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Thermodynamics of slow solutions to the gas-piston equations
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Despite its historical importance, a perfect gas enclosed by a pistons and in contact with a thermal reservoirs
is a system still largely under study. Its thermodynamic properties are not yet well understood when driven under
nonequilibrium conditions, and analytic formulas that describe the heat exchanged with the reservoir are rare.
In this paper we prove a power series expansions for the heat when both the external force and the reservoir
temperature are slowly varying over time but the overall process is not quasistatic. To do so, we use the dynamical
equations from [Cerino et al., Phys. Rev. E 91, 032128 (2015)] and an uncommon application of the regular
perturbation technique.

DOI: 10.1103/PhysRevE.94.042106

I. INTRODUCTION

One of the main goals of nonequilibrium thermodynamics
is to understand how a thermodynamic system evolves over
time [1–3]. The problem is difficult even in the simplest
physical instances. For example, the nonequilibrium behavior
of the adiabatic piston [4] is still a live research topic (see
Refs. [4–6] ad references therein). Another problem which is
conceptually simple, but difficult to treat, is the nonequilibrium
thermodynamics of a perfect gas enclosed by a cylindrical
canister with a movable piston and in contact with a heat
reservoir (see Fig. 1). For this system there are multiple valid
approaches: for example, the one-particle gas approach [7]
and its legacy [8–11], the explicit-friction formulæ approach
[12–14], and the average-model approach [15–18]. Among
those references Ref. [15] is particularly interesting: there
the authors assumed that (1) the gas is perfect and one-
dimensional; (2) the piston and each gas particle undergoes
elastic collisions, so work is the energy exchanged in this way;
(3) the velocity of a gas particle is randomly changed according
to the Maxwell-Boltzmann distribution of the reservoir when
reservoir-gas particle collisions occur [19] and heat is the
change in energy of the gas; and (4) the gas distribution
is always Maxwellian although gas-reservoir and gas-piston
collisions change the temperature of the gas over time. By
combining these assumptions in a laborious averaging process,
the authors were able to derive a set of dynamical equations for
the time evolution of the gas temperature T and piston position
x according to any externally prescribed change of the external
force � and reservoir temperature �. In Ref. [20] we showed
with the multiple scales method [21–24] and some technical
assumptions (discussed in Sec. II) that the equations derived in
Ref. [15] allow us to find an approximated expression for the
heat exchanged with the reservoir in two physically relevant
cases: the relaxation to equilibrium and the slow isothermal
compression. In the same paper [20] we pointed out the
existence of particular solutions, which we called dynamical
equilibrium solutions, which describe the asymptotic behavior
of the system when externally driven.

Stimulated by our previous understanding, we show in this
paper how to iteratively construct the dynamical equilibrium
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solution at any desired precision order through an uncommon
application of the regular perturbation theory [22–24]. Our
only assumptions will be that both the external force and
the reservoir temperature are slow, smooth, and nonvanishing.
Such a solution immediately yields a general formula for the
heat exchanged with the reservoir as a formal power series in
which all the coefficients are determined. Such kinds of results
are important due to their rarity in the literature, and we believe
that the method we used can be safely applied to other relevant
problems in nonequilibrium thermodynamics. Moreover, we
suggest that similar power series approaches can play a key
role in the characterization of thermal cycles where drivings
are slow but not necessarily quasistatic.

This paper is structured as follows: in Sec. II we introduce
the model from Ref. [15] together with the notations and the
formalism we will use throughout the paper; in Sec. III we
derived our main results, namely, the full recursive relation
from which we can derive the coefficients of dynamical
equilibrium solution and the exchanged heat; in Sec. IV we
comment on the thermodynamical relevance of our result,
pointing also out similarities with the virial expansion, and
make some conjectures for possible future developments.

II. BACKGROUND

With the list of assumptions declared in Sec. I, Cerino et al.
were able to derive a set of equations to describe the dynamics
of a gas inside a piston under the action of a variable external
force when the reservoir temperature also changes over time.
Such equations are
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FIG. 1. A schematic representation of the gas closed by a piston
and in contact with a thermal reservoir. The quantities shown are the
piston position x, the gas temperature T , the external force �, and
the reservoir temperature �.

where the upper dots denote time derivatives, M is the mass
of the piston, m is the mass of a single gas molecule, N is
the total number of gas molecules, ν = m/M, erfc(·) is the
complementary error function, � is the externally controlled
reservoir temperature, � is the externally controlled force
exerted on the piston, x is the piston position, and T is the
gas temperature. Equation (1) gives a fairly good description
of both the dynamics and the thermodynamics of the system
[15], the latter being expressed through
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2
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where E is the total energy of the system [25] (composed
by the kinetic energy of the piston, by the linear potential
energy related to � and by the thermal energy of the one-
dimensional gas respectively), and Q is the heat [2] that the
system exchanges with the reservoir.1 In Ref. [20] we showed
that the thermodynamic limit
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can be taken in Eq. (1) if we first adimension them with the
following transformation:
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where

g(ν) = 1 + 6ν + ν2
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(5)

and �r (�r ) is an arbitrary force (temperature) reference value.
Using these substitutions and then taking the thermodynamic

1Sign convention is such that Q > 0 for heat given to the reservoir.

limit Eq. (3) in Eqs. (1) and (2), we obtain the following
dimensionless dynamical equations:
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with the dimensionless E and Q densities:
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The most important feature of Eq. (6) is that they involve
only the ratio ε of the total mass of the gas and the mass of
the piston as a physical parameter, a feature that this system
shares with the adiabatic piston problem [4]. Since the gas
we consider is perfect, ε will reasonably be small. As a
consequence, if a perturbation parameter is required for some
approximated approach, ε is the most natural one to choose
[4]. An additional advantage of Eq. (6) is that it is easy to
check that their equilibrium condition is

xeq = �

�
, ẋeq = 0, Teq = �, (8)

which is exactly what the perfect gas law and standard
thermodynamics require. If one is interested in situations
where the system remains in the proximity of the equilibrium
condition for � and �, even if � and � changes over time,
then Eq. (6) can be linearized around Eq. (8). This process
yields the following linear dimensionless equations:
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In Ref. [20] we assumed ε to be a “small” perturbative
parameter, the reservoir temperature to be constant (without
loss of generality, � = 1), and the external forcing � to be
slowly varying over time [any function B can be considered
“slow” if B = B(εt), which we assume from now on]. With
such assumptions we were able to find analytic approximated
solutions to (9) with the multiple scales method. In particular
we showed that the relevant behavior of the system is described
by the following three scales:

t0 = 1

ε

∫ t

0
�(εχ )dχ, t1 =

∫ t

0
�(εχ )dχ, t2 = εt, (10)

where an explicit form of � is not required to give them
an intuitive meaning. The t0 scale is the fastest one and
characterizes a transient suppression of the temperature of
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the gas. From a physical point of view, it describes the
indirect coupling of the piston with the reservoir. The t1 scale
is the one at which transient oscillations of the system are
established. This reflects the direct coupling of the gas with
the piston position and velocity. In the t2 scale the exponential
suppression of the transient oscillatory terms appears and is
the proper scale of the external forcing too.

The approximated solution derived in Ref. [20] falls, as
t → ∞, into a peculiar solution:
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with prime notation
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We called this solution a dynamical equilibrium solution
as, from a physical point of view, it describes the system
when it asymptotically follows the slow external driving.
Mathematically this solution arises as the particular solution

of the inhomogeneous ordinary differential equations coming
from the multiple scales expansion and can be computed in
practice by taking all the integration constants in the multiple
scale expansion equal to zero. In Ref. [20], we also indicated
that the dynamical equilibrium solution (11) could have been
obtained with the “slow” regular perturbation

xd.eq.(t) = x0(εt) + εx1(εt) + ε2x2(εt) + ε3x3(εt) + O(ε4).

(13)

In the next section we expand this point to show the
generalization of the ansatz Eq. (13) allows us to iteratively
construct the dynamical equilibrium solution at any order
when both the external force � and the reservoir temperature
� are slow.

III. DERIVATION OF THE DYNAMICAL EQUILIBRIUM
SOLUTION AND OF THE HEAT

Differently from Ref. [20], where � ≡ 1, we assume that
the external force and the reservoir temperatures are slow,
i.e., � = �(εt), � = ω(εt). Following the same procedure
we used in Ref. [20] we transform the system (9) into a single
third order equation: we solve (9a) for T :
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ẍ +

[
3�(εt) +

√
2ε2�′(εt)√
π

√
�(εt)

+ 4
�(εt)

π

]
ẋ
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Now, instead of looking for a general approximation of
x(t) with the multiple scale method, we limit ourselves to the
search for dynamical equilibrium solution xd.eq.(t). To this end
we must get rid of transient-like behaviors, i.e., those governed
by the t0 and t1 scales in (10). The observation in Ref. [20]
that the dynamical equilibrium solution (11) is obtainable
from the ansatz (13) suggests that we consider the following
expansion:

xd.eq.(t) =
∞∑

n=0

xn(εt)εn. (16)

The series (16) is a regular perturbation expansion with
an uncommon feature: its coefficients are functions of
the slowest time scale t2 in (10). With this choice all
transient-like behaviors are automatically ruled out, exactly
as desired.2 We then substitute (16) in Eq. (15) and, upon

2This choice is justified because it is a special case of the multiple
scales method. Therefore expansion validity and errors are ensured
a priori.

defining

s = εt, (17)

isolating the ε coefficient, and then equating them to zero,
we obtain a system of linear algebraic equations for xn(s).
Solving it, we find
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x3(s) = 0, (18d)

xn(s) = L2xn−2 + L4xn−4, n � 4, (18e)
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FIG. 2. Sample trajectories for ε = 1/16 with the first three
nonzero terms of x and T expansions for �(s) = 1 + 0.1 sin(s) and
�(s) = 1 + 0.1 cos(s).

where L2 and L4 are the linear differential operators:
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Equation (18e) defines a recurrence relation where
x0(s),x1(s),x2(s), and x3(s) act as initial conditions. We can
therefore use Eq. (18) and Eq. (19) to obtain every term in
the series (16) simply by differentiation and multiplication.
Furthermore, Eq. (18e) is homogeneous and x1 = x3 = 0, then
x2n+1 = 0 for every n ∈ N. A sample plot of xd.eq.(t) and the
corresponding Td.eq.(t) with

�(s) = 1 + 1
10 sin(s), �(s) = 1 + 1

10 cos(s) (20)

is shown in Fig. 2.
Knowing the terms of the expansion (16), we can find an

analogous series expansion for the heat:
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which, upon the substitution of (16) and (14), yields the
following values for the coefficients in (21):
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It is worth noting that all the coefficients (23) can, in
principle, be determined from the recurrence relation for xn

(18). An integration is involved, which may be nontrivial, but,
from a formal point of view, the series is well defined for
sufficiently small values of ε.

IV. DISCUSSION

In this concluding section, we comment on the relevance
of Eq. (18) and of Eq. (23) and point out interesting fea-
tures. Speaking specifically about the dynamical equilibrium
solution, Eq. (18) possesses remarkable properties. The first
one is that it allows us to calculate the dynamical equilibrium
solution xd.eq. and hence T via (14) with an arbitrary precision.
Only multiplications and differentiations are required in such
formula, thus making the evaluation of x and T a trivial task.
For practical purposes, the evaluation of the series (16) must be
truncated at some point. Being absent the odd terms, if we stop
at the N th iteration we will have an error of order O(ε2N+2),
which gives us a pretty high precision with few iterations.
Obviously this is valid only within the convergence radius;

this can be in principle determined from the recurrence relation
(18e), but its determination is a complex task far beyond the
scope of this paper.

The second remarkable property is that (18e) is valid for
general instances of � and � provided that they (1) depend
on time only through εt , (2) are smooth, and (3) never vanish.
This last condition must necessary hold for �, while it can
be slightly relaxed for �. A priori the vanishing of both
� and � introduces singularities in Eq. (15). As Eqs. (18)
and (19) show, we cannot get rid of the singularities introduced
by �. Conversely, we see from the same equations that the
singularities in � do not explicitly appear in the solution, so
they are in a certain sense removable. However, the price to
pay is that the solution is compelled to live in a compact subset
of the real line: if there exists a s0 > 0 such that �(s0) = 0,

then our solution is defined only on the subset 0 � s < s0 due
to the presence of square roots in Eqs. (18) and (19). Physically
�(s0) = 0 means that we allow the reservoir temperature
to reach absolute zero in a finite time, which is forbidden
by thermodynamics. As a consequence a vanishing �(s) is
mathematically acceptable (even if with some limitations), but
non physically.

042106-4



THERMODYNAMICS OF SLOW SOLUTIONS TO THE GAS- . . . PHYSICAL REVIEW E 94, 042106 (2016)

FIG. 3. Plot of R as a function of K for different values of ε.

The third interesting feature of Eq. (16) is that it extends
the results of our previous paper [20] where we were limited to
using � = 1 and opens the possibility to study thermodynamic
cycles. In turn, using this regular expansion technique, we
lost the characterization of transient phenomena. This is not
a major drawback, if, for example, one is interested in the
study of the thermodynamic cycles efficiency, where transient
behaviors are neglected. Moreover numerical evidence leads
us to conjecture that, for ε sufficiently small, all solutions of (9)
will at some time fall into our dynamical equilibrium solution.
One example of such evidence is obtained as follows: using
the particular form of � and � given in Eq. (20) we simulate
Eq. (15) with x(0) = xd.eq.(0) and x(0) = xd.eq.(0) + Kε, thus
obtaining xnum(t) and xnum

d.eq.(t) respectively. We then study

R =
max

s∈[7π,9π]
|xnum(s) − xd.eq.(s)|

max
s∈[7π,9π]

∣∣xnum
d.eq.(s) − xd.eq.(s)

∣∣ (24)

as a function of K and ε, where xd.eq. is truncated at n = 4
and s ∈ [7π,9π ] ensures that we are way ahead of the time
evolution of the system. As emerges by Fig. 3, R ≈ 1 for
various values of N and ε, so we reasonably say that xnum(s)
is attracted by Eq. (16). This means that the dynamical
equilibrium solution has a quite general usefulness.

The last interesting feature of the expansion (16) is that if
we limit ourselves to the 0th order term, we obtain the law of

perfect gases. Higher orders terms are small corrections arising
from the fact that � and � are changed in a finite time. In this
sense Eq. (16) and Eq. (18) can be qualitatively considered
as an analog of the virial expansion for a perfect gas where
finite time effects play the role of interparticle interaction
contributions. Clearly, this analogy is a formal one: in Ref. [15]
the gas is assumed to be perfect and remains perfect during
the whole time evolution. However, it is not unreasonable to
think that the corresponding equation will have as a 0th order
term the usual virial theorem for real gasses if the gas particles
are allowed to interact. This suggests the existence of higher
order time-dependent virial theorems.

Coming to the relevance of (21) and (23), they allow
us to calculate the heat as a formal series in which all the
coefficients are well determined through a purely mechanical
model [15]. Equation (23) is therefore a quite uncommon
result in the framework of nonequilibrium thermodynamics,
as similar formal results are rare in the literature. It gives
an explicit expression of heat exchanged at any intermediate
time that can be evaluated a priori with the sole knowledge
of the driving protocol. This opens interesting scenarios to
analyze. For example, it reduces the evaluation of heat to
the problem of finding the terms in (16) and to performing
the integration in Eq. (23). Another interesting possibility is the
formal evaluation of the efficiency of thermodynamic cycles
when drivings are slow but not necessarily quasistatic, i.e.,
to characterize situations where efficiency is expected to be
high while the power is close to zero. We point out that in
the original model we are not allowed to consider adiabatic
transformations. Therefore we are unable to describe Carnot
cycles, but it is possible to study Ericsson-like cycles [15,16],
with the only caveat that � and � must be smooth function.
This may seems an internal contradiction as Ericsson cycle is
not smooth; however, any periodic functions can be reasonably
approximated by a smooth trigonometric polynomial [26].
To satisfy the “slow” driving condition such trigonometric
polynomial should not contain high order harmonics, but this
is usually sufficient to yield a good approximation.
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