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This paper introduces an analytical description of the probability density function of the dissipated and injected
powers p(jdis) and p(jinj), respectively, in a paradigmatic nonequilibrium damped system in contact with a work
reservoir that is analytically represented by telegraph noise and to which one can assign an effective temperature.
This approach is able to overcome the well-known impossibility of obtaining closed solutions to steady-state
distributions of this system and allows determining a superexponential fluctuation relation of the injected power,
which is not even asymptotically exponential as for (shot-noise) Poissonian reservoirs. In the white-noise limit,
that relation converges to the exponential formula that is standard in thermal systems; however, the distribution
of the injected power remains quite different from that of the latter instance. Surprisingly, it is actually shown
that a Gaussian distribution, which is archetypal of thermal systems, for the injected power can be achievable
only for athermal reservoirs of this kind.
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I. INTRODUCTION

It is now more than well established that several nonequi-
librium systems are best described by generalized Langevin
equations where the stochastic component of the force is
statistically described by a distribution other than the Gaussian
one [1–9]. Such revamping of the Langevin equation can
stem from many different factors; the following are among
the most typical we can mention: (a) The collisions between
the system and the particles of the embedding medium (the
reservoir) occur at such low rates that the central-limit theorem,
which leads to the Gaussian distribution of the noise, is a
poor approximation as it happens with granular gases [10], the
Andersen thermostat [11], and colloidal systems [12]; (b) the
system is subject to random pulses of injected power similarly
to molecular motors running on ATPase [7,13–15]; and (c)
dynamically, the system evolves resembling a random tug of
war as it does in nanomechanical problems such as intracellular
bidirectional transport on cytoskeletal filaments mediated by
two sets of molecular motors, namely, the kinesin-1 and
cytoplasmic dynein [16], the dynamics of calcium ions in blood
plasma [17], and some types of ratchets [18].

In situations (a) and (b), the stochastic term usually
corresponds to a (Poisson) shot noise [10,19,20], whereas
problems of type (c) are best related to telegraph noise ζ , also
known as dichotomous or two-state Brownian noise [1,21],
i.e., a stochastic process where the variable randomly alternates
between two values at given average rates and whose treatment
in the probability space must be performed by means of the
respective master equation. Aside from the situations I have
cited, the telegraph noise also provides a quantitative de-
scription of transport properties in amorphous materials [22],
chromatography [23], quantum effects [24], and fluctuations
of photovoltaics in power grids [25], among other problems.

Due to its analytical complexity, systems involving dichoto-
mous noise are often treated by considering overdamping
regimes and assuming equal transition rates between sym-
metrical states of the noise as well [26–28]. Despite these
simplifications, the achievement of fully analytical and closed
solutions to the probabilistic descriptions of the position x and
the velocity v is quite limited. Moreover, such solutions are

impossible in the damped regime. If calculations are already
that restricted for those chief observables, the achievement of
closed distributions of thermostatistical quantities, such as the
power, is far fetched. Hereinafter, I will show that the blending
of the statistical knowledge (derived from the dynamics of the
system) with adequate distribution functions paves the way
to the probabilistic description of the power. The fact that
the properties of the system include a robust nonexponential,
actually superexponential, fluctuation relation (FR) for the
injected power jinj disagrees with its usual form [2,3]

p(|O|)/p(−|O|) = exp[2μ|O|/σ 2], (1)

where μ and σ 2 are the average and the variance of the physical
quantity O, respectively.

The rest of this paper is organized as follows. In Sec. II
the dynamical equations ruling the evolution of our system
are introduced as well as the features of the dichotomous
work reservoir. In Sec. III, the results of the probabilistic
descriptions of the dissipated and the injected power are
presented. Section IV summarizes and discusses the results
obtained and their impact on future research.

II. PROBLEM FORMULATION

Herein, as in a plethora of other relevant studies [3], I
assume the quintessential damped nonequilibrium system,
with mass m, whose position x [with velocity v ≡ dx(t)

dt
] is

ruled by

m
d2x(t)

dt2
= −γ

dx(t)

dt
− kx(t) − ζt . (2)

The parameter γ relates to the friction the system is subject to
and ζ is the stochastic force describing the interaction between
the particle and the dichotomous reservoir, as already men-
tioned and to be fully characterized shortly. The damping is
established by the harmonic potential k x2/2, mimicking either
physical traits of the system or simply the action of an optical
tweezers (the behavior of which is known to be very close to
harmonicity [29]) that is used in order to not let it diffuse.
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For the sake of simplicity, I consider wonted features
for the telegraph noise:1 It assumes two symmetric values
ζt = {−a,a}, swinging from one to the other with the same
transition rate μ. In the stationary state [as well as at
every instant t], the process {ζt } always follows a bimodal
distribution

f (ζ ) = 1
2δ(ζ + a) + 1

2δ(ζ − a) (3)

and has a colored correlation function with frequency α = 2 μ,

〈ζ (t1)ζ (t2)〉 = a2e−α|t1−t2| (4)

[further moments 〈ζ (t1), . . . ,ζ (tn)〉 are discussed in Ap-
pendix A]. Taking into account the two-state properties of
the noise, the reservoir is an athermal work reservoir since
it performs work on the massive system by either pulling or
pushing it during random periods of time.

Equations (3) and (4) establish that ζ cannot be treated
within the Lévy-Itô theorem on the decomposition of the
measure [30]. Moreover, such features impose two important
properties on Eq. (2): (i) Since ζ is colored and the dissipation
term −γ dx(t)

dt
has no kernel, the fluctuation-dissipation relation

is not verified and thus the dichotomous work reservoir is of
the external class [1,31]; (ii) allowing for its bimodality, the
particle cannot explore its full phase space,2 which implies
that the system is effectively nonlinear.

Several thermostatistical aspects of Eq. (2) were recently
studied in [32], where it was shown that in the steady state x

is sub-Gaussian3 as well as v for most of α. Furthermore, it is
possible to define an energy scale (kB = 1) therein called the
Marconi temperature

T ≡ γ̂ − γ

γ k̂
a2 = m〈v2〉 (5)

[γ̂ ≡ γ + mα and k̂ ≡ k + α(γ + mα)], which allows writing
the entropy production (exchange) rate in the steady state �

(�) in the exact same form as of a typical thermal system [33]

� = −� = γ

m
. (6)

Each of two entropy contributions is related to the power
injected by the work reservoir and the power dissipated by
the system, respectively,

jinj(t) ≡ ζtv(t), jdis(t) ≡ −γ v(t)2, (7)

which control the variation of energy in the system. The large
deviation behavior of both powers, i.e., the work and heat
fluxes

J(·)(	) ≡
∫ 	

0
j(·)(t)dt, (8)

was analyzed in [32], showing that its distribution, i.e., the
large deviation function (LDF), is single sided and functionally
the same in both cases. That is not surprising taking into

1We use 〈· · · 〉 to represent averages over samples and 〈〈· · · 〉〉 for the
cumulants.

2Except in the limit α → ∞.
3Such behavior is typical of variables with compact support, which

in this case leads to the effective nonlinearity of the potential.

account the system attains a steady state. It was also understood
that the power or work LDF converges relatively fast to the
large deviation function obtained when the mechanical system
is in contact with a thermal reservoir at a temperature T that
is (numerically) equal to the fixed Marconi temperature and
subject to the same dissipation constant γ .

In spite of the fact that the large deviation function of
J(·)(	) allows understanding the likelihood of the system
experiencing a weighty long-term departure of the power from
its expected value 〈Jinj(	)〉 = |〈Jdis(	)〉| ∝ γ

m
T 	, it is also

important to quantify the probability of a sudden overpowering
or a significant power depletion to the system; this cannot be
computed from J(inj), but by analyzing the probabilities of
jinj instead. In other words, while jdis � 0 by default, jinj is
undefined, which makes it relevant to learn to what extent a
dichotomous work reservoir injects energy in the system in
opposition to the effect of taking it out, an assessment we can
make explicit from the FR p(|jinj|)/p(−|jinj|).

In what follows, I shall be mainly interested in assessing
the impact of the color of the noise on the probability density
function of the powers. Therefore, T is set as

〈v2〉 = T
m

= const ∀α, (9)

so that in modifying α, the intensity of the noise must change
as a ∼ T 1/2α1/2. In the white-noise (WN) limit α → ∞, the
value of a goes to infinity, yet f (ζ ) preserves its bimodality at
all α.

III. RESULTS

A. Distribution of the dissipated power

Let me first briefly describe the steady-state distribution
p(jdis) in its prevalent and more relevant regime of sub-
Gaussianity (platykurticness) with further analytical details
provided in Appendix D. For the regime μ → 0, the results
are presented in Appendix C.

Bearing in mind Eq. (7), the distribution p(jdis) is easily
obtained from the velocity distribution p(v), using the law of
the conservation of the probability

p(jdis)djdis = p(v)dv. (10)

The distribution p(v) does not have a closed form in the
damped regime and it was previously shown that it can have
(lepto)platykurtic behavior for α (<)> α∗ [32].

Heeding that the platykurticness hints at compact support
distributions and recalling that numerical simulations showed
that, in a log-lin scale, p(v) is prone to flatness at its center
[32], it can be asserted that the distribution is well described
by

p(v) = 1

Z

[
1 − B

ν
|v|δ

]ν

. (11)

The values of the parameters B, ν, and δ are to be obtained by
the matching of the second-, fourth-, and sixth-order statistical
moments given by Eq. (2) and those of the ansatz (D9). The
statistical moments of the former are obtained by employing a
method based on the Fourier-Laplace transform explained in
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FIG. 1. Second-, fourth-, sixth-, and eighth-order moment of the velocity v color of the noise α in log-log scale assuming k = m =
γ = 1 and T = 1/3. The solid lines are obtained analytically from Eq. (2) and the dots are the values from the numerical implementation
of Eq. (2).

Appendix A, whereas for the latter the even moments read4

〈v2n〉p =
( ν

B
)2n/δ �

[
2n+1

δ

]
�
[
1 + 1

δ
+ ν

]
�
[

1
δ

]
�
[
1 + 2n+1

δ
+ ν

] , n ∈ N. (12)

Nevertheless, in Fig. 1, we show a comparison between the
analytical expressions for the moments obtained from the
dynamics and the numerical implementation of the model.
Since our problem is described by five independent parameters
(m, γ , k, α, and T ), an approach involving up to five equations
is totally meaningful.

Shown in Fig. 2 is the convergence of ν and δ to their white-
noise limits, which are equal to zero and two, respectively,
as expected for a Gaussian distribution. Specifically, the
following asymptotic behavior can be verified:

ν ∼ α, δ − 2 ∼ α−2,

stressing the fact that p(v) asymptotically tends to a exponen-
tial functional with α going to infinity. The error

ε8(v) ≡ 100

∣∣∣∣ 〈v8〉p − 〈v8〉
〈v8〉

∣∣∣∣ (13)

of this ansatz is never larger than 0.2% in 〈v8〉 (see Fig. 3),
whereas the error for δ = 2 (taken as standard) is always at

4The full expressions are presented in Appendix D for the sake of
conciseness.

least ten times as large as the ansatz (D9). In both cases, it
goes asymptotically as ε8(v) ∼ α−2.

For α = 3.20 . . ., which corresponds to three changes in
the value of ζ within the scale of relaxation (in average),
the value obtained is δ = 2 (and ν finite), with a kurtosis
close to the triangle distribution, and for α = 2.15 . . . one
has ν = 1 (δ �= 2). For α = 6.028 . . ., the two values of 〈v8〉
concur and hence the two distributions coincide up to eighth
order.

Plotted in Fig. 4 is a comparison between the empirical
distribution function obtained by numerical implementation
of Eqs. (2) and (D9) for δ �= 2 and δ = 2. Since the kurtosis
of the velocity is reminiscent of a distribution with compact
support distribution, the panels in that figure show that the
major impact of δ �= 2 lies in the determination of the upper and
lower bounds of the distribution. As a result, the steady-state
distribution of the dissipated power reads

p(|jdis|) = 1

Z

√
γ

|jdis|

[
1 − B

ν

∣∣∣∣jdis

γ

∣∣∣∣δ/2
]ν

. (14)

B. Distribution of the injected power and its fluctuation relation

To determine p(jinj), whence one gets the fluctuation
relation, I start by looking at the limit α → ∞ for which p(v)
is a Gaussian distribution. In addition, the velocity and the
telegraph force are correlated for all α, with that correlation
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FIG. 2. Asymptotic behavior of (a) ν and (b) δ vs α for the case k = m = γ = 1 and T = 1/3. The slope of each line is equal to (a) −1
and (b) −2.

being precisely the average injected power5

v(t)ζ (t) = jinj = γT
m

. (15)

This permits one to surmise that at each instant the velocity is
written as the superposition of two independent contributions

v(t) = cζ (t) + ξ (t), (16)

where the first term on the right-hand side yields Eq. (15) and
the second, ξ (t), is a stochastic variable, with velocity units,
that is Gaussian distributed with variance σ 2

ξ so that

c2σ 2
ζ + σ 2

ξ = T
m

. (17)

Moreover, Eq. (16) tacitly implies that

〈ζ (t)ξ (t ′)〉 = 0 ∀t,t ′ , (18)

that is to say,

c = T
m

γ

a2
, σ 2

ξ = T
m

[
1 − T

m

(γ

a

)2
]
. (19)

In the end, from Eqs. (15)–(19),6

pWN(jinj) =
∫∫ +∞

−∞

1√
2πσ 2

ξ

exp

[
− ξ 2

2σ 2
ξ

]
f (ζ )

× δ(jinj − ζ [cζ + ξ ])dξdζ, (20)

which yields

pWN(jinj) = 1√
2πaσξ

exp

[
− (jinj − ca2)2

2(aσξ )2

]

= 1√
2πσjinj

exp

[
− (jinj − 〈jinj〉)2

2σ 2
jinj

]
, (21)

5On stands for time averaging. In the steady state it concurs with
sample averaging 〈On〉.

6Since we work with a fixed Marconi temperature, the value of
the amplitude a increases as we approach the noise limit. Therefore,
limα→∞ cζ = 0±.

i.e., a Gaussian distribution centered at

ca2 = γT
m

= 〈jinj〉. (22)

Contrarily to jdis, the injected power assumes both positive
and negative values, which renders the fluctuation relation

pWN(|jinj|)
pWN(−|jinj|) = exp

[
2c

σ 2
ξ

|jinj|
]
. (23)

The significance of Eqs. (21) and (23) is made by comparing
them with thermal reservoir results [33]; in that case7

p(jinj) ∝ exp[J1jinj]K0[−J2|jinj|], (24)

which is neatly non-Gaussian and different from the di-
chotomous work reservoir (21). This is a flummoxing result;
explicitly, while a thermal reservoir does not yield a Gaussian
distribution for p(jinj), even in the linear case, it is not expected
at all that such a connotative distribution would emerge within
an athermal reservoir scenario.

Complementarily, recalling the results for the athermal
Poissonian reservoir [20], the singular counterpart of thermal
reservoirs, one grasps that the ubiquity of Eq. (23) goes beyond
the discussion framed within the Lévy-Itô theorem as ζ is
colored and always bimodal. As a consequence, the canonical
fluctuation relation (1) is above all linked to the infinite rate at
which the value the system-reservoir interaction changes.

Having the white-noise limit in hand, one moves on
to obtain p(jinj) for finite values of α. From analytical
calculations of the kurtosis γ2(jinj) (see the dot-dashed line
in Fig. 5) it is possible to perceive that p(jinj) is also typically
platykurtic and converges to the Gaussian distribution.

In furtherance of succinctness, I address in Appendix D the
formulas of the moments of the injected power and present
in Fig. 6 comparisons between the analytical calculations of
the moments of the injected power (up to fifth order) and the
results from numerical implementations of the model. Taking
into account these features, one could be tempted to assert
for the distribution of the injected power a compact support
function similar to p(v). However, it is crucial to heed that the

7For the explicit form see Eq. (35) and Fig. 6 in [33].
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FIG. 3. The solid line represents the error ε8(v) vs α for the
proposal (D9). The dashed gray line is obtained by considering δ = 2
for comparison (k = m = γ = 1 and T = 1/3).

skewness γ1(jinj) vanishes only in the white-noise limit (see
full line in Fig. 5). To accommodate γ1(jinj) and γ2(jinj) one
asserts

p(jinj) =
[

1 − B
ν

(jinj − ω)2

]ν{
A + ϕ(jinj − ω)A′

× 2F1

[
1

2
,ν;

3

2
; −Bϕ2

ν
(jinj − ω)2

]}
(25)

(ϕ is the skew parameter), which in the limit ν → ∞
converges to the skewed Gaussian distribution. This approach
is particularly valid as the skewness of p(jinj) is not extreme.
In determining the values of the parameters of p(jinj) it was
found that the error

ε5(jinj) ≡ 100

∣∣∣∣∣
〈
j 5

inj

〉
p

− 〈
j 5

inj

〉〈
j 5

inj

〉 ∣∣∣∣∣. (26)

is never larger than 1.7% in 〈j 5
inj〉, as plotted in Fig. 7.

The average value 〈jinj〉 = γ

m
T differs from ω, but the latter

converges to the former as α → ∞. It must be noted that this
convergence is slow because ϕ goes to zero as α−1/2 (see
Fig. 8). The calculations show that the cumulants of order
larger than the second vanish (see Fig. 5), confirming the
Gaussian distribution (21).
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FIG. 5. Skewness γ1 (solid blue line, left ordinate axis) and
kurtosis γ2 (dot-dashed green line, right ordinate axis) of the injected
power vs α with m = k = γ = 1 and T = 1/3. The vertical lines
represent the values of α at which both curves cross the origin,
α = 0.900 . . . and α = 0.295 . . ., respectively.

With Eq. (25) in hand, one is in the position to discuss
the FR for this class of reservoir, to which one compares the
present and previous results for the thermal and other athermal
situations. For Poissonian reservoirs, a deviation from the usual
exponential behavior was verified as well [20]; however, the
perturbation to the thermal FR is composed of terms whose
coefficients depend on the modified Bessel function and it
tends to the standard exponential form for large values of
|jinj| ∈ R+

0 . On the contrary, for α �= 0 dichotomous reservoirs,
one observes the emergence of superexponential growth of the
FR. Moreover, the power-law decay of the hypergeometric
function (as large values of jinj become available) establishes
another striking difference from the Poissonian case. Close to
its limit ĵinj ≡ √

ν/B − ω = −j
(min)
inj , the fluctuation relation

can be written as

p(|jinj|)
p(−|jinj|) ≈

(
ν − B(|jinj| − ω)2

ν − B(|jinj| + ω)2

)ν
1 + ϕA1(|jinj| − ω)

1 − ϕB1(|jinj| + ω)
,

(27)

where jinj � ĵinj and ϕ = ϕ(α) < 1. As α grows, we have
ν,ĵinj → ∞ and ϕ → 0; the contribution to the skewness zeros
out and Eq. (27) concurs with Eq. (23).
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FIG. 4. Dots represent the empirical distribution function obtained from the dynamics (2) with (a) α = 5 and (b) α = 10 with m = k = γ = 1
and T = 1/3. The solid red lines correspond to Eq. (D9) with δ �= 2 and the dashed gray lines set δ = 2. For the former case (a) B = 1.018 . . .,
ν = 4.645 . . ., and δ = 2.241 . . . and (b) B = 1.053 . . ., ν = 8.404 . . ., and ν = 2.136 . . . and for the latter (a) B = 1.004 . . . and ν = 3.165 . . .

and (b) B = 1.045 . . . and ν = 5.860 . . ..
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FIG. 6. Solid lines represent in a log-log scale the moments analytically obtained from the dynamics and the dots are the values obtained
from the numerical implementation of Eq. (2) vs α (k = m = γ = 1 and T = 1/3).

Alternatively, for small values of jinj, Eq. (25) tends to

p(|jinj|)
p(−|jinj|) ≈

(
1 − 4

ωB
ω2B − ν

|jinj|
)ν

×
(

1 + C 2F1

[
1

2
,ν;

3

2
; −Bω2α2

ν

]
|jinj| + . . .

)
,

(28)

which implies that close to zero the fluctuation relation
increases with slope equal to

C = 4ϕ

√
B
πν

�[ν]

�
[
ν − 1

2

] 2F1

[
1

2
,ν;

3

2
; −Bω2α2

ν

]
. (29)

Shown in Fig. 9 is shown a comparison between the numerical
simulation results and the fluctuation relation obtained from
Eq. (25), which recovers the standard relation matching with
Eq. (23) as well with

exp[4ωB|jinj|] = exp
[
2〈jinj〉|jinj|/σ 2

jinj

]
(30)

in the white-noise limit.
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FIG. 7. Error ε5(jinj) vs α for the proposal (D9) with k = m =
γ = 1 and T = 1/3.

IV. CONCLUSION

Summarizing, this work has analyzed the dissipated and
injected power distributions of an effective nonlinear damped
massive system subject to an athermal dichotomous reservoir,
i.e., the interaction between the system and the reservoir is
defined by the telegraph noise that is alternately equal to
±a for average spells of 2/α, with α being the color of the
noise. Mechanically, this system absolutely corresponds to the
standard case from which nonequilibrium relations have been
either found or illustrated. Thermomechanically, systems of
this ilk are employed to describe a large variety of phenomena
from physical to physiological and where the present results
are expected to be probed. In analytical terms, this model is
known for not bearing closed solutions to the position and
velocity, a handicap that naturally extends to thermostatistical
quantities as well.

Computing the statistical moments directly from the dy-
namical equation, one has set forth ansatz distributions for the
dissipated and injected power p(jdis) and p(jinj). The former
is derived from p(v) and has a maximal error of 0.2% in 〈j 4

dis〉,
whereas for the injected power the error is never larger than
1.7% in 〈j 5

inj〉. The latter can be further improved at the expense
of an increase of the complexity of the solution by imposing the
match in 〈j 5

inj〉 (the last free parameter), yet such tweaking will
not essentially change the functional and qualitative behavior
of the curve, especially the superexponential limit of the FR
(see Appendix B). This procedure can be further used to
compute the distribution of the work done in driving such
a system from a steady state into another as well.

In the white-noise limit, the fluctuation relation of the
injected power FRα→∞ has the usual thermal form equal
to exp[2〈jinj〉|jinj|/σ 2

jinj
]; however, p(jinj) is utterly different

from that case as it is a Gaussian distribution. This result is
paradoxical since not even (linear) thermal reservoirs yield a
Gaussian distribution for p(jinj). Recalling that the telegraph
noise is always bimodal, we have learned that the Gaussian
nature of the reservoir is irrelevant to obtaining the standard
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FIG. 8. Parameters (a) ω, (b) B, (c) ϕ, and (d) ν vs α with k = m = γ = 1 and T = 1/3.

FR; the key property is actually the infinite rate at which the
values of the system-reservoir interaction update.

I have also revealed that for finite α, the fluctuation
relation is clearly nonexponential and not even asymptotically
converging, as it happens for Poissonian reservoirs, which
like the thermal reservoir belongs to the Lévy-Itô class of
stochastic processes. Due to the divergence from the second-
order cumulant on, an asymptotically nonexponential form of
the fluctuation relation is likely for Lévy particles [34], but
it is surprising for a system where the physical observables
have all of their cumulants finite and thus the standard FR is
expected, at least in the large jinj limit. With these results, we

0 1 2 3 4
1.0

10.0

5.0

2.0

3.0

1.5

15.0

7.0

jinj

p
j in
j
p

j in
j

3.0 3.2 3.4 3.6 3.8 4.0

6
8
10
12
14

FIG. 9. The solid yellow line is the fluctuation relation obtained
from Eq. (25) and the symbols show the numerical fluctuation relation
for the same dynamical parameters k = m = γ = 1, T = 1/3, and
α = 10. The dotted orange line is given by Eq. (23), which equals
the standard (thermal) fluctuation relation, and the dashed blue line
is the small jinj asymptotic regime. In the inset, the dot-dashed cyan
line corresponds to the fluctuation relation obtained according to the
improvement discussed in Appendix B.

have also shown how defective the thermostatistical analysis of
an athermal system can be if the results obtained for thermal
processes abiding by the fluctuation-dissipation theorem are
employed in a straightforward way.
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APPENDIX A: METHOD OF SOLUTION FROM THE
DYNAMICS

Let us define the Laplace-Fourier transform as

Õ(iq + ε) ≡ lim
ε→0

∫
O(t)e−(iq+ε)t dt. (A1)

The Fourier-Laplace transform of Eq. (2) is equal to

m(iq + ε)ṽ(iq + ε) = −γ ṽ(iq + ε) − kx̃(iq + ε)

+ ζ̃ (iq + ε),

ṽ(iq + ε) = (iq + ε)x̃(iq + ε). (A2)

Plugging the second line into the first one, we eliminate the
velocity and we have for the position in reciprocal space

x̃(iq + ε) = ζ̃ (iq + ε)

R(iq + ε)
. (A3)

The function R(s) reads
R(s) = m(s − κ+)(s − κ−), (A4)

with its zeros located at

κ± = −θ

2
± i� = −θ

2
± i

√
4ω2 − θ2,
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where

θ = γ

m
, ω2 = k

m
. (A5)

The powers, namely, the dissipated

jdis(t) ≡ γ v(t)2 (A6)

and the injected
jdis ≡ ζ (t)v(t), (A7)

depend on the values of the velocity and the stochastic force.
Both can be written as follows. Consider a generic quantity
O(t) that in reciprocal space is recast as

Õ(iq1 + ε) = h(iq1 + ε)x̃(iq1 + ε). (A8)

This means that for the velocity hv(s) = s and for the noise
hζ (s) = R(s).

Since the system reaches a stationary state the ergodic
property

〈O〉=O ≡ lim
	→∞

1

	

∫
O(t)dt (A9)

relating averages over samples 〈O〉 and averages over time O
holds. Considering the final value theorem, we can connect the
computation of statistics over time with the Laplace-Fourier
transform

O = lim
	→∞

1

	

∫
O(t)dt = lim

z→0
z

∫
e−ztO(t)dt. (A10)

Using Eq. (A1) in Eq. (A10) as well as the equality between
time and sample averaging in the stationary state, we get for
the nth-order moment
〈On〉 = lim

z→0,ε→0

×
∫

z

z − ∑n
l=1(iql + ε)

h(iq1 + ε) · · · h(iqn + ε)

R(iq1 + ε) · · · R(iqn + ε)

×〈ζ̃ (iq1 + ε) · · · ζ̃ (iqn + ε)〉dq1

2π
· · · dqn

2π
. (A11)

The multiple integration in q1, . . . ,qn eliminates all the
modes related to the transient. Analytically, this means that
only combinations of poles that lead to a final expression
proportional to z/z yield an a priori nonvanishing solution.
Only terms proportional to [

∑�
l=1(iql + ε)]−1 are in agreement

with that condition. From R(q), those terms arise from the
moments of the noise 〈ζ̃ (iq1 + ε) · · · ζ̃ (iqn + ε)〉.

Moments of ζ . The general form of the nth-order moments
of ζ are quite intricate, but taking into consideration the
symmetric properties of the telegraph noise assumed in this
work, the 2n-order moment of ζ is equal to

〈ζ (t1) · · · ζ (t2n)〉 = a2n exp

[
−α

n∑
l=1

(t2l−1 − t2l)

]
,

(A12)
t1 > . . . > t2n,

whose Laplace-Fourier transform reads

〈ζ̃ (iq1 + ε) · · · ζ̃ (iq2n + ε)〉

= a2n∏n
l=1

[∑2l
o=1(iqo + ε)

]∏n
l′=1

[
α + ∑2l′−1

o=1 (iqo + ε)
] ,

(A13)
where the first product contains the terms that give rise to
nonvanishing contributions of the long-term moments.

APPENDIX B: TENTATIVE IMPROVEMENT TO EQ. (25)

Despite the quality of the approach conveyed in the main
text, especially when one takes into account that it arises from
a quantity p(v), for which there is no closed solution, the
results can be further improved by taking into consideration
the analysis of p(v). As stated, the major impact of letting
δ assume values different from 2 corresponds to a more
accurate determination of the minimal and maximal values
of the injected power distribution

p(jinj) = 1

N

[
1 − B

ν
|j ′

inj|δ
]ν

×

⎧⎪⎨⎪⎩
1

η(−B)1/δ B− ν

B|ϕj ′
inj |δ

[
ν − 1

δ
,1 − ν

] ⇐ jinj < ω

(
ν
B

)1/δ �

[
1+ 1

δ

]
�

[
ν− 1

δ

]
�[ν] + ϕj ′

inj 2F1
[

1
δ
,ν; 1 + 1

δ
; −B

ν
|ϕ(j ′

inj)
δ|] ⇐ jinj � ω,

(B1)

where j ′
inj ≡ jinj − ω, Bb1 [b2,b3] is the Beta function, and −(ν/B)1/δ + ω � jinj � (ν/B)1/δ + ω.

As visible from Fig. 10, the cyan line [obtained by a nonlinear numerical adjustment of Eq. (B1) to the empirical distribution]
permitting δ �= 2 broadens the distribution and increases the absolute value of its upper and lower bounds with. Nonetheless,
it must be clearly emphasized that both the Beta function and the hypergeometric function decay as a power law for large
values of |jinj|, which guarantees that the fluctuation relation preserves a nonexponential power-law functional dependence
(δ = 2 → δ �= 2) along the lines I have asserted in Sec. III. That is patent in the inset of Fig. 9, which shows an improvement in
the comparison with the numerical results; however, as expected, it does not introduce drastic changes and the conclusions that
can be obtained from both approaches are qualitatively the same.

APPENDIX C: STATIONARY DISTRIBUTIONS OF v AND jinj IN THE QUASIDETERMINISTIC CASE α < γ/m

Under this condition, the time the stochastic force takes to change its sign is larger than the typical scale of relaxation. Because
of that, one considers ζ constant and the determinist solution to Eq. (2) with the initial conditions x(0) = x0 and v(0) = v0 is
equal to

x(t) = exp
[
− γ

2m
t
](2kmv0 + γ kx0 − γ ξ

km�
sin

[
�

2
t

]
+ kx0 − ξ

k
cos

[
�

2
t

])
+ ξ

k
(C1)
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FIG. 10. Blue symbols represent the empirical distribution function obtained from the dynamics (2) with m = k = γ = 1 and T = 1/3;
the red line is Eq. (25) obtained with moment matching with ω = 0.1065 . . ., B = 0.3249 . . ., ϕ = 0.4704 . . ., and ν = 5.8804 . . .; and the cyan
line is Eq. (B1) obtained from numerical adjustment with ω = 0.1056 ± 0.0003, B = 0.3837 ± 0.0004, ϕ = 0.425 ± 0.002, ν = 6.74 ± 0.05,
and δ = 2.08 ± 0.02 in (a) lin-lin and (b) log-lin scales. The dashed line in (a) represents the average values 〈jinj〉 = 1/3. The plot shows that
the average value is different from the mode of the distribution.

and the velocity reads

v(t) = exp
[
− γ

2m
t
]

×
{

m2�2(ξ − kx0) + γ [γ ξ − k(2mv0 + γ x0)]

2km2�

× sin

[
�

2
t

]
+ v0 cos

[
�

2
t

]}
. (C2)

The first zero of the velocity occurs at

tz = 2π

�
. (C3)

At this instant, it is possible to verify that the position reaches
a local extreme.

The velocity has local maxima at

tvmax = 2 arctan
[−γ /m±

√
(γ /m)2+�2

�

] + 2πn

�/2
, n ∈ N, (C4)

with the respective values being obtained by plugging Eq. (C4)
into Eq. (C2). In ascending order, we have t (+)

vmax
(n = 0) <

t (−)
vmax

(n = 1) < t (+)
vmax

(n = 1) < t (−)
vmax

(n = 2) < · · · , which relate

to the values {vmax
1 ,vmax

2 ,vmax
3 , . . .}, respectively.

For a system evolving according to a simple sinusoidal
function u = u(t), it is known that the distribution of u goes
as a Beta distribution

p(u) ∝ 1√
4u2

max − u2
. (C5)

One must now take into consideration that owing to damping,
there is a set of local maxima and thus the distribution will be
given by a superposition of distributions p(u) with different
values of u2

max. If α is not dramatically less than γ /m, then
the particle is likely to experience a change in the value of ζ

before it reaches the stable solution v∞ = 0 and x∞ = ξ/k. If
that change occurs when |x(t)| is larger than the asymptotic
position ζ/k, then the maximal speed achieved by the particle
can be larger than the maximal speed obtained for x(0) =
v(0) = 0. Putting it into figures, if ζ flips into −ζ within a

time

4

�
arctan

[
γ +

√
γ 2 + m2�2

m�

]

< t <
4

�

(
arctan

[
γ +

√
γ 2 + m2�2

m�

]
+ π

)
, (C6)

we can have a surge in the maximal speed |vmax
1 |.

For the parameters I have considered, one verifies that
the maximal speed is attained after the fourth flip, with the
maximal value after the fifth ζ change yielding a small |vmax

1 |.
In Fig. 11 one can see that the maximal of the four flips is not
attained, a fact that is easily explained by taking into account
that the interevent probability Q(t) of a symmetric telegraph
noise with color α is the value Q(t) = (α/2) exp[−αt/2], the
probability of having at tvmax ± 1% is of the order of α/4, and
the probability of having a flip in ζ in the interval described by
Eq. (C6) is 5α/4. Therefore, the first number gets extremely
low in the quasideterministic regime. Nevertheless, taking
into account the form of Q(t) [on which p(v) for large values
of v hinges] and the number of flips needed to reach maximal
speed η, we estimate that the distribution of the velocity
decays close to

ftail(v) ∼ exp

[
−|v|

V

]
, |vmax

1 | < v < ṽmax, (C7)

where ṽmax is the average of the maximal values of the velocity
above |vmax

1 | and V has velocity dimensions (length)×(time)−1

and is naturally a function of the parameters of the problem.
Under this rubric one estimates

V =
[

γ ξ

km�

][
η
α

2

]
, (C8)

which is concurrent with the numerical analysis shown in the
inset of Fig. 11. From this whole reasoning we have

p(v) ≈ 1

η + Z

⎡⎣δ(v) +
η−2∑
i=1

1

π

√(
2vmax

i

)2 − v2
+ ftail(v)

⎤⎦,

(C9)

where Z = ∫
ftail(v)dv.
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FIG. 11. (a) Distribution p(v) vs v for m = k = γ = 1, T = 1/3, and α = 1/5. (b) Close-up of the behavior after |2vmax
1 | and the maximal

velocity that was computed at 1.8755 . . . (vertical line). The red line has slope V−1 = 3.01 . . . as obtained by the parameters. The slump
indicated by the dotted line is located at v � 2.62, which corresponds to the average of the maximal values of the velocity above |vmax

1 |, ṽmax.
The inset shows the maximal speed given by the number of flips of ζ if that flip occurs at maximal displacement from ζ/k.

With respect to the injected power, it is intuitive to think
that p(jinj) is built upon p(v) and taking into consideration
that jinj = v(t)η(t). On that account, we comprehend that the
component of the injected power distribution is associated
with vmax

2 [which is actually a local minimum (assuming ζ >

0)] and must be centered on negative value. Assuming that
p(jinj)djinj = p(v)dv, the bulk of the distribution is given by
the superposition of

pi(jinj) ∼ 1√(
ξvmax

i

)2 − (
jinj − ξvmax

i

)2
. (C10)

The postbulk part of the distribution before the real tail exhibits
an exponential decay with a slope (ξV)−1 for the positive
side and (2ξV)−1 for the negative part of the distribution. A
comparison is shown in Fig. 12. It is visible that the extreme
tails of the distribution of the injected power decays much
faster than the exponential.

APPENDIX D: EXPLICIT RELATIONS
FOR THE MOMENTS

In this Appendix the dynamical statistical moments of the
quantity O are denoted by 〈O〉 and the probability cumulant
by 〈O〉p.
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FIG. 12. (a) Distribution of the injected power for m = k = γ = 1, T = 1/3, and α = 1/5. Also shown are close-ups of the behavior (b)
before −2ξ |vmax

2 | = −0.3680 . . . and (c) after 2ξ |vmax
1 | = 2.257 . . . and the maximal injected power equal to ±2.691 . . .. (b) and (c) also show

the pretail decays that in this case are close to exponentials with both slopes indicated in the text.
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1. Moments of the velocity

a. Formulas obtained from Eq. (2)

The second- and fourth-order dynamical moments were
obtained in [32] for generic cases and for our fully symmetrical

conditions they amount to

〈v2〉 = a2α

γ k̂
= T

m
(D1)

and

〈v4〉 = 3a4α

γ 2(4km + 3γ 2)�

[
18k2m(2γ̂ − γ ) + 3αγ 2γ̂ (γ̂ + γ ) + k

(
4δ3

γ + 14δ2
γ γ + 49δγ γ 2 + 36γ 3

)]
, (D2)

with

δO ≡ Ô − O, (D3)

� ≡ k̂α − γ, (D4)

� ≡ γ 3(km + 2γ 2)(16km + 5γ 2)[km + (γ̂ + γ )(γ̂ + 2γ )][9km + γ̂ (γ̂ + 3γ )][25k + α(γ̂ + 4γ )], (D5)

ϒ ≡ γ (4km + 3γ 2)(36km + 7γ 2)(4km + 15γ 2)[km + (γ̂ + 2γ )(γ̂ + 3γ )]

× [49k + α(γ̂ + 6γ )][9km + (γ̂ + γ )(γ̂ + 4γ )][25km + γ̂ (γ̂ + 5γ )]. (D6)

The sixth-order moment, which together with the previous two is need to obtain the values of the parameters B, ν, and δ, and the
eighth-order moment, which is used to appraise the quality of the approximation, are especially computed for this case and they
are equal to

〈v6〉 = 15a6α

γ 3(4km + 3γ 2)��

[
30α2γ 6γ̂ 2(γ̂ + γ )2(γ̂ + 2γ )(6γ̂ + 3γ ) + 7200k6m4(6γ̂ + 5γ )(3γ̂ − γ )

+ 2k5m3
(
132400γ 4 + 662471γ 3δγ + 436066γ 2δ2

γ + 96048γ δ3
γ + 16992δ4

γ

)
+ k4m2

(
630400γ 6 + 1717572γ 5δγ + 1677781γ 4δ2

γ + 847182γ 3δ3
γ + 225164γ 2δ4

γ + 27296γ δ5
γ + 2752δ6

γ

)
+ k3m

(
489600γ 8 + 1607864γ 7δγ + 2062358γ 6δ2

γ + 1299041γ 5δ3
γ + 455517γ 4δ4

γ + 101202γ 3δ5
γ + 14348γ 2δ6

γ

+ 928γ δ7
γ + 64δ8

γ

) + k2γ 2
(
115200γ 8 + 487536γ 7δγ + 820244γ 6δ2

γ + 729262γ 5δ3
γ + 384501γ 4δ4

γ + 123904γ 3δ5
γ

+ 23871γ 2δ6
γ + 2770γ δ7

γ + 196δ8
γ

) + k2γ 2
(
115200γ 8 + 487536γ 7δγ + 820244γ 6δ2

γ

+ 729262γ 5δ3
γ + 384501γ 4δ4

γ + 123904γ 3δ5
γ + 23871γ 2δ6

γ + 2770γ δ7
γ + 196δ8

γ

)
+ kαγ 4γ̂ (γ̂ + γ )

(
12960γ 5 + 28116γ 4δγ + 20576γ 3δ2

γ + 7559γ 2δ3
γ + 1570γ δ4

γ + 151δ5
γ

)]
(D7)

and

〈v8〉 = 105a8α

γ 3(4km + 3γ 2)��ϒ

[
9450α3γ 12γ̂ 3(γ̂ + γ )3(γ̂ + 2γ )2(γ̂ + 3γ )2(γ̂ + 4γ )(γ̂ + 5γ )

+ 22861440000m9k12
(
3γ 3 + 108γ δ2

γ + 59γ 2δγ + 36α3
)

+ 129600m8k11(13154883γ 5 + 205825503γ 4δγ + 321906444γ 3δ2
γ + 130746580γ 2δ3

γ + 22802688γ δ4
γ + 2754432δ5

γ

)
+ 144m7k10

(
101869879125γ 7 + 1113351239214γ 6δγ + 1513670232684γ 5δ2

γ + 861920233464γ 4δ3
γ

+ 282590656896γ 3δ4
γ + 54830216096γ 2δ5

γ + 5755242240γ δ6
γ + 421445376δ7

γ

) + 4m6k9
(
14585447104200γ 9

+ 107718183204455γ 8δγ + 169865405170524γ 7δ2
γ + 125665542892472γ 6δ3

γ + 53594657126928γ 5δ4
γ

+ 14506249503440γ 4δ5
γ + 2670891645888γ 3δ6

γ + 332459640000γ 2δ7
γ + 24467816448γ δ8

γ + 1275826176δ9
γ

)
+ 4m5k8

(
30772809597600γ 11 + 162623360141110γ 10δγ + 286037170965599γ 9δ2

γ + 260962740210066γ 8δ3
γ

+ 145570297328276γ 7δ4
γ + 53727649314136γ 6δ5

γ + 13554851303888γ 5δ6
γ + 2366315590272γ 4δ7

γ

+ 292501317888γ 3δ8
γ + 25599795712γ 2δ9

γ + 1374667776γ δ10
γ + 55213056δ11

γ

) + m4k7
(
146079614419200γ 13

+ 673324950413280γ 12δγ + 1298937301460488γ 11δ2
γ + 1398987141650953γ 10δ3

γ + 949573414780768γ 9δ4
γ

+ 434323715860580γ 8δ5
γ + 139687524753776γ 7δ6

γ + 32480959166624γ 6δ7
γ + 5511414622528γ 5δ8

γ
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+ 674661522496γ 4δ9
γ + 59244718336γ 3δ10

γ + 3740824320γ 2δ11
γ + 143179776γ δ12

γ + 4644864δ13
γ

)
+ 2m3k6

(
49444684329600γ 15 + 242847778998240γ 14δγ + 518054563964592γ 13δ2

γ + 634395072125717γ 12δ3
γ

+ 501682141266615γ 11δ4
γ + 273588627177923γ 10δ5

γ + 107023373036174γ 9δ6
γ + 30713177257768γ 8δ7

γ

+ 6543676765560γ 7δ8
γ + 1042329832784γ 6δ9

γ + 124083645600γ 5δ10
γ + 10805855936γ 4δ11

γ

+ 668781568γ 3δ12
γ + 29622528γ 2δ13

γ + 681984γ δ14
γ + 18432δ15

γ

)
+m2k5γ 2

(
37261556236800γ 15 + 206348951397312mγ 14δγ + 502526596906944γ 13δ2

γ + 713526202827144γ 12δ3
γ

+ 661967396039776γ 11δ4
γ + 426819773462303γ 10δ5

γ + 198730218933658γ 9δ6
γ + 68523162500403γ 8δ7

γ

+ 17774322400960γ 7δ8
γ + 3490331685988γ 6δ9

γ 517126851280γ 5δ10
γ + 57265238304γ 4δ11

γ + 4682031040γ 3δ12
γ

+ 272837312γ 2δ13
γ + 10497280γ δ14

γ + 285952δ15
γ

) + 2mk4γ 4
(
3593818368000γ 15 + 23720294612160γ 14δγ

+ 68508160820064γ 13δ2
γ + 115161863097096γ 12δ3

γ + 126561745923096γ 11δ4
γ + 96923640848279γ 10δ5

γ

+ 53802181256450γ 9δ6
γ + 22189228510173γ 8δ7

γ + 6897533455102γ 7δ8
γ + 1626983860750γ 6δ9

γ

+ 291452948250γ 5δ10
γ + 39413861188γ 4δ11

γ + 3951209848γ 3δ12
γ + 282915600γ 2δ13

γ + 13637984γ δ14
γ + 376448δ15

γ

)
+ k3γ 6

(
548674560000γ 15 + 4947931008000γ 14δγ + 18403154847360γ 13δ2

γ + 38648225054736γ 12δ3
γ

+ 32398743082888γ 9δ6
γ + 15989498629087γ 8δ7

γ + 52153135324704γ 11δ4
γ + 48484670606232γ 10δ5

γ

+5927517027284γ 7δ8
γ + 1664923361414γ 6δ9

γ + 354472762668γ 5δ10
γ + 56701607823γ 4δ11

γ

+ 6679340096γ 3δ12
γ + 558513308γ 2δ13

γ + 30637648γ δ14
γ + 862048δ15

γ

)
+ 6k2αγ 8γ̂ (γ̂ + γ )

(
11648448000γ 12 + 62953977600γ 11δγ + 144335339640γ 10δ2

γ + 188290456740γ 9δ3
γ

+ 158039773770γ 8δ4
γ + 91004188981γ 7δ5

γ + 37204890166γ 6δ6
γ + +10971829581γ 5δ7

γ

+ 2339446461γ 4δ8
γ + 356375064γ 3δ9

γ + 37395639γ 2δ10
γ + 2460974γ δ11

γ + 77264δ12
γ

)
+ 45kα2γ 10γ̂ 2(γ̂ + γ )2(γ̂ + 2γ )2(γ̂ + 3γ )

(
1814400γ 6 + 4295280γ 5δγ + 3526828γ 4δ2

γ + 1464672γ 3δ3
γ

+ 348205γ 2δ4
γ + 45354γ δ5

γ + 2473δ6
γ

)]
. (D8)

b. Formulas obtained from the ansatz

The even moments of distribution (D9),

p(v) = 1

Z

[
1 − B

ν
|v|δ

]ν

, (D9)

are equal to

〈v2n〉p =
( ν

B
)2n/δ �

[
2n+1

δ

]
�
[
1 + 1

δ
+ ν

]
�
[

1
δ

]
�
[
1 + 2n+1

δ
+ ν

] , n ∈ N. (D10)

c. Excursus

Despite the fact that p(|jdis|) does not permit the calculation
of a FR because jdis is nonpositive, one can determine a FR-like
relation p(|j̃dis|)/p(−|j̃dis|), where j̃dis ≡ ln |jdis|

〈jdis〉 = ln m|jdis|
γT .

In this way, it is possible to compare the probability of having
a large depletion of power with the probability of having a little
dissipation, in dissipated power units. Since in the white-noise
limit the distribution converges to the χ2 distribution with one
degree of freedom

pWN(|jdis|) =
√

m

2πγT |jdis| exp

[
− m

2γT |jdis|
]
, (D11)

that relation is

pWN(|j̃dis|)
pWN(−|j̃dis|)

= exp[|j̃dis| − sinh(|j̃dis|)]. (D12)

Equation (D12) has two asymptotic limits

lim
j̃dis�1

pWN(|j̃dis|)
pWN(−|j̃dis|)

= exp

[
−1

2
exp[|j̃dis|]

]
,

lim
j̃dis�1

pWN(|j̃dis|)
pWN(−|j̃dis|)

= 1.

(D13)

These last results mean that around the average j̃dis = 0 one has
a quite similar behavior on its left-hand and right-hand sides.
When comparing large dissipation with no dissipation, the first
asymptotic limit of Eq. (D13) shows that the probability of the
latter is overwhelmingly larger than that of the former. This
feature is largely established by the exponential decay of the
χ2 distribution.

For finite values of α, a similar approach can be carried out,
using Eq. (D9) though. However, natural differences emerge.
First, we have the question related to the cutoff imposed by
the compact support of Eq. (D9) and second, because of the
nonexponential form p(|jdis|), the FR-like relation for the
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FIG. 13. Fluctuation relation for the logarithm of the absolute
value of the dissipated power j̃dis in the white-noise limit with m =
k = γ = 1 and T = 1/3.

logarithm of the dissipated power does not have a simple form,
but it certainly does not have an (asymptotic) exponential form,

but for intermediate values the FR-like relation decays more
slowly because of the nonexponential features (see Fig. 13).

2. Moments of the injected power

a. Analytical and ansatz moments up to fourth order

Regarding jinj, one has for the average

〈jinj〉 = γ

m
T , (D14)

for second order 〈
j 2

inj

〉 = αγ k̂

δ2
γ

T 2, (D15)

for third order〈
j 3

inj

〉 = 3αγ 2k̂3 αγ̂ (γ + γ̂ ) + k(8γ + 9γ̂ )

δ3
γ �

T 3, (D16)

and for fourth order

〈
j 4

inj

〉 = 3αγ 2k̂4
3αγ 2γ̂ (γ + γ̂ ) + 18k2m(2γ̂ − γ ) + k

(
36γ 3 + 49γ 2δγ + 14γ δ2

γ + 4δ3
γ

)
�δ4

γ (3γ 2 + 4km)
T 4. (D17)

The moments given by the ansatz (25),

p(jinj) =
[

1 − B
ν

(jinj − ω)2

]ν{
A + ϕ(jinj − ω)A′

×2F1

[
1

2
,ν;

3

2
; −Bα2

ν
(jinj − ω)2

]}
,

where

A ≡
√

B

πν3

�
(

3
2 + ν

)
�(ν)

, A′ ≡ 2B�
(

3
2 + ν

)
πν2�

(
ν − 1

2

) , (D18)

read as follows: For the average

〈jinj〉p = ω +
√

ν

πBα

(
ν2 − 1

4

)
�[ν] 2F̃1

[
1

2
,ν; ν + 5

2
; −α2

]
= ω + 〈jinj〉′p, (D19)

for second order〈
j 2

inj

〉
p

= ν

B(2ν + 3)
+ ω(2〈jinj〉′p + ω)

= 〈
j 2

inj

〉′
p

+ ω(2〈jinj〉′p + ω), (D20)

for third order〈
j 3

inj

〉
p

= 3

4

( ν

B
)3/2

α

(
ν2 − 1

4

)
�[ν]

× 3F̃2

(
1

2
,
5

2
,ν;

3

2
,ν + 7

2
; −α2

)
+ 3

〈
j 2

inj

〉′
p
ω + 3〈jinj〉′pω2 + ω3

= 〈
j 3

inj

〉′
p

+ ω
[
3
(〈
j 2

inj

〉′
p

+ 〈
j 2

inj

〉′
p
ω
) + ω2], (D21)

with

δO ≡ Ô − O, (D22)

� ≡ k̂[km + γ̂ (γ̂ + γ )][9k + α(γ̂ + 2γ )], (D23)

and for fourth order〈
j 4

inj

〉
p

= 3ν2

(4ν2 + 16ν + 15)B2
+ 4

〈
j 3

inj

〉′
p
ω

+ 6
〈
j 2

inj

〉′
p
ω2 + 4〈jinj〉′pω3 + ω4

= 〈
j 4

inj

〉′
p

+ 4
〈
j 3

inj

〉′
p
ω + 6

〈
j 2

inj

〉′
p
ω2 + 4〈jinj〉′pω3 + ω4.

(D24)

The dependence of the skewness

γ1(jinj) ≡
〈〈
j 3

inj

〉〉〈〈
j 2

inj

〉〉3/2 (D25)

and the kurtosis

γ2(jinj) ≡
〈〈
j 4

inj

〉〉〈〈
j 2

inj

〉〉2 (D26)

of injected power on α is depicted in Fig. 6.

b. Fifth-order moment error analysis

For the assessment of the approach, we compute the fifth-
order moment as well, which for this probability distribution
function is equal to〈

j 5
inj

〉′
p

= 15

8

( ν

B
)5/2

α

(
ν2 − 1

4

)
�[ν] 3F̃2

×
[

1

2
,
7

2
,ν;

3

2
,ν + 9

2
; −α2

]
, (D27)
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with 〈
j 5

inj

〉
p

=
5∑

n=0

(
5
n

)〈
jn

inj

〉′
p
ω5−n (D28)

and from the dynamics〈
j 5

inj

〉 = 15αγ 3k̂5T 5

�δ5
γ [25k + α(4γ + γ̂ )](4km + 3γ 2)[km + (γ̂ + γ )(γ̂ + 2γ )+][9km + γ̂ (3γ + γ̂ )]

× [
3α2γ 2γ̂ 2(γ + γ̂ )2(2γ + γ̂ )(3γ + γ̂ ) + k3m

(
12672γ 4 + 29768γ 3δγ + 27573γ 2δ2

γ + 12058γ δ3
γ + 2124δ4

γ

)
+ 18k4m2

(
256γ 2 + 1025γ δγ + 450δ2

γ

) + αγ̂ (γ + γ̂ )k
(
1008γ 5 + 2022γ 4δγ + 1209γ 3δ2

γ + 305γ 2δ3
γ + 42γ δ4

γ + 4δ5
γ

)
+ k2

(
6912γ 6 + 25464γ 5δγ + 34204γ 4δ2

γ + 21733γ 3δ3
γ + 7561γ 2δ4

γ + 1598γ δ5
γ + 172δ6

γ

)]
. (D29)

APPENDIX E: COEFFICIENTS OF EQ. (25)

The coefficient of the term of first order in ϕ in the numerator is

A1 = 2

√
B
πν

�[ν]

�
[
ν − 1

2

] 2F1

[
1

2
,ν;

3

2
; −Bϕ2

ν

(√
ν

B − 2a

)2
]

(E1)

and in the denominator equals

B1 = 2

√
B
πν

�[ν]

�
[
ν − 1

2

] 2F1

[
1

2
,ν;

3

2
; −ϕ2

]
. (E2)

With respect to the terms of third order in ϕ they would read

A3 = 4

3

√
B
πν

�[ν]

�
[
ν − 1

2

] (x − ω)[2ωB(x + ω) −
√
Bν(x + 3ω) + ν] 2F1

[
3

2
,ν + 1;

5

2
; −Bϕ2

ν

(√
ν

B − 2ω

)2
]

(E3)

and

B3 = 4

3

√
B
πν

�[ν]

�
[
ν − 1

2

] (x + ω)[
√
Bν(x − ω) + ν] 2F1

(
3

2
,ν + 1;

5

2
; −ϕ2

)
(E4)

for the numerator and the denominator, respectively.
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A. A. Budini and M. O. Cáceres, J. Phys. A 37, 5959
(2004).

[28] P. Allegrini, P. Grigolini, and B. J. West, Phys. Rev. E 54, 4760
(1996); P. Allegrini, P. Grigolini, L. Palatella, and B. J. West,
ibid. 70, 046118 (2004).

[29] L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645
(1997).
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