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The electrical conductivity of a monolayer produced by the random sequential adsorption (RSA) of linear
k-mers (particles occupying k adjacent adsorption sites) onto a square lattice was studied by means of computer
simulation. Overlapping with predeposited k-mers and detachment from the surface were forbidden. The RSA
process continued until the saturation jamming limit, pj . The isotropic (equiprobable orientations of k-mers along
x and y axes) and anisotropic (all k-mers aligned along the y axis) depositions for two different models—of
an insulating substrate and conducting k-mers (C model) and of a conducting substrate and insulating k-mers
(I model)—were examined. The Frank-Lobb algorithm was applied to calculate the electrical conductivity in
both the x and y directions for different lengths (k = 1 – 128) and concentrations (p = 0 – pj ) of the k-mers.
The “intrinsic electrical conductivity” and concentration dependence of the relative electrical conductivity �(p)
(� = σ/σm for the C model and � = σm/σ for the I model, where σm is the electrical conductivity of substrate)
in different directions were analyzed. At large values of k the �(p) curves became very similar and they almost
coincided at k = 128. Moreover, for both models the greater the length of the k-mers the smoother the functions
�xy(p),�x(p) and �y(p). For the more practically important C model, the other interesting findings are (i) for
large values of k (k = 64,128), the values of �xy and �y increase rapidly with the initial increase of p from 0 to
0.1; (ii) for k � 16, all the �xy(p) and �x(p) curves intersect with each other at the same isoconductivity points;
(iii) for anisotropic deposition, the percolation concentrations are the same in the x and y directions, whereas, at
the percolation point the greater the length of the k-mers the larger the anisotropy of the electrical conductivity,
i.e., the ratio σy/σx (> 1).
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I. INTRODUCTION: ELECTRICAL CONDUCTIVITY OF
INHOMOGENEOUS MEDIA

The physical properties of inhomogeneous materials (first
of all binary materials) have attracted a lot of attention in
the scientific community for many decades. This interest is
supported by numerous applications such as the production
and use of nanocomposites [1]. Theoretical prediction of the
effective properties of such materials is very important for the
analysis of material performance and for the design of new
materials [2,3].

Particular interest is paid to the electrical properties of
composites. The theories and models relating to the electrical
conductivity, σ , of mixtures of conducting and insulating
species continue to attract great interest from researchers [4].
The limiting case of an infinitely diluted mixture has been
extensively considered since the 19th Century [5]. In a
Maxwell approximation [5, pp. 440–441] and in a Maxwell
Garnett approach [6,7], the impurities are supposed to be at a
low concentration and have regular compact forms, e.g., sphere
or ellipsoid. For randomly oriented and arbitrarily shaped
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particles with electrical conductivity σp suspended in a contin-
uous medium with electrical conductivity σm, the generalized
Maxwell model gives the following virial expansion [8,9]:

σ

σm

= 1 + [σ ]p + O(p2), (1)

where

[σ ] = d ln σ

dp

∣∣∣∣
p→0

, (2)

is called the “intrinsic conductivity”, and p is the volume
fraction of the particles. The value of the “intrinsic conduc-
tivity” [σ ] depends upon the electrical conductivity contrast
� = σp/σm, the particle’s shape, the orientation of the particle
with respect to the direction of measurement of the electrical
conductivity, the spatial dimension d, and the continuous or
discrete nature of the problem. For instance, for randomly
distributed hyperspherical particles in d dimensions [10]:

[σ ] = d(� − 1)

(� + d − 1)
. (3)

In the two limiting cases, Eq. (3) gives [σ ]∞ = d for
� → ∞ (conducting inclusions in the insulating medium)
and [σ ]0 = −d(d − 1) for � → 0+ (insulating inclusions in
the conducting medium).
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By the end of 20th Century, the values of [σ ] for particles
with a wide range of shapes had also been estimated [8,9]. For
example, for randomly oriented elliptical inclusions in d = 2,

[σ ] = (�2 − 1)(1 + k)2

2(1 + k�)(� + k)
, (4)

where k is the ratio of the semimajor to semiminor axes, i.e.,
the aspect ratio of the particles. In the two limiting cases,
� → ∞ and � → 0+, this equation gives

[σ ]∞ = −[σ ]0 = 1 + (k + k−1)/2. (5)

For the whole composition interval p ∈ [0,1], a few
dozen equations for the concentration dependence of σ (p)
based on different models had been developed and many
comprehensive reviews published [4,11,12]. Both continuous
and discrete models as well as two-dimensional (2D) and three-
dimensional (3D) systems have been extensively analyzed to
date.

The effective medium approximation (EMA) [13] is one
of the widely used approaches. The EMA provides a good
description of the physical properties at any concentration
except the fairly narrow region around the percolation
threshold [14]. An alternative description, i.e., the percola-
tion approach, has been applied to a system consisting of
randomly distributed conducting and isolating regions [15].
In the percolation approach, the electrical conductivity, σ ,
varies with the concentration of the conducting particles,
p, as σ ∝ (p − pc)t , when p > pc, and σ ∝ (pc − p)−s ,
when p < pc. Here pc is the percolation threshold (critical
concentration) and, t and s are the critical exponents [15].
Note that an extended approximation obtained in terms of
the Maxwell approach allowed description of the electrical
properties of the composites for a wide concentration range and
even demonstrated the presence of the percolation threshold
[14].

Nowadays, the most popular is the so-called generalized
effective medium (GEM) equation that accounts for the
position of the percolation threshold, pc, and the values of the
conductivity exponents s (below) and t (above) percolation
[1],

(1 − p)
σ

1/s
m − σ 1/s

σ
1/s
m + Aσ 1/s

+ p
σ

1/t
p − σ 1/t

σ
1/t
p + Aσ 1/t

= 0, (6)

where A = (1 − pc)/pc and p is the concentration of the more
conductive species. At the percolation threshold, p = pc, the
GEM Eq. (6) gives

σ = σ t/(t+s)
m σ s/(t+s)

p , (7)

which for a 2D problem reduces to

σ = √
σmσp. (8)

This corresponds exactly to the prediction for 2D systems in
the case of systems with equal concentrations of the phases
pc = 1/2 [16].

For the “intrinsic conductivities”, the GEM equation gives

[σ ]∞ = s/pc (9)

for the limiting case � → ∞ and

[σ ]0 = −t/(1 − pc) (10)

for the limiting case � → 0+. Note that in the limit of
the Bruggeman’s symmetric theory (i.e., at t = s = 1 and
pc = 1/d [17], the GEM approximation is consistent with
the generalized Maxwell model [Eq. (3)] and for 2D systems
it gives [σ ]∞ = 2 and [σ ]0 = −2. For 2D random percolation
of monomers on a square lattice with s = t = 4/3 and pc =
0.5927 [18], the GEM approximation gives [σ ]∞ ≈ 2.25 and
[σ ]0 ≈ −3.27.

In many previous experimental and simulation investiga-
tions, special interest has been paid to the behaviors of the
electrical conductivity and percolation thresholds of the media
filled with the particles with anisotropic shapes. Experiments
with small conducting carbon rods in an insulating matrix
evidenced the strong lowering of the percolation threshold with
increased particle length to diameter ratio (aspect ratio) [19].
The increase in ordering of sticklike carbon black aggregates
resulted in an increase in the electrical conductivity anisotropy
measured along and perpendicular to the orientation of the
aggregates [20]. Experiments with graphite platelet-filled [21]
and carbon nanotube-filled [22] nanocomposites revealed
the differences in electrical conductivities and percolation
thresholds measured along and perpendicular to the orientation
of the particles. The effects of nanotube alignment on the
percolation conductivity in composites have been studied both
experimentally and by Monte Carlo simulations [23]. The data
revealed that the largest conductivity occurred for slightly
aligned, rather than isotropic systems.

Note that 2D systems such as metal nanowire films attract
particular attention in the scientific community because of their
possible applications as flexible, solution-processed transpar-
ent conductors [24,25]. Computer studies of 2D system of
conducting sticks revealed anisotropy of the electrical con-
ductivity for aligned systems [20,26]. The general percolation
problem of cutting randomly centered insulating holes of
arbitrary shape in a 2D conducting sheet and its electrical
conductivity has also been investigated [27].

Computer simulations have been extensively applied to
study percolation and jamming phenomena in oriented and
nonoriented 2D systems both for continuous (sticks) [28–30]
and for lattice (k-mers) problems [31–37]. For example, with
k-mers deposited using the random sequential absorption
(RSA) model, the data revealed that the percolation threshold
has a minimal value when k ≈ 16 and, probably, percolation
is impossible for very long k-mers (k � 104) [36]. Moreover,
defects have a drastic influence on the percolation behav-
ior [38] of the system of k-mers and electrical conductivity
of a monolayer produced by aligned k-mers [39].

However, in spite of the progress in experimental investi-
gations and computer simulations of the electrical properties
of 2D composites containing rodlike inclusions [24,25], some
issues have not yet been resolved. Of particular interest are
the “intrinsic conductivities” and the concentration behavior
of the electrical conductivity of systems filled with oriented
and nonoriented anisotropic inclusions. Such problems for 2D
square lattice systems of k-mers deposited using the RSA
model have not previously been discussed in the literature.

The rest of the paper is constructed as follows. In Sec. II,
the technical details of simulations are described, all necessary
quantities are defined, and some test results for monomers in
comparison with the generalized effective medium approach
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are presented. Section III presents our principal findings.
Section IV summarizes the main results.

II. METHODS: COMMON DETAILS OF SIMULATION

In our computer simulation, the RSA model was used to
produce a monolayer [40]. The deposition of linear k-mers onto
a discrete 2D square lattice with periodic boundary conditions
(a torus) was performed until a jamming state occurred, i.e.,
the state when no additional k-mers can be placed because
the presented voids are too small or of inappropriate shape.
The isotropic as well anisotropic deposition of k-mers was
examined. During isotropic deposition, both possible orienta-
tions of the k-mers along the x and y axes are equiprobable.
During anisotropic deposition, all the k-mers were aligned
along the y direction. Overlapping with previously deposited
k-mers was strictly forbidden; as a result, a monolayer was
formed. Adhesion between deposited k-mers and the substrate
was assumed to be very strong, so once deposited, a k-mer
cannot slip over the substrate or leave it (detachment is
impossible). We studied the effect of k-mer length on the
electrical conductivity, σ , of the monolayer. The values of
k were 2n, where n = 1,2, . . . ,7. Some particular calculations
were performed for monomers (k = 1) in order to make
comparisons with the published results.

Two different models were considered:
(i) in the C model, the electrical conductivity of the k-mers

σp is much larger than the electrical conductivity of the bonds
of the substrate σm, i.e., σp � σm (� � 1, forming conducting
inclusions in insulating medium);

(ii) in the I model, the electrical conductivity of the k-mers
σp is much smaller than the electrical conductivity of bonds
of the substrate σm, i.e., σp 	 σm (� 	 1, forming insulating
inclusions in conducting medium).

Different electrical conductivities of the bonds between
empty sites, σm, filled sites, σp, and empty and filled sites,
σpm = 2σpσm/(σp + σm) were assumed (Fig. 1). For the C
model, we put σm = 1, σp = 106 in arbitrary units and, for the
I model, we put σm = 106, σp = 1.

After deposition of a given number of k-mers, the torus was
unrolled in a plane and two conducting buses were applied to

FIG. 1. Fragment of a square lattice with two deposited 3-mers
of different orientations. Conductivities of bonds are indicated.

its opposite sides. The electrical conductivity was calculated
between these buses. The electrical conductivity of the system
was calculated using the Frank-Lobb algorithm [41] in the
x (σx) and y (σy) directions. Note that σx is the transversal
electrical conductivity, i.e., the electrical conductivity in a
direction perpendicular to the direction of k-mer alignment
and σy is the longitudinal electrical conductivity, i.e., the
electrical conductivity along the direction of k-mer alignment.
The calculations of σ were performed each time after the
deposition of a given number of particles, until the fraction
of occupied lattice sites reached the jamming coverage. For
the isotropic case σx = σy = σxy . The relative conductivity
was defined as � = σ/σm for the C model and � = σm/σ

for the I model. For each given value of k, the computer
experiments were repeated from 10 to 100 times, and then
the logarithm of the effective conductivity was averaged. The
calculations for the case of k = 128 and L = 100k were
too time consuming therefore only one run was performed
for this case. Figure 2 illustrates the procedure of electrical

(b)

(a)

FIG. 2. Relative electrical conductivity � versus the concentra-
tion of k-mers, p, for k = 2, L = 100k, isotropic deposition and
the C model. The enlarged section near the percolation threshold
is presented. The diagram shows both the results of 100 runs without
averaging (a) and the corresponding averaged effective conductivity
with error bars (b).
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FIG. 3. Scaling analysis for k = 16, L = 25k, 50k, 100k, the C
model and isotropic deposition. The data are obtained by averaging
over 100 independent runs. Inset shows �25 = σ/σL=25k versus 1/L

dependencies at p = 0.4 and p = 0.7. The statistical error is smaller
than the marker size.

conductivity averaging for k = 2 (L = 100k, isotropic depo-
sition and the C model) using 100 runs. For small values of
k (k < 8), each individual run demonstrates a rather sharp
transition from a low conducting state to a high conducting
state [Fig. 2(a)]. This jump corresponds to the percolation
threshold. Due to the randomness of the deposition of k-mers,
the value of the percolation threshold may vary a little between
different runs. The averaging of the logarithms makes the
transition smoother [Fig. 2(b)]. For the example in Fig. 2(b)
(isotropic deposition) the effective conductivity equals

√
σmσp

at the percolation transition and this corresponds with the
theoretical prediction [16]. Figure 2(b) is presented to provide
some information regarding the data errors for any �(p)
curves. Everywhere excluding very narrow region around the
percolation threshold, the data errors are insignificant and of
order of the marker size. Near the percolation threshold, the
fluctuations are large. Nevertheless, these fluctuations reduce
when the value of k increases.

A scaling analysis of σ (p) at different values of k and L was
performed. Figure 3 shows an example of the relative electrical
conductivity � versus the concentration of k-mers p for the
C model, isotropic deposition, k = 16, L = 25k, 50k, 100k.
The difference between the approximated value of electrical
conductivity in the limit of the infinite system �L→∞ and
�L=100k was of the order of several percents (see inset to
Fig. 3). This is a reason why in our computations, for any
value of k, the lattice size L was L = 100k.

To estimate the percolation thresholds of the system, the
first derivatives of the conductivity plots d ln �/dp were eval-
uated. Such an approach is frequently used for determination
of the percolation threshold in composite systems [21,42,43].
The solid lines in Fig. 4 give examples of the calculated �

and d ln �/dp versus the p dependencies for the particular
case of monomers (k = 1). Here, the dashed lines correspond
to the prediction of the GEM Eq. (6). In general, the
differences between the data from computer simulations and

FIG. 4. Effective conductivity, �, and derivative d ln �/dp ver-
sus the concentration of monomers (k = 1), p, for the C model,
L = 256. The results are averaged over 1000 runs. Results obtained
from our computer experiments are shown as solid lines. Results of
the GEM approximations are shown as dashed lines.

the GEM theory were more noticeable at small concentrations
of monomers, p < pc.

The “intrinsic conductivity” was calculated from the initial
slope of |� − 1| versus the concentration of the k-mers
p dependencies at small values of p. Figure 5 presents
examples of such dependencies for monomers (k = 1) for the
C model and the I model. Here, the predictions of the GEM
approximation [Eq. (6)] are also shown by dashed lines. For the
C model the “intrinsic conductivities” were fairly close for the
square lattice problem of monomers ([σ ]0 = 3.202 ± 0.010)
and for the GEM approximation ([σ ]0 = 3.274). By contrast,
for the I model, the “intrinsic conductivity” for the square
lattice problem of monomers was [σ ]∞ = 1.504 ± 0.004 and
was noticeably different from that for the GEM approximation

FIG. 5. Calculated dependencies of the value of |� − 1| versus
the concentration of monomers, p, for the C model and the I model,
L = 256. The results are averaged over 1000 runs. Linear fittings are
shown as solid lines. Results of the GEM approximations are shown
as dashed lines. The statistical error is smaller than the marker size.
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([σ ]∞ = 2.25). However, for the square lattice problem of
monomers the both values of [σ ]0 and [σ ]∞ were significantly
different from the predictions of the Maxwell model ([σ ]0 =
[σ ]∞ = 2). It demonstrates the weakness of the Maxwell and
the GEM approximations for a prediction of the intrinsic
conductivities for the square lattice problem of monomers.

III. RESULTS

A. “Intrinsic conductivity”

Figure 6 presents the absolute value of the “intrinsic
conductivity” |[σ ]| versus k-mer length for isotropic (a) and
anisotropic (b, c) depositions for both the C model and the
I model. The values of σ are positive for the C model and
negative for the I model.

For isotropic deposition, the value of |[σ ]| increases as the
lengths of the k-mers increases:

|[σxy]| ∝ k + k−1.

This linear proportionality was in qualitative correspondence
with the prediction of the Maxwell approximation for ran-
domly oriented elliptical inclusions in d = 2 [Eq. (5)].

The large differences between the numerical simulations
and the predictions of the Maxwell equation may reflect the
discreteness of the studied lattice problem for the deposition
of k-mers.

For anisotropic deposition the behaviors |[σx](k)| and
|[σy](k)| for the C model and the I model were rather different.
For the C model a linear dependence [σy] ∝ k was observed.
However, the [σx] versus k−1 dependence was nonlinear. The
linear dependencies |[σx]| ∝ k and |[σy]| ∝ k−1 were only
observed for the I model. The obtained linear dependencies
were in qualitative correspondence with the data obtained for
perfectly oriented elliptical inclusions in d = 2 [9]. Table I
summarizes the results for both models.

B. Effect of k-mer length and anisotropy of deposition on
percolation behavior of electrical conductivity

Figure 7 compares the dependencies of the relative elec-
trical conductivity, �, versus the concentration of k-mers,
p, for the C model and the I model, for (a) k = 2, (b)
k = 16, and (c) k = 128. For a small value of k (k = 2), the
percolation transitions are quite sharp, the differences between
the electrical conductivity curves for isotropic (�xy(p)) and
anisotropic (�x(p), �y(p)) depositions are fairly small and all
the conductivity curves are compactly grouped for both the C
model and the I model [Fig. 7(a)]. For larger values of k (k �
16), the corresponding differences between �xy(p), �x(p),
and �y(p) become significant and the compact grouping for
the C model and the I model disappears [Fig. 7(b)]. Moreover,
the greater the length of the k-mers the smoother is the
percolation transition.

Finally, at large values of k (k = 128), another type of
compact grouping of the conductivities curves for the C model
and the I model is observed [Fig. 7(c)]. For large values of k,
the relative electrical conductivities for the C model and for
the I model agree, within experimental error [Fig. 7(c)]. This

FIG. 6. “Intrinsic conductivity”, |[σ ]|, versus k-mer length. p →
0. Calculations and fits. (a) “Intrinsic conductivity”, |[σxy]|, versus
k + k−1, isotropic deposition. The C model (R2 = 0.998) and the I
model (R2 = 0.999). (b) “Intrinsic conductivity” versus k, anisotropic
deposition, [σx] for the C model, |[σy]| for the I model. (c) “Intrinsic
conductivity” versus k−1, anisotropic deposition, [σy] for the C model,
|[σx]| for the I model. The statistical error is smaller than the marker
size when not shown.
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TABLE I. “Intrinsic conductivities” for the C model and the I
model at different values of k.

C model I model

k [σxy]∞ [σx]∞ [σy]∞ [σxy]0 [σx]0 [σy]0

1 2a – – −2a – –
1 3.274b – – −2.25c – –

1 1.47 – – −3.22 – –
2 1.85 1.35 2.37 −3.09 −4.03 −2.14
4 2.68 1.23 4.15 −3.67 −5.71 −1.61
8 4.39 1.134 7.57 −5.22 −8.97 −1.33
16 7.63 1.09 13.84 −8.44 −15.20 −1.18
32 14.02 1.05 25.90 −14.70 −26.94 −1.10
64 26.0 1.03 53.1 −28.3 −52.5 −1.05
128 52.8 1.02 103.4 −52 −102.8 −1.02

aCalculated using Eq. (3).
bCalculated using Eq. (9).
cCalculated using Eq. (10).

observation means that at the percolation threshold there is
percolation both through empty and through occupied sites.

For the sake of clarity, it is useful to analyze the behavior
of the concentrations pg that correspond to the points of mean
geometric conductivity �g = √

�m�p. Note that the values
of pg are fairly close to the percolation thresholds pc for
isotropic deposition and are in agreement with the theoretical
predictions [16]. For isotropic deposition, the pg(k) curves
go through minima at k ≈ 16 (C model) and k ≈ 8 (I model)
(Fig. 8). This anomaly has previously only been studied in
detail for the C model [38,39]. The data revealed a minimum
of pc at k ≈ 16. For anisotropic deposition, the pg(k) curves
demonstrate in the x direction at k ≈ 16 a minimum (C model)
or maximum (I model), whereas the pg(k) curves in the y

direction are monotonic for both models. For large k-mers
(k � 40), px

g > p
xy
g > p

y
g for the C model and p

y
g > p

xy
g > px

g

for the I model. The obtained data evidence that anisotropy in
percolation behavior depends on the type of model and can
be a rather complex function of the length of the k-mer. It is
interesting that, for large values of k, the curves corresponding
to the C model and I model merge. The values of concentrations
pg are presented in Table II.

In many practically important situations, the electrical
conductivity of filler particles is much larger than the electrical
conductivity of the host medium, σp � σm (� � 1) [1]. That
is why the C model is the more interesting from a practical
point of view and it has been studied in more detail. Figure 9
presents the relative electrical conductivity, �, versus the
concentration of k-mers, p, at different values of k for isotropic
deposition (a) and anisotropic deposition (b, c). Figure 10
presents examples of the calculated logarithmic derivative
d ln �/dp versus the p dependencies for the particular case of
k = 64.

For isotropic deposition, typical S-shaped curves �xy(p)
with one inflection point at the percolation threshold p = p

xy
c

are observed at small values of k [Fig. 9(a)]. However, for large
values of k (k = 32, 64, 128), the �xy(p) curves demonstrate
a second inflection point. The position of this inflection point
corresponds to a minimum at a curve d ln �/dp (Fig. 10).

FIG. 7. Relative electrical conductivity, �, versus concentration
of k-mers, p. (a) k = 2. (b) k = 16. (c) k = 128.

Clearly expressed maxima at p = 0 and p = p
xy
c are observed

at k � 32. Visually, these two maxima resemble the two-step
percolation transitions typical of composite systems filled by
particles with a core-shell structure [44]. The magnitude of the
maximum at p = 0 is defined by the “intrinsic conductivity”,
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FIG. 8. Concentrations pg versus k-mer length (log2 scale) for
the C model and the I model evaluated from dependencies [σxy(p)]
(isotropic deposition) and [σx(p)], [σy(p)] (anisotropic deposition).
The lines are provided simply as visual guides. The statistical error
is smaller than the marker size.

d ln �xy/dp = [σxy]0 and it becomes more pronounced at
large values of k. A rather sharp transition from the insulating
state (� = 1) to a relatively conducting state (� ≈ 10) is
observed when the value of p increases from 0 to ≈ 0.1. The S-
shaped curves of �xy(p) tend to unbend the greater the length
of the deposited particles (Fig. 9). Surprisingly, for k � 16, all
the curves intersect at one point (pi ≈ 0.43, �i ≈ 102). This
isoconductivity point may reflect a similarity in the internal
structures of the deposits for different values of k.

For anisotropic deposition, an isoconductivity point (pi ≈
0.475, �i ≈ 6) was observed in the behavior of the transversal
conductivity, �y(p), when k > 16 [Fig. 9(b)], whereas the
additional inflection point was observed in the behavior of
longitudinal conductivity, �y(p), when k � 8 [Fig. 9(c)].
Figure 11(a) demonstrates an example of the appearance of the
first very narrow and almost linear percolation cluster oriented
along the direction of k-mer alignment at p = pc = 0.5118
(k = 128, L = 100k). Additional percolation clusters of a
similar shape arise when the concentration of k-mers increases
above pc [Figs. 11(b) and 11(c)]. With further increase in the

TABLE II. Concentrations pg for the C model and the I model at
different values of k.

C model I model

k pxy
g px

g py
g pxy

g px
g py

g

1 0.5927 0.5927 0.5927 0.4073 0.4073 0.4073
2 0.553 0.585 0.578 0.435 0.445 0.460
4 0.505 0.576 0.561 0.434 0.471 0.492
8 0.470 0.566 0.543 0.429 0.490 0.521
16 0.464 0.564 0.520 0.441 0.494 0.541
32 0.473 0.573 0.491 0.460 0.480 0.560
64 0.491 0.606 0.416 0.490 0.420 0.600
128 0.510 0.650 0.320 0.510 0.320 0.650

FIG. 9. Effective conductivity, � versus concentration of k-mers,
p, for different values of k. C model. (a) Isotropic deposition.
(b) Anisotropic deposition, transversal conductivity �x . (c)
Anisotropic deposition, longitudinal conductivity �y .

concentration of the deposited k-mers, p the almost linear
percolation clusters merge and form a spanning structure in
both the vertical and horizontal directions. Our previous data
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FIG. 10. Derivative d ln �/dp versus concentration of k-mers,
p. k = 64, C model. Circles at p = 0 correspond to the “intrinsic
conductivity”, [σ ]0 = d ln �/dp. The maxima at p = pc correspond
to the position of the percolation threshold. Compare with Fig. 4 for
monomers.

of scaling analysis had shown that for infinite systems px
c = p

y
c

in the studied interval k = 1–128 [36].
For a quantitative description of the anisotropy of the

electrical conductivity in the x and y directions, the anisotropy
ratio, defined from δ,

σy/σx = �δ, (11)

was used. δ = 0 for isotropic systems and δ ≈ 1 for highly
anisotropic systems with σy/σx ≈ �.

Figure 12 presents the anisotropy of electrical conductivity
δ versus the length of the k-mers calculated at the threshold
concentrations pc(k) for infinite systems [36]. The value of
δ increases with increasing k with some inflection in the δ

versus log2(k) dependence at k ≈ 16 and for very large k-mers
the ratio of the electrical conductivities σy/σx approaches
the systems conductivity contrast, �. The large difference

FIG. 12. Anisotropy of electrical conductivity δ [Eq. (11)] versus
k-mer length (log2 scale). C model. The line is provided simply as a
visual guide. The statistical error is smaller than the marker size.

between σy and σx in the percolation point for long k-mers
definitely reflects the difference in the connectivity along
different directions for this anisotropic system.

IV. CONCLUSION

The behavior of electrical conductivity of a 2D monolayer
produced by random sequential adsorption of linear k-mers
(k = 1–128) on a square lattice was analyzed. Two mirrored
models were considered: deposition of conducting k-mers
onto an insulating substrate (C model) and the embedding
of insulating k-mers into a conducting substrate (I model).
A large electrical contrast between insulating and conducting
species was assumed. Isotropic deposition with two possible
orientations of the k-mers along the x and y axes and
anisotropic deposition with all the k-mers oriented in the y

direction were examined.
The “intrinsic conductivities” at different values of k were

evaluated for the C model and the I model. For isotropic

FIG. 11. Deposition patterns for different concentrations of k-mers, p in the vicinity of the percolation threshold. k = 128, anisotropic
deposition, C model. Empty sites are shown in white, occupied sites are shown in gray, percolation clusters are shown in black. (a) p = pc =
0.5118. One cluster in the vertical direction. (b) p = 0.525. Several clusters in the vertical direction. (c) p = 0.53. More clusters in the vertical
direction, some of these clusters are merged in the horizontal direction.
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deposition, linear proportionality |[σxy]| ∝ k + k−1 was ob-
served. For anisotropic deposition, linear dependencies [σy] ∝
k (C model) and |[σx]| ∝ k,|[σy]| ∝ k−1 (I model) were ob-
served. The obtained linear dependencies for nonoriented and
oriented systems were in qualitative correspondence with the
data obtained for elliptical inclusions in d = 2 [9]. However,
[σx] versus k−1 dependence was nonlinear for the C model.

For both models, the sharpness of the electrical conductivity
percolation transition decreases with increasing value of k.
Moreover, at small values of k (k = 2), all the relative electri-
cal conductivity curves �x(p), �y(p), �xy(p) are compactly
grouped for both the C model and the I model. At large
values of k (k = 128), the compact grouping for both the
C and I models disappears and the similar relative electrical
conductivity curves for the C model and for the I models
become almost identical.

A more detailed study for the practically interesting C
model revealed many intriguing behaviors of the relative
electrical conductivity, �(p) for both isotropic and anisotropic
depositions. At relatively large values of k (k = 64, 128), the
relative electrical conductivities �xy(p) and �y(p) increased

rapidly at small concentration of k-mers (p = 0–0.1) and in
the vicinity of the percolation threshold, p = pc. Visually,
these resemble two-step percolation transitions. The initial
“jump” in relative electrical conductivities reflects the large
values of the corresponding “intrinsic conductivities” [σxy]0

and [σy]0. Surprisingly, for k � 16, all the �xy(p) and �x(p)
curves intersect at the same points (pi ≈ 0.43, �i ≈ 102 for
�xy(p) curves and pi ≈ 0.475, �i ≈ 6 for �xy(p) curves).
At the present time, we have no clear explanation for
such behavior. Finally, for large values of k the studied
deposits represent unique example of 2D systems with equal
percolation thresholds (px

c = p
y
c ) and very different electrical

conductivities in the x and y directions (�y � �x).
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