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Reconstructing the structural connectivity between interacting units from observed activity is a challenge across
many different disciplines. The fundamental first step is to establish whether or to what extent the interactions
between the units can be considered pairwise and, thus, can be modeled as an interaction network with simple
links corresponding to pairwise interactions. In principle, this can be determined by comparing the maximum
entropy given the bivariate probability distributions to the true joint entropy. In many practical cases, this is
not an option since the bivariate distributions needed may not be reliably estimated or the optimization is too
computationally expensive. Here we present an approach that allows one to use mutual informations as a proxy for
the bivariate probability distributions. This has the advantage of being less computationally expensive and easier
to estimate. We achieve this by introducing a novel entropy maximization scheme that is based on conditioning
on entropies and mutual informations. This renders our approach typically superior to other methods based on
linear approximations. The advantages of the proposed method are documented using oscillator networks and a
resting-state human brain network as generic relevant examples.
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Introdution. Pairwise measures of dependence such as
cross-correlations (as measured by the Pearson correlation
coefficient or covariance matrix) and mutual information are
widely used to characterize the interactions within complex
systems. They are a key ingredient to techniques such as
principal component analysis, empirical orthogonal functions,
and functional networks (networks inferred from dynamical
time series) [1–3]. These techniques are widespread since they
provide greatly simplified descriptions of complex systems
and allow for the analysis of what might otherwise be
intractable problems [4]. In particular, functional networks
have been widely applied in fields such as neuroscience [4,5],
genetics [6], and cell physiology [7], as well as in climate
research [1,8].

In this paper we study how faithfully these measures
alone can represent a given system. With the increasing
use of functional networks, this topic has received much
attention recently, and many technical concerns have been
brought to light dealing with the inference of these networks.
Previous studies have shown that the estimates of the functional
networks can be negatively affected by properties of the
time series [9–11], as well as properties of the measure of
association, e.g., cross-correlations [12–15]. In this work,
however, we address a more fundamental question: How well
do pairwise measurements represent a system?

In principle, this can be evaluated using a maximum
entropy approach. The corresponding framework was first
laid out in Ref. [16] and later applied in Ref. [17], where
they assessed the rationale of only looking at the pairwise
correlations between neurons. They examined how well the
maximum entropy distribution, consistent with all the pairwise
correlations described the system. If the system is not well
described by this maximum entropy distribution, then we know
from the work of Jaynes [18] that other information beyond
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pairwise relationships would need to be taken into account.
Similar analyses have since been applied in neuroscience
[19–21], as well as in genetics [22], linguistics [23], and
economics [24] and to the Supreme Court of the United States
[25].

However, the data to accurately estimate the needed
bivariate probability distributions may not be available. To get
around this, some researchers have used the first two moments
of the variables as constraints instead of the full bivariate
distributions [26,27]—effectively using the cross-correlations
as their constraints. In the case of binary variables, as in the
original work [17], this is equivalent to conditioning on the
bivariate distributions. For larger cardinality variables this is
only an approximation, though, as the cross-correlation is only
sensitive to linear relationships [28]. Systems where larger
cardinalities and nonlinear behavior are thought to play a
significant role such as in coupled oscillators—which have
been used to model systems as diverse as pacemaker cells and
crickets [29]—are, however, rather the norm than an exception
[28]. In particular, we show here that this plays a significant
role in a resting-state human brain network.

In order to retain the attractive properties of the cross-
correlation and simultaneously capture a much wider range
of relationships we propose using the mutual information.
Mutual information can detect arbitrary pairwise relationships
between variables and is only nonzero when the variables
are pairwise independent, making it the ideal measure [30].
However, while calculating the maximum entropy given the
moments of a distribution result in simple equations in the
probabilities, using mutual informations as constraints results
in transcendental equations which are much harder to solve.
We circumvent this problem here using the set-theoretic
formulation of information theory [31], which gives us an
upper bound on the maximum entropy that is saturated in
many cases.

The set-theoretic formulation of information theory allows
us to map information-theoretic quantities to the regions of
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FIG. 1. The information diagram for three variables. It contains
seven regions corresponding to the possible combinations of three
variables, with their corresponding information-theoretic quantities
defined in the text. The univariate entropy H (X) is the sum of all the
regions in the red circle, and the mutual information I (Y ; Z) is the
sum of all the regions in the blue oval.

an information diagram, a variation of a Venn diagram. The
information diagram for three variables is shown in Fig. 1
with the associated information-theoretic quantities labeled
[32]: entropy, H (X) = −∑

p(x) log[p(x)]; conditional
entropy, H (X|Y,Z) = −∑

p(x,y,z) log (p(x|y,z)); mutual
information, I (X; Y ) = ∑

p(x,y) log(p(x,y)/(p(x)p(y)));
conditional mutual information, I (X; Y |Z) =∑

p(x,y,z) log (p(x; y|z)/[p(x|z)p(y|z)]); and multivariate
mutual information, I (X; Y ; Z) = I (X; Y ) − I (X; Y |Z).

We illustrate our method using systems of coupled oscilla-
tors, as they commonly occur in nature and are used to model
a large variety of systems [29]. In particular, we look at the
Kuramoto model [33,34] as a paradigmatic example that is
capable of a wide range of dynamics from synchronization to
chaos [35] and, hence, provides an excellent test bed for our
method.

Method. Given a set of N variables ({X}N ), we want to know
how well the cross-correlation or mutual information between
all pairs of variables can encode the state of the system. To do
this, we first determine the maximum entropy consistent with
the given measure of similarity, Hm({X}N ), which represents
a standard variational problem. This means that any model
of the system consistent with the

(
N

2

)
values of the similarity

measure can have an entropy of at most Hm({X}N ). From the
work of Jaynes [18], we also know that any model of the
system with a smaller entropy must implicitly or explicitly
include information beyond these values. As a result, the true
joint entropy, H ({X}N ), will always be less than or equal to
Hm({X}N ).

If the variables are all independent, then the entropy of the
system is the sum of the entropies of the individual variables,
HI ({X}N ) = ∑

i H (Xi). The most this uncertainty can be
reduced is if the true joint entropy is known and is given
by the multi-information (also called total correlation [36])
IN ({X}N ) = HI ({X}N ) − H ({X}N ) � 0. We similarly define
the measure information Im({X}N ) = HI ({X}N ) − Hm({X}N )
to be the reduction in uncertainty given a measure. The
fraction of information retained by describing the system
with a given measure, as opposed to the true joint entropy,
is then 0 � Im/IN � 1. If the used measure is the bivariate
probability distribution, we call Im the pairwise network

information or the second-order connected information as
defined in Ref. [16]. This is approximated linearly if the
measure used is the cross-correlation and nonlinearly if the
measure used is the mutual information.

When using the cross-correlation, estimating Hm is con-
ceptually straightforward, though finding the optimum value
can be computationally expensive. Estimates of the first
two moments of the variables uniquely determine the cross-
correlations and can be used as constraints in a Lagrange
multiplier problem solving for Hm. The resulting proba-
bility distribution Pm({X}N ) is the Boltzmann distribution
Pm({X}N ) = exp (

∑
i hixi + ∑

i�j Ji,j xixj ), where hi and
Ji,j are the Lagrange multipliers [3].

When using mutual information, estimating Hm with
Lagrange multipliers is much harder as the derivatives of the
Lagrange function are transcendental functions in Pm({X}N ).
Instead, we use the mutual informations and univariate en-
tropies as constraints and draw on the structure of information
diagrams. Each univariate entropy and mutual information
corresponds to a region in the information diagram that can be
written as a sum of a number of atomic regions (atoms). The
sum over all atoms is simply H ({X}N ). Thus, as seen in Fig. 1,
we obtain constraints of the form:

const = I (Y ; Z) =I (Y ; Z|X) + I (X; Y ; Z), (1)

const = H (X) =H (X|Y,Z) + I (X; Y |Z)

+ I (X; Z|Y ) + I (X; Y ; Z). (2)

In general, a system of N variables results in
(
N

1

)
univariate

entropy constraints,
(
N

2

)
mutual information constraints, and

A = ∑N
k=1

(
N

k

) = 2N − 1 atoms to be determined. In the
simplest case of N = 3 variables we have six constraints and
A = 7 regions to specify, see Fig. 1. This means we only have
one free parameter, making the maximization process to get
Hm({X}N ) particularly easy in this case; in general, there are∑N

k=3

(
N

k

)
free parameters.

Apart from the chosen constraints defined above, there are
also general constraints on the values of the subregions ensur-
ing they define a valid information diagram, i.e., that there ex-
ists a probability distribution with corresponding information-
theoretic quantities. A family of such constraints (so-called
Shannon inequalities) can be inferred from the fundamental
requirement that, for discrete variables, (conditional) entropies
and mutual informations are necessarily non-negative: (A)
H (Xi |{X}N − Xi) � 0 and (B) I (Xi ; Xj |{X}K ) � 0, where
i �= j and {X}K ⊆ {X}N − {Xi,Xj } [37]. Each inequality can
also be written as a sum of atoms, e.g.,

I (X1; X2|X3) = I (X1; X2|X3,X4) + I (X1; X2; X4|X3) � 0.

(3)

Not so well known, for N � 4, is that there are also inequal-
ities that are not deducible from the Shannon inequalities, the
so-called non-Shannon inequalities [31]. In principle, these
inequalities may be included in our maximization problem;
however, they have not yet been fully described. Therefore,
we suggest constructing the diagram with the maximum
entropy that satisfies the problem-specific constraints and is
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consistent with the Shannon inequalities. As it may violate
the non-Shannon inequalities, it may not represent a valid
distribution. However, the sum of the atomic regions would
still be an upper bound on the entropy Hm and thus provide
a lower bound on Im/IN . Notably, for the particular (and,
in our simulations, common) case where all A elements are
non-negative—which is always true for N = 3—one can prove
that the bound is attainable (see Theorem 3.11 [31]).

To summarize, the task of finding the maximum entropy
conditioned on the univariate entropies, mutual information,
and elemental Shannon inequalities can be solved using linear
optimization: Each constraint will take the form of a linear
(in-)equality, as in Eqs. (1) and (3), and we maximize the
N-variate entropy by maximizing the sum over all A atoms of
the information diagram. Thus, we avoid having to perform
the maximization over probability distributions.

a. Example of a nonlinear pairwise distribution. We now
give an example illustrating how the mutual information can
better detect pairwise relationships than the cross-correlation.
Consider a set of variables {X}N : Each variable is drawn
uniformly from the set {−1,0,1}, and all variables are
simultaneously 0 or independently distributed among {−1,1}.
The cross-correlation between any pair of variables is zero and
therefore consistent with the hypothesis that all variables are
independent. Therefore, the fraction of information captured
by the cross-correlation is Im/IN = 0. However, there is
a significant amount of mutual information between the
variables.

Since P (Xi |{X}N − Xi) = P (Xi |Xj �=i)∀i and j , all the
conditional mutual informations are zero. Therefore, the only
nonzero atoms in the information diagram will be the N -
variate mutual information I (X1; . . . ; XN ) = I (X1; X2), and
the conditional entropies H (Xi |{X}N − Xi) = 2/3 bits. This
is the maximum entropy diagram consistent with the pairwise
mutual information and univariate entropies, so the expected
result using the mutual information is Im/IN = 1. We can
see why this is the case by starting with the information
diagram for two variables (which is fixed from our conditions)
and successively adding new variables. The addition of each
new variable adds 2/3 bits to the total entropy—which is the
maximal amount consistent with the mutual information.

b. Kuramoto model. The Kuramoto model is a dynamical
system of N phase oscillators with all-to-all coupling pro-
portional to K [33,34]. The ith oscillator has an intrinsic
frequency of ωi and a phase of θi and its dynamics is
given by ∂θi

∂t
= ωi + K

N

∑N
j=1 sin(θj − θi) + ηi(t). Here, we

have followed Ref. [38] and added a dynamical noise term
to mimic natural fluctuations and environmental effects;
ηi(t) is drawn from a Gaussian distribution with correlation
function 〈ηi(t)ηj (t ′)〉 = Gδi,j δ(t − t ′), where G determines
the amplitude of the noise. For values of K above a critical
threshold, K > Kc, synchronization occurs [29]. In the limit
of constant phase differences the dynamics are trivial, and
knowledge of one oscillator will specify the phase of all others.
Therefore, pairwise information is sufficient to describe the
system in this case. Yet, the presence of noise results in random
perturbations of the phases and typically prevents constant
phase differences [38] such that only Im/IN � 1 is expected.
In the weak-coupling regime when synchronization is absent,
it is nontrivial what Im/IN should be.

To estimate Im/IN and to establish the importance of the
level of discretization or cardinality, we first discretize the
phase of each oscillator into n equally likely states [39].
Alternatively, estimators for continuous variables can be used
as we discuss in Ref. [40]. To provide clear proofs of principle,
we first focus on three-oscillator systems in the following
as this is the smallest system size at which the results are
nontrivial. Specifically, we consider three different cases: (i) all
oscillators have the same intrinsic frequency, (ii) all oscillators
have unique intrinsic frequencies and are still synchronized,
and (iii) all oscillators have unique intrinsic frequencies and
the entire system and all subsystems are unsynchronized
(“weak-coupling regime”). For three-oscillator systems, the
corresponding parameter regimes in the absence of noise have
been carefully documented in Ref. [35].

For each of the three cases examined, we created ensembles
of 100 three-oscillator systems, where each element of the
ensemble will have randomly sampled frequencies [41]. These
ensembles are studied in two different noise regimes, G =
0.001 and G = 0.5. The same ensemble of frequencies is used
in both noise regimes.

In the first case, all oscillators are synchronized with
ω1 = ω2 = ω3 and K = 1.65. Recall that in the synchronized
case we expect E[Im/IN ] ≈ 1. This is indeed what we see
in the low-noise case, G = 0.001, Fig. 2(A); though the
mutual information preserves slightly more information at
larger cardinalities. However, for increased noise, G = 0.5,
the cross-correlation performs poorly at larger cardinalities,
while the mutual information behaves robustly, Fig. 2(D).

For the second case, where the oscillators are synchronized
with different intrinsic frequencies, we use �1/�2 = 1.11,
K/�2 = 4, and K = 2.20, where �1 = ω2 − ω1 and �2 =
ω3 − ω2. Now at both noise levels, at cardinalities greater than
2, the cross-correlation fails to capture a significant portion
of the available information—as Ê[Im/IN ] is significantly
less than 1 [Figs. 2(B) and 2(E)]. This indicates that even
small-amplitude noise can prevent the cross-correlation from
accurately encoding information about the system in this case.
The mutual information again robustly encodes almost all of
the possible information, Ê[Im/IN ] ≈ 1, in both noise regimes
and across all discretizations analyzed.

In the final case, the weak-coupling regime (K/�2 = 0.99,
all other parameters as in the second case), we do not have a
strong hypothesis for what E[Im/IN ] should be. In Figs. 2(C)
and 2(F), we can see that the cross-correlation encodes
virtually no information about the system for cardinalities
greater than 2, Ê[Im/I3] ≈ 0. The mutual information again
robustly encodes the vast majority of the multi-information,
with Ê[Im/I3] > 0.8 for all noise levels and discretizations.

Similar overall results hold for larger systems and when
only a subset of oscillators is observed. As an example,
we consider here a system of 100 nonidentical Kuramoto
oscillators in two regimes: (i) All oscillators are synchronized,
K = 4, and (ii) the oscillators are partially synchronized with
more than 20 different synchronized clusters, K = 1.75. In
both cases we use the same set of intrinsic frequencies (drawn
from a normal distribution with mean zero and unit variance)
and a noise level G = 0.001.

As in the analysis done in Ref. [17], we analyzed the
effects of sampling from a larger system by randomly selecting
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FIG. 2. The fraction of shared information coded by the mutual information (blue diamonds, solid line) and the cross-correlation (green
squares, dashed line). Notice the scale only goes from 0.98 to 1 in panel (A) and from 0 to 1 for the rest. The estimated expectations, Ê[...], are
averages over the ensemble of 100 realizations where we draw ω3 from a normal distribution with zero mean and unit variance. Uncertainties
corresponding to the 25% and 75% quantiles are smaller than the symbol sizes.

T of the 100 oscillators and calculating Im/IT for those
oscillators. For each tuple size, T , we repeated this 100 times,
using the same sets of tuples in both regimes, and computed
Ê[Im/IT ] as the average of these values. As in our previous
examples, our method outperforms the cross-correlation in
the synchronized case (see Fig. 3), as well as for weaker
coupling (see Fig. 4). Our method results in Ê[Im/IT ] � 1
in both regimes, and across all discretizations and tuple
sizes, while the cross-correlation only does so for binary
variables.

c. Resting-state human brain networks. To illustrate the
applicability of our methodology in real-world data situations,
we apply it to neuroimaging data, in a similar context as
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FIG. 3. The fraction of shared information coded by the mutual
information (MI, diamonds with solid lines) and the cross-correlation
(CC, squares with dashed lines) for a tuple of size T . We simulated 100
nodes with K = 4, G = 0.001, and the estimated expectations, Ê[...],
are averages over 100 randomly selected tuples of the given size. All
oscillators are synchronized, and their intrinsic frequencies are drawn
from a normal distribution with zero mean and unit variance. Error
bars are 25% and 75% quantiles.

in Ref. [19]. In particular, we want to assess to what extent
the multivariate activity distribution is determined by purely
bivariate dependence patterns. The used data consist of a time
series of functional magnetic resonance imaging signals from
96 healthy volunteers measured using a 3T Siemens Magnetom
Trio scanner at the Institute for Clinical and Experimental
Medicine in Prague, Czech Republic. Average signals from
12 regions of the frontoparietal network were extracted
using a brain atlas [42]. After preprocessing and denoising
as in Ref. [43,44], the data were temporally concatenated.
Each variable was further discretized to two or three states
using equiquantal binning. Using our approach, we find
Im/IN = 0.88 for the 2-state and Im/IN = 0.77 for the 3-state
discretizations, suggesting that bivariate dependence patterns
capture the dominant proportion of the information. For 2-state
discretization, this is smaller than in Ref. [19]. However, for
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FIG. 4. The fraction of shared information coded by the mutual
information (MI, diamonds with solid lines) and the cross-correlation
(CC, squares with dashed lines) for a tuple of size T as in Fig. 3 but
for weak coupling K = 1.75 leading to partial synchronization with
more than 20 different clusters.
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the 3-state discretization, it provides a much higher estimate
of the bivariate dependence role than the method taking into
account only correlations, as in the case of the Kuramoto
model. This suggests that only when accounting also for
nonlinear coupling does the bivariate dependencies provide
sufficient data structure approximation to resolve the apparent
inconsistency of the results in Ref. [19]. This is also true for
other brain networks [40].

Discussion. Our method allows for potential speedups over
the maximum entropy calculation when conditioning on the
bivariate distributions, as well as when conditioning on the
cross-correlations. In both of these cases, solving the associ-
ated Lagrange multiplier equations are nonlinear optimization
problems. The maximum entropy distribution could also be
found using iterative fitting routines like in Ref. [45], but
in these cases the problem will still scale like nN (n is the
cardinality of the variables). While there are pathological
linear optimization problems that scale exponentially with N ,
there will always be a slightly perturbed problem such that our
method will scale polynomially [46].

Researchers have so far relied on conditioning on the
cross-correlations when insufficient data are available to
estimate the bivariate distributions. They either coarse grain to
binary variables where it is equivalent to conditioning on the
distributions [19]—potentially losing important information—
or use higher cardinality variables where it is only a lin-
ear approximation [26,27]. Our approach based on mutual
information can be applied in these cases; the associated
entropies can be estimated with as few as 2H/2 data points [47]
(H is measured in bits). While this maximization has previ-
ously been prohibitively difficult, our work shows that it is
feasible, allowing it to become widely applicable and serve
as a starting point before considering multivariate information
measures [48–50]. Additionally, if our method returns a small
Im/IN , then this suggests both that the faithfulness assumption
used in causal inference is violated [51–54] and that there is
synergy among the variables [55].

Our calculation of Hm for the mutual information is free of
distributional assumptions, computing the maximum entropy
in the general space of arbitrary cardinality variables. This may
result in higher entropy estimates than methods that consider
predefined cardinality, e.g., binary variables. Notably, our

simulations suggest that estimating Hm in this way provides
comparable, or substantially lower, entropy estimates than
Hm for the cross-correlation, which explicitly constrains the
cardinality. This makes the technique competitive even when
a specific cardinality could be reasonably assumed.

Conclusions. In this work we introduced a novel method
to determine the importance of pairwise relationships by
estimating the maximum entropy conditioned on the mutual
information. We showed that by mapping this problem to
a linear optimization problem it could also be efficiently
computed. Using the generic case of coupled oscillators, we
gave a proof-of-principle example where our method was able
to widely out-perform conditioning on the cross-correlations.
The example of the resting-state brain network showed that
this also carries over to real-world applications, highlighting
the potential of the method when cardinalities larger than two
and nonlinear behavior are important.

Our results indicate that in many relevant cases functional
networks based on mutual information can in principle more
accurately capture the dynamics of the system than those
functional networks based on cross-correlations. These types
of analyses should be applied before studying functional
networks, both to assess the validity of the network paradigm
as well as to test the appropriateness of using the given measure
of association. Only high values in the fraction of shared
information ensure that this is the case. This has not been
done in the vast majority of applications in the past. Due to the
computational efficiency, our proposed methodology should
allow us to revisit this question, especially in areas where
functional networks have already been widely applied, such as
in climate research [1,8,9,56].
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Sci. Rep. 5, 10829EP (2015).

[13] J. Hlinka, D. Hartman, and M. Paluš, Chaos 22, 033107 (2012).
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