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Universality class of site and bond percolation on multifractal scale-free planar stochastic lattice
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In this article, we investigate both site and bond percolation on a weighted planar stochastic lattice (WPSL),
which is a multifractal and whose dual is a scale-free network. The characteristic property of percolation is
that it exhibits threshold phenomena as we find sudden or abrupt jump in spanning probability across pc

accompanied by the divergence of some other observable quantities, which is reminiscent of a continuous phase
transition. Indeed, percolation is characterized by the critical behavior of percolation strength P (p) ∼ (pc − p)β ,
mean cluster size S ∼ (pc − p)−γ , and the system size L ∼ (pc − p)−ν , which are known as the equivalent
counterpart of the order parameter, susceptibility, and correlation length, respectively. Moreover, the cluster size
distribution function ns(pc) ∼ s−τ and the mass-length relation M ∼ Ldf of the spanning cluster also provide
useful characterization of the percolation process. We numerically obtain a value for pc and for all the exponents
such as β, ν, γ, τ , and df . We find that, except for pc, all the exponents are exactly the same in both bond
and site percolation despite the significant difference in the definition of cluster and other quantities. Our results
suggest that the percolation on WPSL belongs to a new universality class, as its exponents do not share the same
value as for all the existing planar lattices. Besides, like all other cases, its site and bond type belong to the same
universality class.
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I. INTRODUCTION

Percolation is perhaps one of the most studied problems in
statistical physics. This is not only because of the simplicity
of its definition but also because of the versatility of its
applications. To study percolation one first needs to choose a
skeleton. It can be a lattice or a graph that has two entities
namely sites (nodes) and bonds (edges). We then occupy
each site or bond, depending on whether we want to study
site or bond percolation, with probability p independent of
the state of its neighbors [1]. Broadbent and Hammersley in
1957 first presented the percolation model to understand the
motion of gas molecules through the maze of pores in carbon
granules filling a gas mask [2]. Since then, the intuitive idea of
percolation has been found relevant to so many seemingly
disparate systems that its concept has literally percolated
across a vast area of science and social science. Examples
include flow of fluid in porous media, infiltration in composite
materials processing, and the spread of rumors, opinions, and
viruses (biological and computer viruses) [3–8].

Besides the simplicity of its definition and the versatility
of its application, there exists yet another reason why the
percolation model is so popular. In percolation we primarily
observe how clusters, a set of contiguous occupied sites, are
formed and grown as a function of p, which is the only control
parameter. As p value increases from negligibly small, there
appears for the first time a cluster that spans across the entire
system. In the case of infinite system size, we find a unique
threshold value pc such that there is the probability that the
spanning cluster W (p) = 0 for p � pc and W (p) = 1 for
p > pc. Interestingly, in such a transition, despite it being
geometric in nature, we find many of its aspects reminiscent
of a continuous thermal phase transition (CTPT) [9,10]. Thus,
percolation serves as a relatively tractable model for the
investigation of phase transition and critical phenomena that lie
at the heart of the modern development of statistical physics.
This is perhaps the most important reason why percolation is
still studied extensively even after almost 60 years.

Indeed, for almost every observable quantity in percola-
tion there exists an equivalent counterpart in CTPT. These
observables exhibit a power law like their counterpart in
CTPT, at least near pc, which is typically attributed to
critical phenomena. For instance, the system size L is like
correlation length L ∼ (p − pc)−ν , mean cluster size S is like
susceptibility S ∼ (p − pc)−γ , percolation strength P is like
order parameter P ∼ (p − pc)β , etc. Like a thermal phase
transition, the percolation transition, too, can be classified in
terms of pc and by a set of critical exponents β, γ, ν, etc.
One of the extraordinary findings in percolation is that the
numerical value of its critical exponents depend neither on
the detailed nature of the lattice structure nor on the type
of percolation, bond, or site. Their values depend only on the
dimension of the embedding space of the lattice. It is, therefore,
said that percolation on all planar lattices belongs to the same
universality class.

Unique universality class has been found true for a variety
of periodic and nonperiodic planar lattices having fixed and
mixed-valued coordination number, random planar lattices,
and their duals, random multifractal lattices, etc. [11–14] (see
also Ref. [15], which is the most recent review article). Yet,
have we exhausted all the possible lattices to conclude that
percolation on all planar lattices belongs to the same univer-
sality class? The answer is no. Recently, we have reported
that the site percolation on a weighted planar stochastic lattice
(WPSL) belongs to a separate and distinct universality class
[16]. The WPSL is quite nontrivial as it has mixed properties
of both lattice and network or graph [17]. On one hand, unlike
networks, it is embedded in the space of dimension d = 2,
and, on the other hand unlike regular lattice, its coordination
number distribution obeys a power law. We have found that
the critical exponents for site percolation on the WPSL totally
differ from the known values for all other planar lattices studied
until now. We, therefore, claim that the random site percolation
on the WPSL belongs to a separate and distinct universality
class.
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In this article, we investigate the bond percolation on the
WPSL and present detailed results of its site counterpart in
order to see the contrast. One of the goals of the present article
is to check if the bond and site percolation on WPSL belong
to the same universality class where all the known planar
lattices studied to date belong. First, we find the percolation
threshold pc, for both bond and site percolation, using the
idea of spanning probability W (p). Second, we attempt to
find an estimate for the various critical exponents such as
ν, β, and γ using the finite-size scaling hypothesis where
precise value of pc is necessary. Then, we use the idea of data
collapse for further fine-tuning of the estimated values for the
exponents until we get the best data collapse. Besides critical
exponents, we also find the exponent τ that characterizes the
cluster size distribution function ns(pc) ∼ s−τ and the fractal
dimension df that characterizes the mass of the spanning
cluster M(pc) ∼ Ldf . Note that the values of the various
critical exponents and the exponents τ , df , etc., are not at all
independent; rather, they are bound by some scaling relations.
We use these scaling relations for a self-consistency check. Our
results based on extensive Monte Carlo simulation suggest that
both site and bond percolation on WPSL belong to the same
universality class and it differs from the one where percolation
on all the planar lattices belongs.

The rest of the article is organized as follows. In Sec. II,
we discuss the algorithm for the construction of WPSL and
some of its key features. In Sec. III, we briefly discuss the
Newman-Ziff algorithm as it is the most efficient algorithm
for percolation. We also discuss the finite-size scaling and
underline its deep connection to the Buckingham � theorem
in Sec. IV. In Sec. V, we present our results about bond and
site percolation on the WPSL side by side so we can appreciate
the contrast. Finally, we summarize our results in Sec. VI.

II. DESCRIPTION AND CONSTRUCTION OF WPSL

We find it worthwhile to first give a brief description of the
construction process of the WPSL. It starts with an initiator
which we choose to be a square of unit area. The generator is
then defined as the one that divides the initiator (in step one)
randomly with uniform probability into four smaller blocks.
In step two and thereafter, the generator is applied to only
one of the blocks. The question is as follows: How do we
pick that block when there are more than one block? The
most obvious answer would be to pick preferentially with
respect to their areas in the sense that the higher the area, the
higher the probability to be picked. For instance, in step one,
the generator divides the initiator randomly into four smaller
blocks. Let us label their areas a1, a2, a3, and a4 starting from
the top-left corner and moving clockwise. But, of course, this
labeling is totally arbitrary and will bear no consequence to
the results of any observable quantities. Note that the ai of the
ith block can be regarded as the probability of picking and
these probabilities are normalized to

∑
i ai = 1. In step two,

one of the four new blocks is picked with probability equal to
their respective area, and the generator is applied to divide it
randomly into four blocks, resulting in seven blocks or cells
in total. Assume that the block 3 with area a3 is picked and
hence this label 3 can be reused. We choose to label the top-left
newly created block a3 and the rest of the blocks are labeled as

a5, a6, and a7. At this stage, perhaps giving an exact algorithm
for the j th step can help to describe the model better.

(i) Subdivide a unit interval [0,1] into (3j − 2) subintervals
of size [0,a1], [a1,a1 + a2], . . . , [

∑3j−3
i=1 ai,1], each of which

represents the blocks labeled by their areas a1,a2, . . . ,a(3j−2),
respectively.

(ii) Generate a random number R from the interval [0,1]
and find which of the (3i − 2) subinterval contains this R. The
corresponding block that it represents, say, the pth block with
area ap, is picked.

(iii) Divide the block ap randomly into four smaller blocks.
(To divide it randomly into four blocks we do the following.
First, we take note of the length and width of the block ap

and say they are xp and yp, respectively. We also take note
of the coordinate of the lower-left corner of this block, say,
(xlow,ylow). Second, we generate two random numbers xR

and yR from [0,xp] and [0,yp], respectively, so the point
(xlow + xR,ylow + yR) describes the random nucleation of a
point through which we draw two mutually perpendicular cut
to divide the block ap into four blocks.)

(iv) Label the four newly created blocks in a clockwise
fashion starting from the top-left block, as ap, a(3j−1), a3j , and
a(3j+1), respectively.

(v) Increase time by one unit and repeat the steps (i)
through (iv) ad infinitum.

The process can also be described as partitioning of a square
into ever-smaller mutually exclusive rectangular blocks. It
is done by random sequential nucleation of seeds of cracks
from which two mutually perpendicular cracks are grown till
they are hit or intercepted either by another crack or by the
boundary. Note that the higher the area of a block, the higher
the probability that the seed will be nucleated on it since seeds
are sown at random on the substrate. One advantage of creating
WPSL by random sequential partitioning of a square helps in
defining each step of the division process as one time unit.
The number of blocks N at time t therefore is N = 1 + 3t and
hence it grows, albeit the sum of the areas of all the blocks
is always equal to the size of the initiator. It implies that the
number of blocks N increases with time t at the expense of
the size of the blocks. Thus, if we want to compare the value
of an observable quantity O for different size of WPSL, then
we need to magnify the lattice by 3t provided O depends on
the block size of WPSL.

III. VARIOUS PROPERTIES OF WPSL

The snapshot of the WPSL shown in Fig. 1 clearly gives an
impression that it is seemingly complex, manifestly intricate,
and inextricably intertwined. Such a disordered lattice, that
emerges through evolution, can only be useful if the snapshots
taken at different late stages are similar. To this end, we have
recently shown that the area size distribution of the blocks of
WPSL obeys dynamic scaling,

c(a,t) ∼ t θφ(a/tz), (1)

where we found θ = 2 and z = −1 [18]. We have proved it
using the idea of data collapse (see Fig. 2). Note that the data
collapse means that the numerical values of the dimensional
quantities c(a,t) and a are distinct for different time vis-
à-vis different sizes of WPSL. However, the corresponding
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FIG. 1. A snapshot of the weighted stochastic lattice.

dimensionless quantity c(a,t)/tθ at different times for a fixed
value of dimensionless quantity a/tz coincides. It implies that
the snapshots of the lattice at different times are similar [19].
Furthermore, instead of characterizing the blocks by areas,
they can also be characterized by their length x and width
y. We can then write the rate equation for the corresponding
distribution function c(x,y; t) as

∂c(x,y; t)

∂t
= −a(x,y)c(x,y; t) + 4

∫ ∞

x

∫ ∞

y

dx1dy1

× c(x1,y1; t)F (x,x1 − x,y,y1 − y), (2)

where

a(x,y) =
∫ x

0

∫ y

0
dx1dy1F (x1,x − x1,y1,y − y1). (3)

Here kernel F (x1,x2,y1,y2) determines the rules and the rate at
which the block of sides (x1 + x2) and (y1 + y2) is divided into
four smaller blocks whose sides are (x1,y1), (x2,y1), (x1,y2),
and (x2,y2) (see for detailed description Refs. [20–22]). The
first term of the right-hand side of Eq. (2) represents the loss
due to breakup of blocks having sides x and y and the second
term represents the gain of blocks of sides x and y due to
breakup of blocks having sides x1 > x and y1 > y. The factor
4 on the second term is due to the fact that at each time step
the process gives birth to four smaller blocks.

-24

-20

-16

-12

 0  4  8  12

lo
g[

(a
t)

C
(a

,t)
/t

]

at

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

 0  0.0002  0.0004  0.0006  0.0008  0.001

lo
g[

aC
(a

,t)
]

a

t=10000
t=20000
t=30000

FIG. 2. Plots of log[aC(a,t)] are shown as function of a for three
different times. In the inset we plot log(atC(a,t) versus at and find
that all the distinct plots collapse into one universal curve, revealing
that C(a,t) ∼ (at)−1e−at .

We must choose the following fragmentation kernel in order
to describe the construction of WPSL:

F (x1,x2,y1,y2) = 1. (4)

The appropriate rate equation for c(x,y,t) then is

∂c(x,y; t)

∂t
= −xyc(x,y; t)

+ 4
∫ ∞

x

∫ ∞

y

c(x1,y1; t)dx1dy1. (5)

Solving it to find an exact solution for c(x,y; t) can be
a formidable task. We instead focus on the 2-tuple Mellin
transform M(m,n,t) of c(x,y,t) itself defined as

M(m,n; t) =
∫ ∞

0

∫ ∞

0
xm−1yn−1c(x,y; t)dxdy, (6)

whose discrete counterpart is
∑N

i xm−1
i yn−1

i . Incorporating it
into Eq. (5), we find

dM(m,n; t)

dt
=

(
4

mn
− 1

)
M(m + 1,n + 1; t). (7)

A surprising feature of the above equation is that it implies
the existence of infinitely many nontrivial conservation laws:
M(m,4/m; t) ∀ m independent of time. To solve Eq. (7)
we iterate it over and over again to get all the derivatives
of M(m,n; t) and then, according to Charlesby’s method, we
substitute those derivatives into the Taylor series expansion of
M(m,n; t) about t = 0. This gives a solution for M(m,n; t) in
terms of the generalized hypergeometric function [23]

M(m,n; t) = 2F2(a+,a−; m,n; −t), (8)

which takes the following simple form in the long-time limit:

M(m,n,t) ∼ t−a− , (9)

where

a− =
[
m + n

2
−

√(
m − n

2

)2

+ 4

]
. (10)

The above solution can provide everything that we want to
learn about WPSL.

Note that the fraction of the measure, conserved quantity∑N
i x

(4/m)−1
i ym−1

i , that the ith block contains is x
(4/m)−1
i ym−1

i .
This quantity can be regarded as the probability pi and hence
its qth moment is

Zq =
∑

i

p
q

i ∼
N∑
i

x
(4/m−1)q
i y

(m−1)q
i

=
N∑
i

x
((4/m−1)q+1)−1
i y

((m−1)q+1)−1
i . (11)

Comparing it with the solution for the discrete counterpart of
M(m,n; t) yields

Zq = M[(4/m − 1)q + 1,(m − 1)q + 1; t]. (12)

Using Eq. (9) we can immediately write the asymptotic
solution for Zq as

Zq(t) ∼ t {
√

(4/m−m)2q2+16−(4/m+m−2)q+2)}/2. (13)
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We can now measure Zq in the unit of a suitable yardstick:

δ(t) =
√

M(2,2; t)

M(1,1; t)
∼ t−1/2, (14)

which is the square root of the mean area of the blocks at time
t . Eliminating time t in favor of δ, we find that Zq decays
following a power law,

Zq(δ) ∼ δ−τ (q,m), (15)

where the mass exponent

τ (q,m) =
√

(4/m − m)2q2 + 16 − [(4/m + m − 2)q + 2].

(16)

The mass exponent τ (q,m) must satisfy two conditions
regardless of the value of n: (i) τ (0,n) = d is the dimension of
the support which is equal to 2 in this case and (ii) τ (1,m) = 0
as required by the normalization condition

∑
i pi = 1 [24].

The Legendre transform of τ (q,m) is

τ (q) = −αq + f (α), (17)

where the derivative

α = −dτ (q,m)

dq
(18)

is now the independent variable instead of q. It implies that for
every m value there exists a spectrum of spatially intertwined
fractal dimensions

f (α(q,m)) = 16√(
4
m

− m
)2

q2 + 16
− 2, (19)

which are needed to characterize the WPSL except for m = 2.
Note that the f (α,m) spectrum is always concave in character,
as shown in Fig. 3. Besides, the maximum value of f (α,m)
always occurs at q = 0, which corresponds to the dimension
of the embedding space. The dimension of the embedding
space of the WPSL is equal to 2. Besides, we find that there
exists a spectrum of multifractal spectra depending on the
value of m and hence we regard WPSL as a multifractal planar
lattice.

The snapshot of WPSL shown in Fig. 1 clearly reveals that
it is a planar cellular structure whose cells or blocks have
great many different numbers of neighbors. To find the nature
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FIG. 3. The f (α) spectrum for m = 1.0,1.5,3.5.
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FIG. 4. Coordination number distribution of WPSL (or degree
distribution function of its dual) P (k) is the fraction of the total
blocks which has coordination number k. The slope of the straight
line is θ = 5.56, revealing that P (k) ∼ k−θ . The plot represents the
ensemble average of 500 independent realizations of lattice size t =
50 000.

of its coordination number distribution, we look at its dual,
obtained by replacing each block with a node at its center and
common border between blocks with an edge or link joining
the two vertices, and find that it becomes a network. We know
that each node in the network can be best characterized by its
degree k. It is defined as the number of links by which a given
node is connected to other nodes. One of the most important
observables in the network theory is to find how the degrees
of its nodes are distributed. That is equivalent to finding the
fraction of the total nodes which has degree k which can also
describe the probability P (k) that a node picked at random has
a degree k. Note that the coordination number distribution in
the WPSL and the degree distribution of its dual are identical.
In Fig. 4 we plot ln(P )k) vs ln(k) and find a straight line, at
least near the tail, with slope equal to 5.56, revealing that P (k)
follows a power law P (k) ∼ k−θ with θ = 5.56 [17]. Note
also that the plot ln[P (k)] vs ln(k) has a characteristic fat tail,
which is the signature of the scarce data points along the tail
of the P (k) versus k which are actually the hubs. We thus can
say that the coordination number distribution of the WPSL
is scale free. This is in sharp contrast to the coordination
number distribution in the Voronoi diagram where it is also
random but its distribution is peaked around the mean [25].
In the Voronoi diagram, it is almost impossible to find cells
or blocks which have significantly higher or fewer neighbors
than the mean coordination number. That is, here the mean
describes the characteristic scale. Such a characteristic scale
is absent in the WPSL since the distribution function follows
a power law. The power-law coordination number distribution
also means that the majority of the blocks in the WPSL are
very poor in coordination number and there are few cells
or blocks which have significantly high number of nearest
neighbors. We also find the mean nearest-neighbors number
of the WPSL. In the case of a site, it is 5.333 and in the case
of a bond it is 10.01. However, due to the power-law nature of
the coordination number distribution, the standard deviation of
their respective quantities are quite high. For instance, we find
the standard deviations for site and bond to be 1.88 and 4.0,
respectively.
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IV. NEWMAN-ZIFF ALGORITHM

In standard algorithms, such as the Hoshen-Kopelman
(HK), one must create an entire new state for every given value
of occupation probability p in every independent realization.
Investigation of the various observables using such traditional
algorithms are highly expensive in terms of computational
time and accuracy of finding various observable quantities. In
2000, Newman and Ziff (NZ) proposed an algorithm which
is highly efficient in both accounts [26]. The efficiency of the
NZ algorithm lies in the fact that one creates a new state with
n + 1 occupied sites or bonds from the immediate previous
state with n occupied sites or bonds simply by occupying one
extra randomly chosen site or bond. It is based on the intuitive
idea of random sequential adsorption of sites or bonds on a
given lattice or graph.

The algorithm is trivially simple. One starts with an empty
lattice. Then, at each step, an empty site or bond is chosen at
random and then is occupied if empty; otherwise, the attempt is
discarded. However, in order to further reduce the computation
time, we first decide on an order in which the sites or bonds will
be occupied. That is, we wish to choose a random permutation
of the bonds or sites. This is done by creating a list of all
the bonds in any convenient order. Positions in this list are
numbered from 1,2,3, . . . ,M . Choose a number j at random
with uniform probability in the range i � j � M . Then we
use any standard textbook algorithm to randomize the number
i = 1 to M and put them in the new order in which they
will be occupied. Having chosen an order of all the sites, we
start occupying them in that order. The first site or bond to be
occupied will definitely form a cluster of size one. The second,
third, fourth, etc., are also highly likely to form clusters of size
one. However, the likelihood of forming clusters of size one
will decrease with the number of occupied sites since some
sites, when occupied, will become contiguous occupied sites,
thus making clusters of size more than one.

The formation of clusters and the statistics of their sizes
are the key to the study of percolation theory. In the case
of the NZ algorithm, we measure an observable, say, O, for
fixed numbers of occupied sites (or bonds) and obtain data
for O as a function of occupation number n. This is in sharp
contrast with the HK algorithm, where the number of sites
being occupied at a given p is random and differs at every
independent realization. However, if the system size is large
enough, then the mean occupation number will almost equal
pN , where N represents the system size. The weight factor of
obtaining different n for a given p are not the same. The exact
weighting factor of there being exactly n occupied sites on the
lattice for a given p is given by a binomial distribution,

C(n,N,p) =
(

N

n

)
pn(1 − p)N−n. (20)

The binomial coefficient (Nn ) represents the number of possible
configurations of n occupied sites and N − n empty sites.
Using this and the data for the observable O for all values of
n, we can find O for any value of p by the following relation:

O(p) =
N∑

n=1

(
N

n

)
pn(1 − p)N−nOn. (21)

It is interesting to note that the ensemble of states with exactly n

occupied sites or bonds obtained according to the NZ algorithm
can be referred to as a microcanonical percolation ensemble,
where the number n is the equivalent counterpart of the energy
E in thermal statistical mechanics. On the other hand, if we
keep p fixed instead of n we can regard it as the canonical
ensemble.

V. SITE AND BOND PERCOLATION ON WPSL

What is site and bond in WPSL? Before answering this
question, we find it worth discussing first what they are in the
context of conventional lattices. For instance, we can regard
a square lattice as a grid or mesh. Each cell of the grid has
four sides and each side is a common border of two cells only.
In the case of a square grid, we can thus regard each cell as a
site since it contains exactly one lattice point. Equivalently, we
could also regard the vertices of each cell as sites. However, in
the present context, we stick to the former definition. The dual
of the square grid, obtained by replacing the center of each cell
by a node and the common border between neighboring cells
by a link connecting the two nodes, is also a square lattice and
hence it is called self-dual. Here, the links of the dual are like
the bonds of the square lattice. Following the same argument,
we regard the blocks of the WPSL as its sites and not the
vertices of the lines that tessellated the initiator. To define a
bond, we first find its dual. It is obtained by replacing the center
of each block by a node and the common border between two
neighboring blocks by a link connecting the corresponding
nodes. We regard these links as the bonds of the WPSL. Using
these ideas, we first performed site and bond percolation on
the square lattice and reproduced all the known results and
then we applied them to the WPSL.

In the case of bond percolation, the lattice consists initially
of N blocks and hence the system has exactly N number of
clusters of size one since the center of each block represents a
site. Thereafter, each time we occupy a bond, a cluster at least
of size two or more is formed. In the case of site percolation,
each time we occupy a block, the size of the cluster may vary
as we measure it by the area of contiguous occupied blocks,
not by the number of occupied sites. Initially all the blocks
are empty and there is no cluster. For a regular lattice, like
a square lattice, the L2 sites have 2L(L − 1) and 2L2, bonds
with open and periodic boundary conditions, respectively. Now
WPSL, being a disordered lattice, cannot have such an exact
relation. We still find that the number of bonds or sites when we
take the average over an ensemble of independent realizations
follows a relation valid for all sizes of the lattice. For instance,
for the lattice at time t there are exactly 3t + 1 sites and,
on average, there are 8t bonds with the periodic boundary
condition. Thus, the mean coordination number is equal to
16t/3t ∼ 5.33, which is higher than that of the square lattice.
We know that the percolation threshold pc depends on the
coordination number of the lattice, and the higher the mean
coordination number of a lattice, the smaller the value of pc. In
the case of a square lattice, for instance, each site has exactly
four nearest neighbors and each bond has six, and hence the
pc of the site percolation is higher than that of the bond.
On the other hand, the mean coordination number of the site
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FIG. 5. Spanning probability W (p,L) vs p in WPSL for (a) bond
and (b) site percolation. The simulation result of the percolation
threshold is pc = 0.3457 for bond and 0.5265 for site. In (c) we
plot log(p − pc) vs log L for both bond and site. The two lines
have slopes 1/ν = 0.6117 ± 0.0074 and 0.6135 ± 0.0038 for bond
and site, respectively. In (d) we plot dimensionless quantities W vs
A1[(p − pc)L1/ν − Z1] and we find an excellent data collapse of all
the distinct plots in (a) and (b) if we use Z1 = 0.194 and A1 = 1 for
bond and A1 = 0.798 for site.

in the WPSL is 5.33 and that of triangular lattice 6 and the
corresponding pc values are 0.5265 and 0.5, respectively.

A. Spanning probability W ( p)

The spanning probability W (p) for both the bond and
site describe the likelihood of finding a cluster that spans
across the entire system either horizontally or vertically at
the occupation probability p. To find how W (p) behaves
with the control parameter p, we perform many, say, M ,
independent realizations under the same identical conditions.
In each realization for a given finite system size, we take the
record of the pc value at which the spanning cluster appears
for the first time. To find a regularity or a pattern among all
the M numbers of pc values recorded, one usually looks at the
relative frequency of occurrence within a class or width �p.
To find W (p), we can process the data containing M number
of pc values to plot a histogram displaying the normalized
relative frequency as a function of class of width �p chosen
as per convenience. In Figs. 5(a) and 5(b) we show a set of
plots of W (p) for bond and site percolation, respectively, as
a function of p where distinct curves are for different system
sizes L = √

N . One of the significant features of such plots
is that they all meet at one particular p value regardless of
the value of L. It means that even if we had data for an
infinite system, the resulting plot would still meet at the same
point, revealing that it must have a special significance and
the significance is that it is the threshold probability pc. Note
that finding the pc value for different lattices is one of the
central problems in percolation theory [27,28]. In the case
of a bond, we find pc = 0.3457, which is far less than its
site counterpart, pc = 0.526846. We know that the higher the

coordination number, the smaller the pc. For instance, the
coordination numbers (the number of nearest neighbors) of
a site and bond of the triangular lattice are 6 and 10 and
their pc values are 0.5 and 0.347296355, respectively. On the
other hand, the coordination number of site of the WPSL is
not fixed but rather follows a power law. Yet, we find that its
mean coordination number 5.33 is slightly less than the mean
coordination of the triangular lattice. We therefore find the
pc of the former is slightly higher than that of its triangular
counterpart. The same is true for bond type. Note that the
nearest number of bonds of a bond in the triangular lattice
and that of the WPSL are almost the same, albeit the latter is
slightly higher and hence the corresponding pc of the WPSL
is slightly lower than that of its triangular counterpart.

The second most significant feature of the W (p) vs p plot
is the direction of shift of the curves on either side of pc as
the system size L increases. This shift with L clearly reveals
that all the data points, i.e., the p values, are marching towards
pc. We can quantify the extent at which they are marching
by measuring the magnitude of the difference (pc − p) for
different L. That is, we can draw a horizontal line at a given
value of W , preferably at the position where this difference
is the most, and take records of the difference pc − p as a
function of system size L. Plotting the resulting data after
taking log of both the variables or in the logarithmic scale we
find a straight line whose slope gives an estimate of the inverse
of 1/ν = 0.6135 ± 0.0038 since Fig. 5(c) suggests

pc − p ∼ L− 1
ν . (22)

It implies that in the limit L → ∞ all the p takes the value pc,
revealing that W (p) will ultimately become a step function so
W (p) = 0 for p � pc and W (p) = 1 for p > pc. We can use
Eq. (22) to define a dimensionless quantity (pc − p)L

1
ν . Now,

if we plot W (p) vs (pc − p)L
1
ν , we find that all the distinct

curves for bond in Fig. 5(a) collapse into one as does that
for the site in Fig. 5(b) sharing the same ν value. However,
we know that the universality means not only that they share
the same exponents but also that they have the same scaling
functions which may differ at best by some constant factor
and/or by a trivial shift. In general, scaling functions for bond
and site collapse if one plot A2WL−a/ν vs A1(p − pc)L1/ν

where A1 and A2 are known as matric factors and we already
know that a = 0 for spanning probability. To check it, we first
plot W vs x = (p − pc)L1/ν for both bond and site on the
same graph. We find that height of the two scaling functions
are the same, which implies that A2 = 1 for both bond and site.
We also observe that, unlike all other planar lattices, the two
scaling functions do not cross at x = 0 but rather they cross
at x = 0.194. It implies that we have to subtract Z1 = 0.194
from x of data for both bond and site. Furthermore, following
the procedure described in Ref. [29], we find A1 = 1 for bond
and A1 = 0.798 for site. Now plotting W vs A1(x − Z1) gives
a perfect data collapse as shown in Fig. 5(d). It implies that not
only is the 1/ν value independent of the type of percolation
but also that they share the same form for the scaling function.

B. Percolation probability P

Consider that we pick a site at random and ask: How likely
is that that site to belongs to the spanning cluster? For a finite
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system size, it may not belong to the spanning cluster even if
p is larger than the percolation threshold pc. We can therefore
quantify the strength of the spanning cluster by percolation
probability P , which describes how likely a site being picked
at random is to belong to the spanning cluster. The quantity P

is defined as the ratio of the size of the spanning cluster s∞ to
the size of the lattice N , i.e.,

P = Number of sites in the spanning cluster

Total number of sites in the lattice
. (23)

Sometimes, percolation probability is also defined as the
probability that an occupied site belongs to the spanning
cluster. It can be obtained if we replace the denominator N

of Eq. (23) by total number of occupied sites. We, however,
will consider the former definition. There exists yet another
definition where we can use the size of the largest cluster
instead of the spanning cluster. Note that all these definitions
behave in the same fashion like order parameter. That is, in the
limit L → ∞, P = 0 for p � pc and it rises from P = 0
at pc to P = 1 continuously and monotonically like P ∼
(p − pc)β . Such behavior is reminiscent of order parameter
like magnetization m in the ferromagnetic transition, and hence
P is regarded as the order parameter in percolation theory.
The critical exponent β value is known to depend only on
the dimension of the lattice and independent of the type of
percolation. Through the site percolation on WPSL, we already
reported that the β value for WPSL, which is a planar lattice,
differs from the value for all the known planar lattices whose
dimension of the embedding space d = 2. We shall now check
if the β value for the bond percolation is the same as for the
site percolation.

It is important to note that in the case of site percolation,
we occupy its blocks or cells which are of different sizes. We
therefore quantify the size of the spanning cluster by its area
and not by the number of sites or blocks in the spanning cluster.
Note that for bond percolation on WPSL we use the dual of
the WPSL and not the lattice itself. The dual of the WPSL is
obtained by replacing each block of the WPSL by a node or
vertex at its center and each common border between blocks
by a bond connecting the nodes at the center of corresponding
blocks. We then occupy these links and measure the size of
the cluster by the number of nodes or vertices that the cluster
contains. Below we shall see the impact of this difference
in their behavior, if at all. In Figs. 6(a) and 6(b), we plot
percolation probability P as a function of p for bond and site,
respectively. Looking at the plots, one may think that all the
plots for different L meet at a single unique point like it does
for the W (p) vs p plot. However, if one zooms in, then it
becomes apparent that this is not so and hence the pc value
from this plot will not be as satisfactory as it is from W (p) vs
p plot. We also find that P (p) is not strictly equal to zero at
p < pc; instead, there is always a nonzero chance of finding a
spanning cluster even at p < pc as long as the system size L is
finite. However, the plots of P vs p for different system sizes L

reveal that the chances of getting a spanning cluster at p < pc

diminishes with increasing L. There is also a lateral shift of
the P value to the left for p > pc but the extent of this shift
p − pc decreases to such a degree that it never diminishes. On
the other hand, the extent of the shift p − pc to the right for
p < pc diminishes to zero following Eq. (22). We shall now
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FIG. 6. Percolation probability P (p,L) vs p for (a) bond and
(b) site percolation. In (c) we plot log P vs log L using data for fixed
value of (p − pc)L1/ν and find almost parallel lines with slopes β/ν =
0.1356 ± 0.0005 and 0.1357 ± 0.0002 for bond and site, respectively.
In (d) we plot B2PLβ/ν vs B1((p − pc)L1/ν − Z2) and find excellent
data collapse of all the distinct plots of (a) and (b) if we use B1 = 1,
B2 = 1, and Z2 = 0.225 for bond and use B1 = 0.69, B2 = 1.443,
and Z2 = 0.225 for site.

check if P above pc grows like P ∼ (p − pc)β . If it does, then
we shall find the value of the critical exponent β and compare
it with that of its site counterpart.

To show that the percolation probability behaves like P ∼
(p − pc)β and to find the exponent β for infinite system size
L, we use the idea of finite-size scaling. We first plot P (p)
vs (p − pc)L1/ν and find that, unlike W (p) vs (p − pc)L1/ν ,
it does not collapse. Instead, we find that for a given value
of (p − pc)L1/ν the P value decreases with lattice size L. It
means percolation probability is not a dimensionless quantity
and hence we assume that

P ∼ L−a (24)

and choose a = β/ν for later convenience. To find the value of
β/ν, we measure the heights at a given value of (p − pc)L1/ν

for different L and plot them in the log-log scale. We find
straight lines for both bond and site [see Fig. 6(c)] with slopes
β/ν = 0.1356 ± 0.0005 for bond and 0.1357 ± 0.0002 for
site, revealing that they are almost parallel. It implies that if we
now plot PLβ/ν vs (p − pc)L1/ν , then all the distinct plots of P

vs p for site and bond should collapse, at least separately, into
a single universal curve. However, the respective data-collapse
curves for bond and site should also collapse if we plot
B2PLββ/ν vs B1((p − pc)L1/ν − Z2) with suitable value of
B1, B2 and Z2 for bond and site percolation. To find these
constants, we first plot PLβ/ν vs (p − pc)L1/ν for bond and
site on the same graph. We observe that, like in the square
lattice, the peak heights for bond and site differ, which implies
that B2 for bond and site are not equal and we find B2 = 1 for
bond and for site B2 = 1.443. We then plot B2PLβ/ν vs x and
find that, unlike the square lattice, they do not cross at x = 0 but
rather at 0.225, which implies that Z2 = 0.225. Following the
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procedures in Ref. [29] we find B1 = 1 for bond and B1 = 0.69
for site. Plotting now B2PL−β/ν vs B1(x − Z2), we find that
the scaling functions for site and bond both collapse superbly
onto each other, which is shown Fig. 6(d). This again implies
that percolation probability P exhibits finite-size scaling,

P (pc − p,L) ∼ L−β/νφ[(p − pc)L1/ν]. (25)

Now using Eq. (24) in Eq. (25) to eliminate L in favor of
p − pc, we get

P ∼ (p − pc)β, (26)

where β ∼ 0.222 independent of site or bond percolation and
it significantly differs from the corresponding values for all
known planar lattices.

C. Cluster size distribution and their mean

The cluster size distribution function ns(p) plays a central
role in the description of percolation theory. It is defined as the
number of clusters of size s per site in the lattice. The quantity
sns(p) then is the probability that an arbitrary site belongs to
a cluster of size s. On the other hand, the quantity

∑
s=1 sns

is the probability that an arbitrary site belongs to a cluster of
any size which is in fact equal to p. One can then define the
probability that an occupied site chosen at random belongs to
a cluster of size exactly equal to s as

fs = sns(p)∑
s=1 sns

. (27)

The mean cluster size S(p) therefore is given by

S(p) =
∑

s

sfs =
∑

s s2ns∑
s sns

, (28)

where the sum is over the finite clusters only, i.e., the
spanning cluster is excluded from the enumeration of S.
The definition of the mean cluster size S, however, does
not have information about the geometric structure of the
clusters like their compactness and spatial extent. In the case
of site percolation on WPSL, the mean cluster size cannot be
quantified by the number of sites but the amount of area. This
is because the typical or mean size of each block or cell of the
WPSL decreases like (1 + 3t)−1 with the increase in the lattice
size which we quantify by number of blocks N = 1 + 3t . We
thus need to blow up the lattice by a factor of 1 + 3t in order
to compensate for the decreasing block size with increasing
block number N . Thus, we define the mean cluster size for site
percolation on WPSL as

S = 1

p

∑
s

s2ns3t. (29)

In the case of bond percolation, however, we do not need to
multiply by the factor 3t as the cluster size here is measured
by the number of nodes or vertices it contains, not by the area.

In Figs. 7(a) and 7(b) we show the plots of the mean cluster
size S(p), for both bond and site percolation, as a function of
p for different lattice sizes L. We observe that in either case,
there are two main effects as we increase the lattice size. First,
we see that the mean cluster size increases as we increase
the occupation probability until p approaches pc and the peak
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FIG. 7. The mean cluster size S(p,L) vs p for (a) bond and (b) site
percolation as a function of system size. In (c) we plot log S vs log L

using the size of S for fixed value of (p − pc)L1/ν and find almost
parallel lines with slopes γ /ν = 1.7315 ± −0.0019 and 1.7280 ±
0.0019 for bond and site, respectively. In (d) we plot C2SL−γ /ν vs
C1[(p − pc)L1/ν − Z3] and find that all distinct plots of (a) and (b)
collapse into one universal curve if we use C1 = 1, C2 = 1, Z3 = 0.40
for bond and C1 = 0.625, C2 = 1.10, Z3 = 0.40 for site.

height grows profoundly with L in the vicinity of pc. Second,
there is a slight shift in the peak towards the pc value as we
increase L. The extent of the shift is again given by Eq. (22).
To bring the peak height to meet at the same point, we first plot
S as a function of dimensionless quantity (pc − p)L1/ν . We
then measure the peak height for a fixed value of (pc − p)L1/ν

but for different L. Plotting these peak heights as a function
of L in the log - log scale gives straight lines for site and bond
percolation (see the inset of Fig. 7(c). It implies that

S ∼ Lθ, (30)

where, like before, we again choose θ = γ /ν for future
convenience and find that γ /ν = 1.7315 ± 0.0019 for bond
and 1.7280 ± 0.0019 for site. The two values are so close
that they can be well approximated to be the same. Plotting
now the same data of Figs. 7(a) and 7(b) by measuring the
mean cluster size S in the unit of Lθ and (pc − p) in the
unit of L−1/ν , respectively, we find that all the distinct plots
of S vs p collapse superbly into universal curves. However,
like for the percolation probability P , here, too, the scaling
functions for bond and site do not collapse if we plot SL−γ /ν

vs (pc − p)L1/ν since they differ by some constant factors.
Indeed, we show in Fig. 7(d) that if we plot C2SL−γ /ν vs
C1((p − pc)L1/ν − Z3) and choose C1 = C2 = 1 and Z3 =
0.40 for bond while C1 = 0.625, C2 = 1.10, and Z3 = 0.40
for site and find all the distinct plots Figs. 7(a) and 7(b)
collapse superbly into one universal curve. It again implies
that the mean cluster size, too, for both bond and site, exhibits
finite-size scaling,

S ∼ Lγ/νφ[(pc − p)L1/ν], (31)
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FIG. 8. We plot (a) the cluster size distribution function
log[ns(pc)] vs log s for different sizes of the WPSL and find almost
parallel lines with slopes 2.07252 and 2.0728 for bond and site
percolation, respectively. (b) The mass of the spanning cluster M

is shown as a function of system size L. The two lines with
slopes df = 1.8637 ± 0.0224 and 1.8643 ± 0.0014 for bond and
site, respectively, once again reveal that the fractal dimension of
the spanning cluster is independent of the type of percolation.

sharing the same critical exponents. Eliminating L from
Eq. (22) in favor of (pc − p) using (pc − p) ∼ L−1/ν , we find
that the mean cluster diverges

S ∼ (pc − p)−γ , (32)

where γ = 2.825 for both site and bond percolation. This value
differs significantly from the known value γ = 2.389 for all
the regular planar lattices.

It is well known that the cluster size distribution ns(p) obeys

ns(p) ∼ s−τ φ[(p − pc)1/σ s], (33)

and hence at p = pc it is

ns(pc) ∼ s−τ , (34)

where τ is called the Fisher exponent. We can obtain the value
of τ by plotting the cluster area distribution function ns(p) at
pc. In Fig. 8(a) we plot ln[ns(pc)] vs ln(s), for both site and
bond, and find two parallel lines except near the tail where
there is a hump due to the finite-size effect. However, we
also observe that as the lattice size L increases, the extent up
to which we get a straight line increases, too. This implies
that if the size L were infinitely large, then we would have a
perfect straight line obeying Eq. (34). The slopes of the lines
are τ = 2.0725 for bond and τ = 2.0728 for site. It implies
that the exponent τ is almost the same τ ∼ 2.072 for both site
and bond percolation on WPSL and its value differs from the
value for all known planar lattices τ = 2.0549.

Let M(L) denote the mass or size of the percolating cluster
at pc of lattice of linear size L. Now we check the geometric
nature of this spanning cluster. First, if the cluster is a Euclidean
object, then its mass M(L) would grow as M(L) ∼ Ld with
d = 2 since the dimension of the embedding space of the
WPSL is d = 2. Now, a litmus test of whether the spanning
cluster is a fractal would be to check if it obeys the same
mass-length relation but with an exponent d = df < 2. To
find this out, we plot the size or mass of the spanning cluster
M as a function of lattice size L in the log-log scale as
shown in Fig. 8(b). Indeed, we find a straight line with slope
df = 1.8643 ± 0.0014 for site and df = 1.8637 ± −0.0224
for bond which are almost the same but significantly differ
from the one for all known regular planar lattices df = 1.895.

It may appear that the difference between the df for WPSL and
that for regular planar lattices is not much but it is important
to remember that even a small difference in fractal dimension
has a huge effect on their degree of ramification. It is well
known that the numerical values of the various exponents
β, γ, τ, df , etc., depend only on the dimension of the lattice
and independent of the nature of structure of the lattice and
the type of percolation. However, their values are bound by
some scaling and hyperscaling relations such as τ = 3 − γ σ ,
τ = 1 + d/df , β = ν(d − df ), γ = ν(2df − d), etc. We can
use these relations for a consistency check of our results. To
this end, we find that our estimates satisfy these relations to a
good extent.

VI. SUMMARY AND DISCUSSION

In this article, we have studied both bond and site percola-
tion on WPSL using extensive Monte Carlo simulations. We
thought it would be important to know some key features of the
WPSL so one can understand why it is so special and unique.
We therefore have first briefly discussed its construction
process and then its various properties. Some of its key features
are as follows. First, the dynamics of its growth is governed
by infinitely many conservation laws. Second, its area size
distribution function obeys dynamic scaling. Third, each of
the infinitely many conservation laws, except conservation of
total area, gives rise to multifractal spectrum and hence WPSL
is a multifractal. Fourth, its coordination number distribution
function follows a power law. Finally, note that it has a mixture
of properties of both lattice and graph. On one hand, like a
lattice, it is embedded in a space of dimension D = 2; on
the other hand, its coordination number distribution follows a
power law.

The primary goal of this article is to study bond percolation
on the WPSL and check if it belongs to the same universality
class where its site counterpart belongs [16]. To this end,
we have first obtained the percolation threshold pc = 0.3457
for a bond, which is less than the pc = 0.5265 of the site
percolation, as expected. We also studied numerically the
spanning probability W (p), the percolation strength P (p),
and the mean cluster size S(p) using the NZ algorithm. The
resulting data are then used in the convolution equation to
obtain data that correspond to a canonical ensemble. Then,
with the help of a comprehensive finite-size scaling theory,
we obtained the various exponents ν,β, γ , τ , and df for
both bond and site percolation on WPSL and confirm that the
respective exponents for site and bond are equal (see Table I
for a detailed comparison). Note that in all cases we found
excellent data collapse for site and bond, sharing the same

TABLE I. The characteristic exponents for site and bond perco-
lation in the WPSL and in the regular planar lattices.

Exponents Regular 2D lattice WPSL bond/site

ν 4/3 1.635
β 5/36 0.222
γ 43/18 2.825
τ 187/91 2.0728
df 91/48 1.864
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critical exponents. All these provide a clear testament that
the site and bond percolations on WPSL belong to the same
universality class, which differs from the universality class
where all known planar lattices belong.

It is worth noting that Corso et al. have also studied
percolation on a multifractal planar lattice and found that it
belongs to the universality class of the regular planar lattices
and not of the WPSL [14]. Thus it is not the multifractal
nature of the lattice which could be held responsible for the
separate universality class of the WPSL. On the other hand,
Hsu and Huang studied percolation on a class of random planar
lattices where P (k) do not follow a power law and, instead,
is peaked at about k = 6 [13,25]. Despite all the differences
from the regular planar lattices, they still found it belongs to

the universality class of the regular planar lattices. In both
cases, the dimension of the objects coincide with that of the
space where they are embedded. Now what happens when
the dimension of the object does not coincide with that of the
space? The answer to this question can be found from the work
of Lin et al., who studied percolation on a class of Sierpinski
carpet [30]. Note that the dimension of the Sierpinski carpet
is always less than 2 of the plane where it is embedded.
They found that the universality class differs for each different
value of the fractal dimension. However, WPSL belongs to a
different universality class despite that its dimension coincides
with the dimension of the space where it is embedded. We hope
that our findings will have a significant impact on the future
study of the percolation theory.
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