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Blockage-induced condensation controlled by a local reaction
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We consider the setup of stationary zero range models and discuss the onset of condensation induced by a
local blockage on the lattice. We show that the introduction of a local feedback on the hopping rates allows us
to control the particle fraction in the condensed phase. This phenomenon results in a current versus blockage
parameter curve characterized by two nonanalyticity points.
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The effect of local perturbations of stationary states is a
fascinating problem in statistical mechanics. At equilibrium,
away from phase transitions, local perturbations typically
induce local effects, whereas in nonequilibrium stationary
states even global effects can be observed, for instance, on
the stationary currents.

This phenomenon is well known for the totally asymmetric
zero range process (ZRP) on the torus with time-independent
and homogeneous rates [1,2], where the local perturbation
(hereafter called blockage) is the reduction of the rate at which
a single defect site of the one-dimensional lattice is updated.
If the blockage perturbation is small, then no effect persists in
the large volume limit, computed by keeping constant the ratio
between the number of particles and the volume of the lattice,
and the macroscopic stationary current is unaffected. Instead,
when the perturbation becomes larger, the current decreases
as a result of the condensation of particles at the defect site. In
particular, the current is found to depend nonanalytically on
the strength of the blockage perturbation.

Condensation phenomena in zero range models have
been thoroughly investigated in the recent literature (cf.,
e.g., Ref. [3], where a detailed analysis of the literature is
provided). The effect of the blockage, on the other hand,
has also been widely studied in the framework of the totally
asymmetric simple exclusion process [4-6] and in its parallel
counterpart [7]. These cases are particularly relevant since
the behavior of the current cannot be explained in terms of
the condensation, due to the imposed exclusion constraint.
The main issue tackled there was, indeed, to understand
whether the decrease of the current takes place as soon as
the rate on the defect site is modified or, alternatively, only
when a certain critical value of the strength of the blockage
perturbation is reached. Related results have been also proved
in Ref. [8]. It is worth mentioning that, in the recent literature,
ZRPs with modified blockage rules have also been studied
in different frameworks, e.g., non-Markovian processes and
traffic models [9-12].

In this paper, we consider the totally asymmetric zero
range model and investigate the possibility to compensate
the blockage effect via a local feedback mechanism. This
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is realized by keeping the rate on the defect site constant
until the occupation number on that site reaches an a priori
fixed activation threshold. For larger occupation numbers, the
rate increases proportionally to the occupation number itself.
We show, both numerically and with analytic arguments, that
such a “local reaction” allows us to contrast the condensate
formation, in that it maintains the particle fraction in the
condensed phase constant for large values of the strength
of the blockage perturbation. We also point out that, with
such a mechanism, the current versus blockage strength curve
exhibits two nonanalyticity points.

For the zero range models the idea of the activation
threshold has been introduced in Refs. [13—-15], where dif-
ferent interpretations, ranging from pedestrian dynamics to
the thermodynamical theory of phase transitions, have been
considered. As for the pedestrian motion interpretation, the
results discussed in this paper can be rephrased as follows:
particles are regarded as pedestrians moving on a lane, and
the blockage corresponds to the presence of a bottleneck or
to a lack of visibility (dark, smoke, etc.). In this context,
particle condensation is seen as a severe pedestrian traffic jam
caused by obstacles hindering the flow on the blocked spot. In
this perspective, the feedback mechanism considered in this
paper (cf. also Refs. [13,14]) can be interpreted as follows:
when the number of pedestrians on the defect spot exceeds
the “activation threshold” value, the ability of pedestrians
to displace coherently increases because of the information
exchange, which becomes significant as soon as the number
of people on the spot is large enough. Thus, our results
indicate that the jamming effect induced by the bottleneck
can be compensated by an effective information exchange
mechanism.

We now define the ZRP to be studied in this paper and
borrow the notation from Ref. [2]. We consider the positive
integers L,N, the finite torus A = {1,...,L}, and the finite
state or configuration space 2; y made of the states n =
(n1,...,nr) €{0,...,N}* such that 3% »n, = N. Given
n € Qp y the integer n, is called number of particles at site
x € A in the state or configuration n. The integer | < T < N
and the real 0 < g < 1 are, respectively, called activation
threshold and blockage parameter. Note that for g close to
one the strength of the blockage perturbation is small, whereas
it is large for ¢ close to zero. For any site x € A, the hopping
rate u, : N — R, is defined as follows: u,(0) =0 for x =
L....,Luyk) =gqforl <k < Tandu(k) =qk —T + 1)
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for T4+1<k<N, and u,(k)=1 for x =2,...,L and
1<k <N. The ZRP considered in this context is the
continuous time Markov process n(t) € Q. y,t > 0, such that
each site x is updated with a rate u,(n,(¢)) and, once a site
x is chosen, a particle is moved to the neighboring site x + 1
(recall that periodic boundary conditions are imposed).

Note also that when ¢ = 1 and T = N the model reduces
to the standard zero range process whose states can be mapped
into those of the simple exclusion process. If T = Nandg < 1
the site at x = 1 is partially blocked. The effect of this kind of
blockage is well known (see Refs. [1, Sec. V.1] and [2, Sec.
5.2]); here we investigate the case ¢ < 1 and T < N and show
that, because of the local feedback acting on site 1, the system
is able to react to the condensation effect.

It can be proven (see, e.g., Ref. [2, Eq. (15)]) that the
invariant or stationary measure of the ZRP process is

) = 1 y 1 ifny =0 )
RN = " W/ lui(D) - -uy(n)] otherwise
for any n € Qp_y, where the partition function Z; y is the
normalization constant

T N
fL+N—k-2 g7 *
Zuw =20 )+ X
P N —k T (k=T +1)!
L+N—-k-2
w(FT . ()
N —k

The main results discussed in the sequel will be deduced in
the thermodynamic limit N,L — oo, with N/L = p being the
global constant density and T /N = «. The use of system-size-
dependent hopping rates (cf. also Refs. [16,17]) is motivated
here by the fact that we want to introduce the reaction effect
as mildly as possible, in the sense that the local rate at site 1
starts to increase with the number of particles only if the local
occupation number exceeds an amount proportional to N. At
the end of the paper, we shall also comment on the dramatic
effects observed if the threshold is chosen independent of N.

The main quantity of interest in our study is the stationary
current representing the average number of particles crossing
a bond between two given sites in unit time. More precisely,
since periodic boundary conditions are imposed, the current
does not depend on the chosen bond and is given by

Jon =prnlul=2Zy n1/ZLN. 3)

The first equality defines the current, whereas the second one
is proven in Ref. [2, Eq. (11)]. Another relevant quantity
is the stationary particle fraction at the defect site vy y =
nr.n[n1]l/N. When discussing the thermodynamic limit, we
shall drop the subscripts L and N from the notation and write
J and v for the stationary current and particle fraction at site
1, respectively.

To evaluate the behavior of the partition function in the
above limit, it is useful to introduce the function 7 (k) by rewrit-
ing(2)as Zy n = Z,ivzo exp{L1(k)}. To understand where the
maxima of (k) are located, we express I(k + 1) — I(k) as

1 N —k
I(k+1)_1(k):Z[IH(L+N—k—2)q]
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forO<k<T-—1and

1 N —k
Ik+1)—1(k)=—|1In

L (L+N—-k—-2)(k—T+2)q
for T < k < N — 1. By using the two formulas above we
can prove that, for large L, the function /(k) has a single
maximum attained in k*, withk* = 1forqg > g, = p/(1 + p),
k*=Ll(p—q(1+p)/(1—q)] for g, > g > qe = p(1 —
a)/[1+ p(1 —a)], k¥* =aN for g, > g > q,/2, and k* is
given by the smallest solution of the equation

g[L(1 +p) —k = 2]tk —apL +2) = pL —k

for g,/2 > q > 0. The explicit expression of k* in the latter
case is rather lengthy and will be omitted here. The only
property we rely on is the fact that, in the thermodynamic
limit, k*/N tends to «.

The computation of the partition function for the case
q > qo follows the scheme adopted in Ref. [2, Sec. 5.2].
Indeed, here the terms of the second sum in (2) can be
neglected. In particular, for ¢ > g, and L large, by expanding
the binomials in (2) for k ~ O(1), one finds

<L~|—N> 1 q
ZiN= ,
N J1+pql+p)—0p

which, using (3), yields J = ¢q,. Moreover, by computing
the average occupation number on the defect site, one finds
0/(@(1 + p) — p), so that in the thermodynamic limit the
particle fraction v at site 1 vanishes. Instead, if g, < g < g,
the system undergoes condensation. In this case, using the
Stirling’s approximation and computing the resulting Gaussian
integral, one finds

Zin=0—-q) gV

Hence, (3) implies J/ = ¢ and, by computing the mean value of
ny,one obtains v = 1 — g/[(1 — q)p]. Thus, in this particular
regime, the particle fraction on the defect site is finite (i.e.,
condensation occurs) and the current is found to decrease
linearly when ¢ decreases (i.e., the strength of the blockage
perturbation increases).

To treat the case 0 < g < ¢4, one has to consider that, for
large L, the function (k) attains its maximum at a¢N. It is
then useful to rewrite the partition function (2) by performing
the changes of variables h = T — kand h = k — T in the first
and in the second sum, respectively. Then one can expand the
binomials for 2 ~ O(1) to find

P g T L+N-T
EY T+ pl -\ N=T

T N-T 1
A S —
x LX:; * ; W(h+ 1)!}

where we have set A = q/q, < 1, so that both of the two
series are converging. This expression of the partition function
allows us to compute the stationary current via (3), which
leads to J = g,. Moreover, by computing the mean of the
occupation number at site 1 and taking the thermodynamic
limit, one obtains v = «.

This result is the answer to our initial question: it shows
that the local reaction term affecting the rate at the defect
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FIG. 1. Stationary particle fraction v (at the defect site) vs g.
Open and solid symbols refer to L = 100 and L = 1000, respectively.
Circles, squares, and triangles refer, respectively, to p = 1 and o =
0.5 (o and e, g, = 0.33, g, = 0.50), p = 1.5 and « = 0.8 (O and
W, g, =023, g, =0.60), and p =2/3 and ¢ =0.35 (V and V,
g« = 0.30, g, = 0.40). Solid lines indicate the analytically predicted
behavior in the thermodynamic limit. Dotted lines indicate the values
of q,.
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site balances, although it does not cancel, the effect of
the blockage which originates the condensation. Note that,
along this interplay between blockage and local reaction,
the phenomenon of condensation is not inhibited: below the
critical value g4, the particle fraction in the condensed phase
stays constant and equal to «. Moreover, for 0 < g < ¢q,
the stationary current is also constant. This means that the
behavior of the current versus the blockage parameter g reveals
two nonanalyticity points: one corresponds to the onset of
condensation at g = g,, while the second one, at g = gq,
points out the value of the blockage parameter at which the
reaction term becomes so effective to stop the rise of the
particle fraction in the condensed phase.

Our analytical results are plotted in Figs. 1 and 2 together
with the results of Monte Carlo simulations. The model has
been simulated as follows: call n(¢) the configuration at time
t, (1) a number t is picked up at random with exponential
distribution of parameter Zle u,(n,(t)) and time is updated
to t + 7, (2) a site is chosen at random on the lattice with
probability u,(n,(t))/ Zle u,(ny (1)), and (3) a particle is
then moved from that site to the neighboring site on the right.
The results shown in the figures reveal a very good match
between the analytical prediction and the numerical measures.
We stress that the agreement improves when the lattice size L
increases. Therefore, the numerical simulations fully confirm
our description of the main features of the model.

We recall that the threshold in the reaction term has
been chosen proportional to N to let the reaction effect
be weak enough (the activation threshold diverges in the
thermodynamic limit). Yet, by setting the threshold equal to a
constant, the description of the model changes dramatically.
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FIG. 2. Stationary current vs g. Symbols are as in Fig. 1. Dotted
and dashed lines indicate, respectively, the values of g, and ¢g,,.

The Monte Carlo simulations plotted in Fig. 3 confirm that,
in this case, the reaction term does inhibit the condensation.
Indeed, the plot of the current versus the blockage parameter
q (scale on the right side of the bounding box) shows that
the current is constant, namely, for any value of ¢ the current
attains the value corresponding to the unperturbed dynamics
[i.e., the dynamics with the hopping rates u,(k) =1 for
x=1,...,L and 1 < k < N]. In this case no condensation
is induced in the system, as can be seen by looking at the plot
of the mean occupation number at the defect site (scale on the
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FIG. 3. Stationary occupation number at the defect site and
current vs g. Open and solid symbols refer to L = 100 and L = 1000,
respectively. Circles and squares denote the current at p = 1 and
T =1 (o and e, value of the current 0.5) andat p =3 and T = 5 (O
and M, value of the current 0.75), whereas triangles and diamonds
denote the occupation number at site 1 at p =1and 7 =1 (V and
V)andat p =3 and 7 = 5 (¢ and ¢), respectively. Solid and dotted
lines indicate, respectively, the analytically predicted behavior of the
current and the occupation number in the thermodynamic limit.
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left side of the bounding box). Note, indeed, that the mean
occupation number at site 1 is of order one for any value of
q > 0; therefore the corresponding particle fraction v tends to
zero in the thermodynamic limit.

This occurs because the local feedback mechanism over-
whelms the blockage effect and prevents condensation. In
particular, the first sum in (2) is finite and can be estimated by
expanding the binomial considering £ ~ O(1). For the second
sum, after performing the change of variables h = k — T, one
observes that, for large L, the sum concentrates on the terms
h ~ 0O(1), and, by accordingly expanding the binomials, one
finds

L+N 1 l—oTH
VA = e’ —o—1
LN ( N )(1+p>2[ e )}

with o = ¢q,/q. Hence, (3) yields J = g,. By computing the
average occupation number at site 1, for L large and N = pL,
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one obtains

1
v Zen(l+ p)pp vlm]

)

NL_ T _ _ T+l
(1_0)2[ T+1Do'(I1—0)+1—-0"7"]

+(T —=DoT e =0 =D 4+07(” = 1)
A comparison between numerical data and analytical predic-
tion is given in Fig. 3, where the mean occupation number at

site 1 was used in place of the particle fraction, because, as
discussed above, the latter is a vanishing quantity.
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