplicity.

In the past few years, it has been understood that in the
presence of a magnetic field, standard inference approaches,
such as the high-temperature expansion and Bethe approx-
imation (BA), do not converge (i.e., give complex valued
fields and couplings) [38], and we have verified that this is
indeed the case here, even in the presence of regularization.
Indeed, it has been shown that even in the case of three spins
in a field, where the calculation can be done by hand and
thus with a perfect “sampling,” TAP and BA inference can be
ill-defined. In particular, we have found that both TAP and BA
inferences give meaningless results for the value of σh used in
the simulations, and we will therefore not show comparisons
with these methods.

On the other hand, NMF and SM with pseudocount always
allow us to infer couplings (and fields for NMF), although the
inference is much less reliable as the temperature decreases,
especially at low sampling M . On the other hand, our
RMF approximation gives limited errors even for imperfect
sampling; see an illustration of this in Fig. 6. Note also
that we did not use any regularization nor pseudocount to
perform the RMF inference. We could always converge the
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FIG. 6. Scatter plot of inferred (y axis) versus true couplings
(x axis), for one typical realization of J and h at σJ = 0.7, M = 100.
Black circles, RMF results; green empty squares, NMF; empty
diamonds, SM. Inset: inferred (y axis) versus true fields (x axis),
same legend (no fields for SM). Dashed lines are linear regressions
of the RMF results with slope 0.28 (1.65) for the couplings (fields).
Blue full lines have slope 1. Some NMF and SM points are out of the
graph range.

matrix D, which allows us to inverse D + cM, even when cM

is rank-deficient.
To quantify the quality of the inference of RMF, NMF, and

SM, we study two quantities, the relative error,

�h =
√∑

i(h
∗
i − hi)2∑
i h

2
i

, (52)

as well as Pearson correlations defined by

rh =
∑

i(hi − h)(h∗
i − h∗)√∑

i(hi − h)2
∑

j (h∗
j − h∗)2

, h = 1

N

∑
i

hi, (53)

with similar definition for the couplings. However, as shown in
Fig. 7, we find that �J for RMF typically saturates to one, as
the couplings tend to be of a amplitude than the real ones (since
�J = 1 if J∗ = 0). On the other hand, the the error for the
NMF and SM couplings are typically large compared to one in
the low-temperature regime, for σJ � 0.3. Figure 7 also shows
the NMF and SM inference without regularization (see dashed
lines). In that case, if cM was not invertible, we did not take
the corresponding realization into account. One clearly sees
that this unregularized inference is completely meaningless in
the low-temperature regime, and that the use of pseudocount
improves strongly the results.

Another way of quantifying the success of the inference is
to study the Pearson correlation, that quantifies the correlation
between the real and inferred couplings, irrespective of the
amplitude of the couplings and thus of the error. In particular,
one can have a very large error (because all inferred couplings
are such that |J ∗

ij | 	 |Jij |), but a very good Pearson rJ � 1
as the inferred couplings have the correct order or ratio
between each other. In fact, this is exactly what we observe
in Fig. 8, which shows that for all three methods, the Pearson
correlations are rather good for all σJ (although SM seems
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FIG. 7. Relative error for the fields �J and couplings �h for RMF
(black circles), regularized NMF+linear response+diagonal match-
ing (green squares), and regularized SM (red diamonds), averaged
over for a hundred realizations of J and h with M = 100. Dashed
lines correspond to NMF and SM inference without pseudocount (no
regularization or pseudocount is added to RMF). Inset: inferred fields,
same legend (SM fields not shown).

to break down for σJ � 0.5). Note that Pearson correlations
imply that the corresponding interaction graph, as well as the
biases distribution, is correct, even if the magnitude of the
couplings is not well estimated. The observation that NMF
(with pseudocount or regularization) gives rather good Pearson
correlations even in the low-temperature phase might explain
why this method (and its generalization) has been successful
to infer the interaction graph in real data.

However, one has to keep in mind that a good interaction
graphs (and biases distributions) are not sufficient to be able to
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FIG. 8. Average Pearson correlation rJ between the true cou-
plings and the couplings inferred from RMF (black circles), regu-
larized NMF+linear response+diagonal matching (green squared),
and regularized SM (red diamonds). Inset: Pearson correlations
rh between the true fields and the fields inferred from RMF and
regularized NMF+linear response+diagonal matching. The Pearson
correlations are averaged over 100 realizations of J and h.
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FIG. 9. Distribution function of the energy E( J , h) of 1000 spin
configurations sampled from the true distribution ( J , h) for the same
disorder realization as Fig. 6, {C} (red histogram), RMF inference
( J∗, h∗), with M = 100, {CRMF} (black). Inset: Error �E of the energy
obtained from the true and inferred couplings and fields, averaged
over the realizations of disorder; see text. Same legend as described
in the caption of Fig. 7.

generate new data, typical of the real probability distribution.
Indeed, the inferred probability of a given spin configuration
σ is given (up to a constant) by exp (−E(σ ; J∗,h∗)), where
the definition of the energy,

E(σ ; J∗,h∗) = −
∑

i

h∗
i σi −

∑
i<j

J ∗
ij σiσj , (54)

is such that the most probable configurations have the smallest
energy. Since the ratio of the probability of two configurations
is governed by the difference of the energy, an inference which
has a good interaction graph but a wrong order of magnitude
in the fields and couplings will not be able to generate typical
configurations (generically, only a few configurations will have
a small energy compared to all the other). This point can be
exemplified as follows. We have generated a thousand new
configurations {C} sampled from the original model (h,J), not
used for the inference of (h∗,J∗), and computed the energy
of each of these configurations σ with the true couplings
and fields E(σ ; J,h) and the inferred couplings and fields
E(σ ; J∗,h∗) for both RMF and NMF (not SM, since we do
not have an expression for the fields). The inset of Fig. 9 shows
the relative error of the energy,

�E =
√√√√∑

{C} (E(σ ; J∗,h∗) − E(σ ; J,h))2∑
{C} (E(σ ; J,h))2 , (55)

which shows the superiority of RMF over NMF. Thus, NMF
will be unable to generate meaningful new data, whereas RMF
should. Once more, �RMF

E saturates to one because the inferred
energy of a given configuration is typically small than that of
the true energy (because the couplings are typically smaller),
but as we will show now, this still allows us to generate new
data that are typical of the original probability distribution.
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B. Data generation from RMF inference

One of the main interests of the inference is the ability to
generate new configurations, which have high probabilities
(i.e., low energy) in the real model [58]. Using the RMF
couplings ( J∗, h∗), we have generated 1000 configurations
{CRMF} via Monte-Carlo sampling. To test whether these
configurations would have a high probability, one can compare
the energy of each configuration of {CRMF} in the original
model ( J , h) to the energy of typical configurations drawn
from the real model (see Ref. [45] for a similar procedure
for biological data). We find that the configurations {CRMF}
generically have low energy in the real model, i.e., they
are configurations that are typical of the original model.
Figure 9 shows an example of these energy distributions, for
the couplings inferred from the same realization of ( J , h) than
in Fig. 6.

Another way to judge whether the inferred couplings and
fields from the RMF approximation are meaningful is to
compare the frequencies and correlations obtained using the
true and inferred couplings and fields. To that purpose, we
have drawn 1000 configurations via Monte-Carlo sampling,
using the original couplings and fields ({C}) and the RMF
inferred ones ({CRMF}) (inference done with M = 100). We
have then obtained from these the corresponding frequencies f
and correlations c [we will denote by ( f ∗,c∗) those computed
using the inferred couplings (h∗,J∗)]. We show in Fig. 10 a
scatter plot of the ( f ∗,c∗) versus ( f ,c) for the same realization
of the disorder than in Fig. 6, which shows that the RMF
magnetization are really good. Concerning the correlations,
we see that RMF gives relatively smaller correlations than
the true one, which might be understood by the fact that the
couplings tend to also be too small. We have also computed the
corresponding Pearson correlations between ( f , c) obtained
from {C}, and ( f ∗, c∗) obtained from {CRMF}; see Fig. 11.
We see that the correlation is rather good even in the low-
temperature phase, and thus the RMF can be used to generate
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FIG. 10. Scatter plot of c∗ computed from RMF inference and c
computed from the original model, for one realization of the disorder
(same as described in the caption of Fig. 6) for σJ = 0.7. Full blue
line has slope 1. Black dashed line is the best linear regression, slope
� 0.25. Inset: scatter plot for the magnetizations. Slope of the black
dashed line � 1.25.
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FIG. 11. Pearson correlations rc between c computed form RMF
inference (with M = 100) and c computed from the original model,
average over 100 realizations of J and h. The inset shows the average
Pearson correlation for the frequencies rf .

configurations that indeed reproduce the properties of the real
data.

V. THE CASE OF POTTS VARIABLES

In this section we generalize our calculation to Potts vari-
ables, which is of great interest for biophysical applications.
We start by considering a Potts model with q possible states
for each unit, i.e., σia = δa ai

, where ai = 1 . . . q represents
the q possible states on site i. Switching from Potts to Ising
only requires us to change the expression for the independent
model entropy, and introducing additional summations over
Potts indices. If needed, the generalization to different number
of states per site (i.e., q → qi) is also straightforward and not
shown here.

The temperature-dependent partition function reads now

Z[h,J] =
∑

σ

exp

⎛
⎝∑

i,a

hiaσia +
∑

i<j,a,b

Jia,jbσiaσjb

⎞
⎠. (56)

Note that there is an ambiguity in the way of defining fields and
couplings and one has to fix a gauge to remove it. A simple
way to see this issue is to consider the one- and two-point
functions,

fia = 〈σia〉, and pia,jb = 〈σiaσjb〉, (57)

which have to satisfy a set of simple constraints,

q∑
a=1

fia = 1, and

{∑q

a=1 pia,jb = fjb,∑q

b=1 pia,jb = fia.
(58)

When trying to infer the fields and couplings we will find that
we have too many variables with respect to the set of equations
that fix their values. A simple way to fix this is to choose fields
and couplings such that

hiq = 0 ∀ i,

Jia,jq = Jiq,jb = Jiq,jq = 0 ∀ i < j, a, b. (59)
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Note that Jia,ib = 0 ∀i,a,b. Other choices are possible, and
the calculation can easily be repeated with different gauge,
only impacting the independent model Gibbs free energy. In
the following, all summations over Potts indices will thus run
from 1 to q − 1 unless specified otherwise. Finally, we will
often gather the N (N − 1)/2 × (q − 1) parameters Jia,jb in a
matrix J , in which the i = j elements are 0, the i < j,a,b

elements are Jia,jb, and the i > j,a,b elements are Jjb,ia .
The entropy of the independent model reads now

SIM[ f ] = −
∑

i

∑
a

fia ln fia

−
∑

i

(
1 −

∑
a

fia

)
ln

(
1 −

∑
a

fia

)
, (60)

and we will need, as in the Ising case, its matrix of second
derivatives,

(L−1)ia,jb = − δ2SIM

δfiaδfjb

= δij

1

fia

(
δab + 1

1 − ∑
b fib

)
, (61)

which is the inverse of the self-correlation matrix L given by

Lia,jb = δijfia(δab − fiafib). (62)

We also need the higher-order derivatives of SIM, which read

γ
(n)
i1a1,...,inan

= − δnSIM[ f ]

δfi1a1 . . . δfinan

. (63)

All steps of the derivation of the RMF approximation are now
the same, and we obtain

Gε[ f ,J] = SIM[ f ] +
∑

i<j,a,b

Jia,jbfiafjb

− ε

2
Tr[ln(L−1 − J) − ln L−1] + O(ε2), (64)

from which the equation for the RMF couplings is obtained,

J ∗
ia,jb = −(c + D)−1

ia,jb ∀ i < j, a, b. (65)

The D matrix is now defined by the N × (q − 1)2 coupled
equations:

(c + D)−1
ia,ib = L−1

ia,ib ∀ i, a, b, (66)

and the expression for the RMF fields is now

h∗
ia = ln

(
fia

1 − ∑
b fib

)
−

∑
j (�=i),b

J ∗
ia,jbfjb

+ ε

2

∑
b,c

Dib,icγ
(3)
ia,ib,ic. (67)

Finally, the expression for the entropy for Potts variables is

Sε[ f , p] = SIM[ f ] − ε

2
Tr(DL−1)

+ ε

2
Tr[ln (c + D) − ln L] + O(ε2). (68)

VI. EXPANSION TO SECOND ORDER IN ε

Before plunging into the next-order calculation, a remark is
in order. Although we want to illustrate, by pushing to the
next order, that our approximation scheme is systematic, we

might expect little improvement for realistic data. Indeed,
higher-order terms involve a large number of summations
over Potts and site indices, leading to a greater numerical
sensitivity to sampling noise and to a larger complexity of the
calculation. On the other hand, the entropy functional will be
better approximated using this second-order approximation,
but this improvement will most probably be impaired by
sampling noise. The question of quantifying the interplay
between these two effects is of interest, but we leave it for
future work.

In order to go to the next order, we define the propagator
G(β) as

Gia,jb(β) = (L−1 − β J)−1
ia,jb − Lia,jb. (69)

The expansion in powers of ε of the correlation function is
shown in Eq. (30) and using it in the equivalent of Eq. (25) for
Potts variables leads to the equation for G(2),

G(2) = 1

2

∫ 1

0
dβ

∑
ia,jb

Jia,jb

[
χ (0) δ

2G(1)

δ f δ f
χ (0)

]
ia,jb

. (70)

We need to compute the derivative of G(1). For compactness,
we gather pairs of indices like i,a or j,b in greek letters α,γ .
We find

δ2G(1)[ f ,β J]

δfαδfγ

= −1

2

∑
μ,ν

γ (4)
α,γ,μ,νGμν(β) + 1

2

∑
μ,ν,δ,ω

γ (3)
α,μ,ν

× [Gμδ(β)Gνω(β) + 2LμδGνω(β)]γ (3)
δ,ω,γ ,

(71)

which shows that the dependance on β in this expression is only
through G(β). Additionally, we remark that for any functional
F [G(β)] we have

∂βF [G(β)] =
∑
α,γ

δF

δGαγ

∂βGαγ (β)

=
∑

α,γ,μ,ν

Jαγ χ (0)
αμ

δF

δGμν

χ (0)
νγ . (72)

Coming back to Eq. (70), we see that we only have to integrate
the second derivative of G(1) with respect to G(β) in order to
put the right-hand side in the form of a total derivative with
respect to β. Defining the functional

F (2)[G] = −1

4

∑
α,γ,μ,ν

Gαγ γ (4)
α,γ,μ,νGμν

+ 1

6

∑
α,γ,δ,λ,μ,ν

γ
(3)
α,γ,δGαμGγνGδλγ

(3)
μ,ν,λ

+ 1

2

∑
α,γ,δ,λ,μ,ν

γ
(3)
α,γ,δGαμGγνLδλγ

(3)
μ,ν,λ, (73)

we have

δF (2)[G]

δGia,jb

= δ2G(1)

δfiaδfjb

, (74)
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FIG. 12. Diagrammatic representation of the second-order cor-
rection to the Gibbs potential. Gray blobs with n dots represent γ (n)

vertices. Black dots represent summations over the indices, full lines
represent G(β), and dotted lines represent L.

so that the equation for G(2) is now easily integrated with
respect to β to give

G(2)[ f ,J] = 1
2F (2)[G(1)]. (75)

This expression can be represented diagrammatically as shown
in Fig. 12. In the case of Ising variables, the final expressions
largely simplify due to the locality of the vertices γ (n) and the
overall absence of Potts indices, and in that case we have been
able to push the expansion to the third order in ε. However, the
number of diagrams involved rapidly increases beyond that
point. Another issue, already discussed above, is that high-
order terms in the expansion involve several matrix products
of correlation functions, which might render the numerical
scheme very sensitive to sampling noise, which is the reason
why we have only shown in this paper numerical tests of the
lowest order.

We can now deduce the second-order contribution to the
optimal couplings. We set

J ∗
ia,jb = J

(1)
ia,jb + εJ

(2)
ia,jb + O(ε2), (76)

and insert this expansion in the optimization equation obtained
through the differentiation of G(2) with respect to J :

cia,jb = (L−1 − J∗)−1
ia,jb + ε

2

δF (2)

δJia,jb

+ O(ε2). (77)

Inverting Eqs. (76) and (77) order by order in ε, we find

J (2)
ia,jb = 1

2

∑
μ,ν

γ
(4)
ia,jb,μ,ν(c + D − L)μν − 1

2

∑
μ,ν,δ,ω

γ
(3)
ia,μ,ν

× [(c + D)μδ(c + D)νω − Lμδ Lνω]γ (3)
δ,ω,jb

− [(c + D)−1 D(2)(c + D)−1]ia,jb, (78)

where D(2) is a block diagonal matrix (playing the role of D
to the next order in ε),

D
(2)
ia,ib = −

∑
j,c,d

A−1
iab,jcdH

(2)
jc,jd ,

Aiab,jcd = (c + D)−1
ia,jc(c + D)−1

ib,jd ,

H
(2)
ia,ib = −1

2

∑
c,d

γ
(4)
ia,ib,ic,idDic,id + 1

2

∑
c,d,e,f

γ
(3)
ia,ic,id

× [Dic,idDie,if + 2Lic,idDie,if ]γ (3)
ib,ie,if . (79)

Using this result, one can deduce the expression of the inferred
fields and the entropy in the spirit of what was done at the
lowest order.

VII. CONCLUSION

We have introduced the resummed mean-field approxima-
tion for the inference problem in the context of Ising and
Potts variables, which is based on an exact equation for the
Gibbs free energy. At the lowest nontrivial order, we obtained
a simple analytical expression for the couplings and the fields
as functions of the correlations and frequencies. The main
difference compared to other approaches is that it does not rely
on inversions of the correlation matrix c, thanks to the matrix
D, which is fixed by the dataset itself, implying that RMF
works even when c is rank deficient, as often happens in real
data. The RMF approximation we have obtained corresponds
to a resummation of an infinite number of terms of the small
correlation expansion, and we have shown that it can be
pursued in a principled and systematic way.

We have tested the method on the SK model and shown
that it works well even in the strongly coupled regime, in
particular in the presence of a magnetic field, where other
methods break down. The inferred couplings and fields are
well correlated with the real ones, and of the correct order
of magnitude, although the couplings tend to be smaller than
expected. A striking result is that we do not need to include
a pseudocount or a regularization even for small sampling,
or when the correlation matrix cM is not invertible, which
is a clear improvement upon other mean-field methods. In
particular, the matrix D depends only on the data, and prevents
the need of optimizing over additional parameters such as a
pseudocount. This feature is crucial for practical applications,
and we expect this, together with the fact that the inference
is reliable even for large couplings, to pave the way for
systematic applications to very large datasets and/or datasets
with units assuming a large number of possible states. We
have also demonstrated that the inference performed by our
method is consistent with the original model at the level of the
probabilities of single configurations, a feature that could have
important implications in bioinformatics [58,59]. Our method,
while being analytic, and hence very fast, outperforms the
competing analytical schemes, even when they are regularized.
If necessary our method can also be regularized by adding an
L1 or L2 prior on J . For the L2 case, Eq. (22) can, for example,
be modified to take into account the ε parameter by defining
the regularized entropy,

Sε,reg[ f , p] = inf
J

(
Gε[ f ,J] − (1 − ε)

∑
i<j Jijfifj

−ε
∑

ij Jijpij − εη

M

∑
i<j J 2

ij

)
, (80)

which leads to the equation for the couplings,

cij = (L−1 − J∗)−1
ij + η

M
J ∗

ij ∀i < j. (81)

If one assumes that η is of order 1, this can be expanded around
the η/M = 0 case if M is large enough. For the standard
Gaussian and NMF methods, it was found that the optimal L2

regularization is not of order 1 but of order M , which indeed
compensates for the deficiencies of these methods. In our case,
since the unregularized inference is already well-behaved, we
expect that the optimal regularization will be O(1). We leave
this issue for future work.

The transition from liquid to spin glass, that comes about
(in the direct problem, where J is fixed) when the couplings
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becomes of order one could be thought to be a limit to mean-
field inference, due to the apparition of multiple minima in
G, that prevent correct thermalization of observables like σiσj

[60]. Although the presence of an underlying phase transition
(in the thermodynamic limit) could seem to be a hindrance to
the success of the inference, it has been argued in Ref. [44]
that this should not be a limitation. The intuitive argument is
that since the inverse problem is characterized by the inverse
susceptibility (i.e., how fields and couplings are affected by
a change in magnetizations and correlations), the inference
should not be hindered by a divergence of the susceptibility
due to the phase transition, since the inverse susceptibility
will stay well-behaved. Of course, probing deep inside a
low-temperature phase will lead to data that are very polarized,
resulting in bad statistical estimation of correlations, but this
problem also affects data that have very small correlations
and is not tantamount of an underlying thermodynamic
phase transition. Indeed, numerical methods like the ACE or
pseudolikelihood are not particularly affected by transitions
toward low-temperature phases [22,43]. However, the only
analytical method prior to our work that focuses on the
entropy S instead of G while extending NMF, namely the
small correlation expansion of SM, was found to also hit
the spin-glass limit, and was also shown to be extremely
sensible to sampling noise [41]. Our method solves this
apparent contradiction and provides an analytical scheme that
is unaffected by the phase transition, without having to resort
to gradient descent to evaluate the couplings, as in the ACE or
PLM methods.

In retrospect, we can understand why resumming closed
ring diagrams is important in the finite sampling case by
introducing sampling noise in the computation. Since the
connected correlation function is the empirical covariance of a
vector of N (nonindependent) variables σ1, . . . ,σN , the finite
sampling effects can be taken into account by considering that
� is sampled from the ensemble of Wishart matrices [61,62].
If we consider instead, in a schematic way, that the empirical
�M matrix is the sum of the perfect sampling result � and of
a matrix of uncorrelated Gaussian elements, with variance α,
we see that the closed loop diagrams that are resummed by our
RMF approximation pick O(αN ) contributions to the entropy,
and should thus not be neglected in the presence of sampling
noise. A more careful analysis of these finite sampling effects
will be discussed elsewhere.

An important question for applications to realistic data is
that of scalability. Although we have tested our method on the
SK model with a small number of spins, it can be used for
much larger numbers of units. In order to demonstrate the
ability of our method to go beyond toy models, we show
in Fig. 13 the inferred couplings obtained with the RMF
method when analyzing neuronal data of the retina of a rat,
taken from Ref. [63]. The RMF couplings are compared to
the couplings obtained through Boltzmann machine learning
(computed with the method of Ref. [19]), which provides the
exact solution to the inference problem (the magnetizations
and correlations are perfectly reproduced by the model inferred
through this method). We see that the agreement between
the RMF couplings and the Boltzmann machine learning
couplings is very good. In that case the number of neurons was
N = 95 and the number of configurations M = 485 998. The
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FIG. 13. Couplings inferred from the RMF approximation, com-
pared to the exact solution to the inference problem, obtained
with the data-driven Boltzmann machine learning algorithm (DD-
BML) introduced in Ref. [19]. The Pearson correlation between the
couplings of the two inferences is 0.90. The dataset is composed of 95
neurons [63]. Inset: comparison of the inferred fields, with Pearson
correlation 0.97. Full dark lines have slope 1.

RMF algorithm has converged in a split second on a personal
desktop computer. This very large number of samples ensures
that the data-driven Boltzmann machine learning algorithm
(DD-BML in the figure) of Ref. [19] solves the inference
problem exactly, providing a ground truth for comparison.
Such large sampling is, of course, not mandatory for our
method to converge.

Finally, we also have inferred RMF couplings from a
notMNIST dataset composed of M = 5000 images from
which N = 784 pixels were extracted. The inference also took
around a second on a personal computer. No ground truth is
known in that case, so we leave the analysis of these results
for future work, but this demonstrates that the method scales
favorably with the number of interacting units in the data.

Our method presented here can be easily generalized to
other kinds of variables, e.g., continuous variables, along
the lines of Ref. [52], or to restricted Boltzmann machines
following Ref. [29]. The main requirement for the method to be
valid is that there exist a well-defined independent model Gibbs
functional GIM. One could also imagine dealing with quantum
variables in the context of quantum inference, following the
calculation of Ref. [64].
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APPENDIX A: ALTERNATIVE DERIVATION OF RMF

The expansion in ε is equivalent to the so-called “loop
expansion” used in field theory, usually interpreted as a saddle
point plus fluctuations expansion of a given functional integral
[55]. We give for completeness this alternative derivation of
our results, connecting it with other works [57,65], while
helping the reader to get more intuition about the role of the
parameter ε that is used to organize the expansion around
NMF. Starting from the Ising partition function we perform a
Hubbard-Stratonovich transformation, which leads to

Z[h,J] = 1√
det J

∫
Dφ e−S[φ;h,J],

S[φ; h,J] = 1

2

∑
i,j

φi( J)−1
ij φj −

∑
i

ln 2 cosh (hi + φi).

(A1)

Cases where J is not definite positive can be dealt with by
a suitable shift on its diagonal; see, for instance, Ref. [52].
Starting from this representation, one could once more perform
a small-coupling expansion as done in Ref. [57], and recover
the results of Ref. [27].

Instead, one can also perform a saddle point approximation,
plus fluctuations. To do so, one introduces a small parameter
ε, such that the saddle point becomes exact in the limit ε → 0,

Zε[h,J] = 1√
det J

∫
Dφ exp

(
−1

ε
S[φ; h,J]

)
. (A2)

One can then perform the first Legendre transform of ln Zε

with respect to the fields h,

Gε[ f ,J] = inf
h

(
ε ln Zε[h,J] −

N∑
i=1

hifi

)
. (A3)

Expanding Gε in powers of ε leads to Eq. (33), while
performing the second Legendre transform with respect to
J afterwards leads to the RMF. This gives an interpretation of
our expansion in terms of the saddle-point evaluation of a path
integral representation of the Ising model.

This type of path integral representation is well-known
and was already used in the direct problem, for example, in
Ref. [57] and in the inverse problem, for example, in Ref. [65],
albeit with a particular choice of form for the J matrix.

The approach we have used in the main text has been shown
(albeit for a more standard φ4 theory) to be equivalent to
the loop expansion [56]. However, it has several advantages.
First, it allows one to work directly with the microscopic
degrees of freedom, which makes it very easy to generalize
to other kind of variables, while avoiding the presence of the
complicated ln cosh(φ + h) potential. Furthermore, the exact
equation directly involves G, which implies that only one
Legendre transform (with respect to J) has to be performed,
which greatly simplifies the calculation if one wants to push
the expansion to higher order in ε.

APPENDIX B: HIGH-TEMPERATURE EXPANSION
FROM WETTERICH EQUATION

In this Appendix, we show how to recover the high-
temperature (small β) expansion of the Gibbs free energy
G[ f ,β J] of the Ising model, developed by Plefka to order
β2 [26], and obtained up to order β4 by Georges and Yedidia
(GY) [27]. One can then obtain the small correlation expansion
(i.e., the expansion of S[ f , p] for small c̃) at a given order in c̃
by performing explicitly the Legendre transform of G[ f ,β J]
at the same order in β.

We start with the Wetterich equation, Eq. (25), and expand
both G[ f ,β J] and χ in β,

G[ f ,β J] = SIM + βG1 + β2G2 + β3G3 + β4G4 + O(β5),

χ = L + βL
δ2G1

δ f δ f
L

+β2

(
L

δ2G2

δ f δ f
L + L

δ2G1

δ f δ f
L

δ2G1

δ f δ f
L
)

+β3

(
L

δ2G3

δ f δ f
L + L

δ2G2

δ f δ f
L

δ2G1

δ f δ f
L

+ L
δ2G1

δ f δ f
L

δ2G2

δ f δ f
L + L

δ2G1

δ f δ f
L

δ2G1

δ f δ f

× L
δ2G1

δ f δ f
L
)

+ O(β4), (B1)

where Lij = δij (1 − f 2
i ) = δijLi . Using this expansion and

Eq. (25) gives the hierarchy of equations (using the fact that L
is diagonal and J is zero on the diagonal),

G1 =
∑
i<j

Jijfifj ,

G2 = 1

4
Tr

(
L J L

δ2G1

δ f δ f

)
,

G3 = 1

6
Tr

(
L J L

δ2G2

δ f δ f
+ L J L

δ2G1

δ f δ f
L

δ2G1

δ f δ f

)
,

G4 = 1

8
Tr

(
L J L

δ2G3

δ f δ f
+ L J L

δ2G2

δ f δ f
L

δ2G1

δ f δ f

+ L J L
δ2G1

δ f δ f
L

δ2G2

δ f δ f

+ L J L
δ2G1

δ f δ f
L

δ2G1

δ f δ f
L

δ2G1

δ f δ f

)
,

.... (B2)

From G1 = ∑
i<j Jijfifj , we find

δ2G1

δ f δ f
= J, (B3)

implying

G2 = 1

4

∑
i �=j

LiJ
2
ijLj . (B4)
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Continuing in the same vein, we obtain

G3 = 1

3

∑
i �=j

miLiJ
3
ijLjmj + 1

6

∑
i �=j �=k

LiJijLjJjkLkJki,

G4 = 1

12

∑
i �=j

(
1 − 3m2

i

)
LiJ

4
ijLj

(
1 − 3m2

j

)

+
∑

i �=j �=k

miLiJ
2
ijLjmjJikLkJkj

− 1

4

∑
i �=j �=k

LjJ
2
ijL

2
i J

2
ikLk

+ 1

8

∑
i,j,k,l

i �= j,j �= k

k �= l,l �= i

LiJijLjJjkLkJklLlJli . (B5)

These results are in perfect agreement with that of GY (up
to a global sign from the definition of G), once rewritten in
terms of n-uplets of different spins. Note, however, that our
derivation is quite different from that of GY, which is based
on the explicit evaluation of high-order correlations of the
independent model such as 〈σiσjσkσl . . . 〉, up to eight spins
for the order β4, which can be cumbersome to evaluate since
one has to take into account if the spins are on the same sites
or not. On the other hand, our derivation is straightforward
and can be easily pushed to higher order, and is generalizable
to Potts variables. We have also checked explicitly that our
ε expansion to order ε3 allows to recover the β expansion to
order β4 exactly.

The case of Potts variables can be treated along the same
lines. However, the presence of the color indices complicates
a lot the summations and it is best to stick to a diagrammatic
representation. To have compact results we define rescaled
versions of the coupling matrix and of the vertices γ (n),

J̃ = L1/2 J L1/2,

V
(n)
ia1,...,ian

=
∑

j,b1,...,bn

γ
(n)
jb1,...,ibn

(L1/2)jb1,ia1 · · · (L1/2)jbn,ian
.

(B6)

We find the high temperature expansion of G at order four to
be given by Fig. 14.

To perform the small correlation expansion using the
auxiliary parameter β, one sets the second Legendre transform
with a modified expression,

S[ f ,c̃] = inf
J

⎛
⎝G[ f ,β J] −

∑
i<j

Jij [fifj + βc̃ij ]

⎞
⎠. (B7)

The equation setting the optimal couplings, which we show
only at second order in β since we do not need more to obtain
the O(β4) expression for the entropy, is

J̃ ∗
ia,jb = ia,jb − β

∑
α,γ,μ,ν

V
(3)
ia,αγ αμγνV

(3)
μν,jb + O(β2), (B8)

where � is the rescaled (off-diagonal) correlation defined in
Eq. (46). A diagrammatic representation of this is shown in
Fig. 15.

FIG. 14. High-temperature expansion of Gβ at order β4. A black
dot represents a summation over one pair of indices (site index and
color index), a black line is a J̃ matrix as defined in Eq. (B6), and a
crossed vertex with n attached dots represents a V (n) vertex as defined
in Eq. (B6).

Plugging this result into the definition ofS, we obtain easily
its small correlation expansion at order four, which we show
only in a diagrammatic representation in Fig. 16.

APPENDIX C: NUMERICAL RESOLUTION
OF THE MATRIX D

Here we present the numerical scheme we have used to
compute the matrix D in Eq. (37) of the main text. We rewrite
this equation by multiplying it by L1/2 to the left and to the
right to obtain

1 = (1 + D̃ + �)−1
ii ∀ i, (C1)

where D̃ and � were defined in Sec. III. We then define the
matrix X ,

X = (1 + D̃)−1, (C2)

which obviously inherits the diagonal form of D̃, i.e., Xij =
Xiδij . We factorize X in Eq. (C1) and obtain

[(1 + X�)−1 X]ii = 1 ∀i. (C3)

In a high-temperature expansion, the lowest order reads � = 0
and we would find X = 1. We isolate this lowest-order result
by rewriting the above equation as

Xi = 1 − Fi[X],

Fi[X] = [(1 + X�)−1
ii − 1]Xi. (C4)

We solve this equation iteratively by the following procedure

X
(0)
i = 1,

X
(n+1)
i = α(1 − Fi[X (n)]) + (1 − α)X(n)

i , (C5)

FIG. 15. Diagrammatic representation of the small correlation
expansion of J̃∗. A black dot represents a summation over one pair
of indices (site index and color index), a black line is a � matrix
as defined in Eq. (46), and a crossed vertex with n attached dots
represents a V (n) vertex as defined in Eq. (B6).
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FIG. 16. Diagrammatic representation of the small correlation
expansion of Sβ . Same conventions as in Fig. 15. The first three
diagrams are the first terms of the infinite series of ring diagrams,
which give S ring after resummation.

where α is a damping parameter set to values ranging from 0.1
to 0.01, for example, that ensures smooth convergence. This
is iterated until a tolerance of 10−10 on the variations of X
is reached, and the resulting X∞ is injected into Eq. (C1)
to check the convergence. We have forcefully started the
iterations from the small-correlations solution, which we know
is physically plausible, and the mixing parameter α ensures
that the procedure always stays close to a physically plausible
solution, avoiding spurious instabilities. We find that the
tolerance we have set on X is such that the final equation
for the Di is satisfied for each i with an error smaller than
10−8. Note that in the low-temperature phase the presence of
α is important, although its precise value is irrelevant, as long
as it is small enough.

If c is not invertible, as it might happen in the low-
temperature phase or if the sampling is not good enough, then
the initial condition X (0) = 1 will not work, as 1 + � is not
invertible in the first step of the iterative scheme. One should
then start from another initial condition, and we have chosen
X (0) = L in our numerics. With this initial condition, we could
always converge a matrix D, even when c is rank-deficient.

APPENDIX D: HIGH-TEMPERATURE EXPANSION
FROM THE ε EXPANSION

We show in this Appendix that the approximation to
order εn of the Gibbs free energy Gε[ f ,J] contains the
n + 1th order of the high-temperature expansion, in the case
of Ising variables. The generalization to Potts variables is
straightforward. In order to simplify the counting in couplings,
we multiply J by a factor β, and study the small β expansion.

We have already seen in Eq. (15) that the approximation
to order ε is correct to O(β2). Then we have to consider the
higher-order diagrams (see, for example, Fig. 12). The vertices
are independent of the temperature, and the temperature
dependence is solely contained in the propagator:

G(β) = (L−1 − β J)−1 − L = βL J L + O(β2). (D1)

Using this, we now prove that at each order n of the ε

expansion, the corresponding diagrams are at least O(βn+1),
which will show that the orders larger than n cannot contribute
to the order n + 1 of the high-temperature expansion. Since
our expansion is formally exact (assuming it converges), this
will prove directly the result by induction.

Let us assume that we have completed the calculation of Gε

to order εn, and that the contribution of order εn is at least of
order O(βn+1), which is true at order n = 1. To compute the
order n + 1, we need χ to order εn, χ (n), since it is multiplied
by ε in Eq. (26). Schematically,

χ (n) = χ (0)
∑
{s}

As

∏
m�1

(
δ2G(m)

δfiδfj

)sm

χ (0), (D2)

where the sum is over all possible {s} = {s1,s2, . . .}, such that∑
m msm = n, and As is some numerical coefficient. One can

show that δ2G(m)

δ f δ f = O(βm+1). Indeed, since G(m) = O(βm+1),
to lowest order in β we can write it as

G(m) = βm+1Fm( J,f), (D3)

where Fm( J,f) is a function of order m + 1 in the elements of
J . Differentiating it twice with respect to f will not change the
power of β. We thus see that

∏
m�1( δ2G(m)

δ f δ f )sm = O(βn+∑
m sm ),

which is at least of order O(βn+1). An example of such a term
is a generalization of the second diagram of Fig. 12 when the
derivatives with respect to the magnetizations (to obtain δ2G

δ f δ f )
acts on the two different vertices,

δ2G(n)

δfiδfj

� γ
(n+2)
i Gn+1

ij γ
(n+2)
j , (D4)

which is of order O(βn+1). Then, performing the integration
Eq. (26) corresponds to close such terms by adding an
additional G (see also discussion in Sec. V), since

∂β G = χ (0) Jχ (0), (D5)

and thus increasing its order in β by at least one, e.g.,

G(n+1) �
∑
ij

γ
(n+2)
i Gn+2

ij γ
(n+2)
j , (D6)

which is indeed of order O(βn+2).
This completes our proof.

APPENDIX E: RESUMMATION OF TWO-SPIN
DIAGRAMS IN THE RMF APPROXIMATION

We demonstrate now how one can resum two-spin diagrams
of the entropy for a Potts model (this calculation can also be
found in Ref. [66]). This will illustrate the ACE procedure
described in the introduction, and also allow us to have a
starting point to the inclusion of the two-spin diagrams in our
RMF calculation.

One starts from a system of two Potts variables, σ i and σ j ,
with q states, the partition function of which is thus

Z
(2)
ij [h,H,J] =

q∑
a=1

q∑
b=1

exp (ha + Hb + βJab), (E1)

where h = (h1, . . . ,hq) are the fields acting on the first
variable, H = (H1, . . . ,Hq) the fields acting on the second
one, and J = (J12, . . . ,J(q−1)q ) are the couplings acting on
the pair of variables. We fix the Potts gauge by setting
hq = Hq = Jaq = Jqb = 0 for all a,b = 1 . . . q − 1, which
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leads to

Z
(2)
ij [h,H,J] = 1 +

q−1∑
a=1

eha +
q−1∑
b=1

eHb +
q−1∑
a=1

q−1∑
b=1

eha eβJab eHb ,

(E2)

so that unless specified otherwise the summations over color
indices will now run from 1 to q − 1 only. We define reduced
variables

xa = eha , yb = eHb , χab = eβJab , (E3)

and perform the Legendre transform with respect to h, H ,
and J simultaneously. We call f , F, and p the conjugated
variables, and the optimization equations are found to be

fa = x∗
a

(
1 + ∑

b χ∗
aby

∗
b

)
Z

(2)
ij [h∗,H∗,J∗]

, Fb = y∗
b

(
1 + ∑

a x∗
aχ∗

ab

)
Z

(2)
ij [h∗,H∗,J∗]

,

pab = x∗
aχ∗

aby
∗
b

Z
(2)
ij [h∗,H∗,J∗]

. (E4)

We easily find the value of the partition function by tracing
over the color variables and combining the resulting equations,

Z
(2)
ij [h∗,H∗,J∗] = 1

1 + ∑
ab pab − ∑

a fa − ∑
b Fb

, (E5)

which we abbreviate by Z∗ in the following. Replacing in the
optimization equations leads to the solution for the optimal
fields and couplings

x∗
a = Z∗

(
fa −

∑
b

pab

)
, y∗

b = Z∗
(

Fb −
∑

a

pab

)
,

χ∗
ab = pab

Z∗(fa − ∑
b βpab)(Fb − ∑

a βpab)
. (E6)

And the entropy is obtained through

S (2)
ij = ln Z∗ −

∑
a

fa ln x∗
a −

∑
b

Fb ln y∗
b −

∑
a,b

pab ln χ∗
ab.

(E7)
This depends only, because of our gauge choice, on the colors
1 . . . q − 1. The best way to obtain a compact and symmetric
result is to define the objects

fq = 1 −
∑

a

fa, Fq = 1 −
∑

b

Fb,

paq = fa −
∑

b

βpab, pqb = Fb −
∑

a

βpab,

pqq = 1 +
∑
a,b

pab −
∑

a

fa −
∑

b

Fb. (E8)

In a functional sense, they must be understood as functions of
the free variables f ,F, and p, but when considering the data,
these relations only express the conservation: the first variable
can only assume one color, leading to

∑q

a=1 fa = 1, and
similar relations. Replacing these formulas in the expression
of the entropy directly leads to the result (after replacing pab

by pia,jb, fa by fia , and Fb by fjb):

S (2)
ij = −

q∑
a=1

q∑
b=1

pia,jb ln(pia,jb). (E9)

As stated in the introduction, this result also incorporates
the contributions coming from the two variables considered
independently, so that the contribution coming solely from the
interactions between the two variables (often call the excess
entropy) is given by

�S (2)
ij = −

q∑
a=1

q∑
b=1

pia,jb ln

(
pia,jb

fiafjb

)
. (E10)

The total entropy for a system of N Potts variables is given by
the independent model entropy SIM, plus the summation over
all pairs of variables of the excess entropy of the pair, �S (2)

ij .
We find the result,

S2spin[ f , p] = SIM[ f ] −
∑
i<j

q∑
a,b=1

pia,jb ln

(
pia,jb

fiafjb

)
. (E11)

The excess entropy coincides with the well-known mutual
information, which was used, for example, in the bioinformat-
ics community before the introduction of direct correlation
methods, such as the one we developed in this paper, or such as
DCA. The optimal couplings are found by taking a derivative
with respect to pia,jb with i < j and a and b in {1, . . . ,q − 1},
taking care that the variables depending on the qth color are
in fact functions of the others through Eq. (E8). The result is
(still for i < j and a,b � q − 1)

J
2spin
ia,jb = ln

(
pia,jbpiq,jq

pia,jqpiq,jb

)
. (E12)

Equations (E11) and (E12) solve the inference problem,
within the approximation that all pairs of variables interact
independently from the others. To compare with the diagrams
of the small correlation expansion, one has to make the
replacement pia,jb → fiafjb + Lia,jb + c̃ia,jb and expand in
powers of c̃.

In order to combine this resummation with our RMF
approximation, we need to identify the two-spin diagrams in
the expression of the RMF entropy in Eq. (68) and substract
them before adding the entropy of the two-spin model in
Eq. (E11), in order to avoid double counting. In other words,
we will have the expression

SRMF+2spin = SRMF +
∑
i<j

�Sij − Sdc, (E13)

where Sdc is the sum of all two-spin diagrams contained in
SRMF. To compute the diagrams in Sdc, we use the same
method than for the two-spin resummation, and consider a
system of two variables i and j only, with i �= j . The matrices
involved in the calculations will be of size 2(q − 1) × 2(q − 1)
with a structure of four (q − 1) × (q − 1) blocks. We define

042118-18



RESUMMED MEAN-FIELD INFERENCE FOR STRONGLY . . . PHYSICAL REVIEW E 94, 042118 (2016)

the blocks of the L, D, and � matrices to be

L =
(

Li 0
0 Lj

)
, D =

(
Di 0
0 Dj

)
,

� =
(

0 �ij
t�ij 0

)
, (E14)

and a similar definition for the rescaled D̃ matrix defined in
Eq. (47), with D̃i and D̃j blocks. This allows to solve the
equation defining the D matrix in Eq. (66) in terms of Di and
Dj . To do so we first remark that we have in our two-spin case,

(1 + D̃)−1� =
(

0 A
B 0

)
, (E15)

where

A = (1 + D̃i)
−1�ij , B = (1 + D̃j )−1t�ij . (E16)

The equation defining the D matrix involves (1 + D̃ + �)
−1

,
which is expanded formally as

(1 + D̃ + �)−1 = [1 + (1 + D̃)−1�]−1(1 + D̃)−1

=
+∞∑
k=0

(−1)k
(

0 A
B 0

)k

(1 + D̃)−1. (E17)

We see that the odd terms in this summation will be zero on the
diagonal blocks, so that they do not contribute to the equation
defining D. We are left with the even powers, which give after
resummation,

(1 + D̃ + �)−1
ia,ib = [(1 − AB)−1(1 + D̃i)

−1]ab,

(1 + D̃ + �)−1
ja,jb = [(1 − B A)−1(1 + D̃j )−1]ab. (E18)

The definition of D in Eq. (66) gives thus,

(1 + D̃i)
−1 = 1 − AB,

(1 + D̃j )−1 = 1 − B A. (E19)

These equations are solved after algebraic manipulations by

D̃i = 1
2 [(1 + 4�ij

t�ij )1/2 − 1],

D̃j = 1
2 [(1 + 4t�ij�ij )1/2 − 1]. (E20)

Note that the matrix square root is always well-defined since
1 + 4�ij

t�ij is symmetric positive definite. We calculate now

the different terms in the expression of the entropy. The trace
log term can be rewritten as

1
2 Tr[ln (c + D) − ln L]

= 1
2 Tr ln(1 + D̃ + �)

= 1
2 Tr ln(1 + D̃) + 1

2 Tr ln(1 + (1 + D̃)−1�). (E21)

Expanding the logarithm in Eq. (E21), we see again that the
odd powers of the matrix defined in Eq. (E15) will be zero on
the diagonal blocks, so that they do not contribute to the trace.
We are left with the even powers, which give after resummation
and using the cyclicity of the trace,

1
2 Tr ln[1 + (1 + D̃)−1�] = 1

2 Tr ln(1 − AB). (E22)

The other trace log term is easily simplified in

1
2 Tr ln(1 + D̃) = Tr ln(1 + D̃i). (E23)

Equation (E19) allows us to simplify the expressions, so that
we have finally the double counting entropy:

Sdc = 1

2

∑
i<j

Tr ln

(
1 + [1 + 4�ij

t�ij ]1/2

2

)

− 1

2

∑
i<j

Tr([1 + 4�ij
t�ij ]1/2 − 1). (E24)

Since this expression cancels when � is set to zero, we see
that this entropy does not overcount diagrams coming from the
independent model entropy. The optimization of the functional
SRMF+2spin, given in Eq. (E13), over p will lead to the equation
for the inferred couplings.

Note that when the D matrix is neglected and S ring is
considered instead of SRMF, the double-counting entropy of
ring diagrams is different and we find instead,

Sdc(ring) = 1

2

∑
i<j

Tr ln(1 − �ij
t�ij ). (E25)

This procedure of resummation of k-spin diagrams can be
pursued at least for k = 3 in the zero-magnetization case in
the Ising case [41].
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