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Direct calculation of the critical Casimir force in a binary fluid
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We show that critical Casimir effects can be accessed through direct simulation of a model binary fluid passing
through the demixing transition. We work in the semi-grand-canonical ensemble, in slab geometry, in which the
Casimir force appears as the excess of the generalized pressure, P⊥ − nμ. The excesses of the perpendicular
pressure, P⊥, and of nμ, are individually of much larger amplitude. A critical pressure anisotropy is observed
between forces parallel and perpendicular to the confinement direction, which collapses onto a universal scaling
function closely related to that of the critical Casimir force.
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The critical Casimir [1,2] effect makes a major contribution
to nanoscale confinement forces [3]. Its contribution is felt
as a fluid is driven through the critical ordering transition
of an internal degree of freedom, such as the λ transition
in liquid helium [4] or the demixing transition of a binary
fluid [5,6]. It has been measured in wetting films as they
pass close to the critical end point for ordering on the
liquid gas interface [4,5] or through the fluctuation spectra
of colloids as their solvent is driven through the demixing
transition [6]. Being a critical phenomenon the Casimir effect
is characterized by a universal scaling function [7], which
can be extracted with accuracy from the relevant lattice spin
model, relying on the thermodynamic relationship between
generalized force and derivative of the free energy [8–12].
Universality and thermodynamics allow for this dichotomy
but restricts the simulations to average values of the force.
Direct simulation of the Casimir force in a fluid [13] or model
magnet [14] is a much tougher problem, but accessing it would
open the door to instantaneous measurement, microscopic
study of the coupling between density correlations, and the
critical degrees of freedom, as well as to nonequilibrium
effects.

In this letter we present results showing that universal
critical Casimir effects, including a pressure anisotropy and
the critical Casimir force, can be accessed through direct sim-
ulation of such a binary fluid in an anisotropic cell of volume
V = L2

‖L⊥, L⊥ � L‖; see Fig. 1. We study a fluid mixture
of species A and B [15–18] in the semi-grand-canonical
ensemble (SGC) [15,16]. Here one imposes V , total number
of particles N = NA + NB , temperature T , and chemical
potential difference, μAB = (μA − μB)/2, conjugate to the
thermally averaged particle difference, �N = 〈NA − NB〉.
The relevant free energy thus reads �sgc(T ,N,V,μAB ). The
model system shows a demixing transition characterized by
the order parameter m = �N

N
, along a line of critical points

in the liquid phase, (TC(n),μAB = 0), as the density n = N
V

is
varied.

The truncation of the diverging correlation length close to
the transition introduces L−1

⊥ , measured in microscopic units,
as a third variable characterizing the transition, alongside
t = T −TC

TC
and h̃ = μAB/kBTC . The singular dependence on
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L⊥ then leads to the Casimir force [2]. To maintain TC(n)
constant so that t is constant along an isotherme, volume
changes must be made at constant density. A similar constraint
applies for a magnetic system where volume changes occur in
a magnetically homogeneous medium [8–10]. Hence, the SGC
is thermodynamically equivalent to an Ising model if volume
changes are accompanied by changes in N . The fundamental
thermodynamic relationship then becomes

d�sgc = −SdT − (P − μn)dV − �NdμAB, (1)

with n held constant, where the chemical potential μ =
(μA + μB)/2. From this, one can see that the critical Casimir
force should manifest itself in the system size dependence of
the generalized pressure, P̃ = P − μn, conjugate variable to
volume changes at fixed n, rather than the pressure itself [19].

Equation (1) must be generalized further to allow for
the development of anisotropies when changing L⊥ and
L‖ in slab geometry. This allows independent definitions
for the pressure measured perpendicular and parallel to the
confinement direction [9,19]:

P⊥ = − 1

L2
‖

∂�sgc

∂L⊥

∣∣∣∣∣
N

, P‖ = − 1

2L⊥L‖

∂�sgc

∂L‖

∣∣∣∣
N

, (2)

and for the generalized pressure P̃⊥ = P⊥ − μn and P̃‖ =
P‖ − μn.

For a macroscopic sample one finds �sgc =
kBT V ωbulk(T ,n,μAB), where ωbulk is the dimensionless
free-energy density, so that P⊥ = P‖ = P = −kBT ωbulk, the
bulk pressure. In slab geometry, with L⊥ on a mesoscale,
corrections to bulk thermodynamics give the announced
extra L⊥ dependence; �sgc = kBT (ωbulk + ωex(L⊥)), where
ωex(L⊥) is the excess free energy [7,20,21]. Hence, one finds
excess values for all thermodynamic quantities, including
pressure, both perpendicular and parallel to the confinement
direction, internal energy density, uex, and chemical
potential, μex.

Near the demixing transition there is a critical contribution
to the excess free energy, ωs

ex, modifying the singular part of
the free energy, ωs(t,h̃,L⊥) = ωs

0(t,h̃) + ωs
ex(t,h̃,L⊥), where

ωs
0 is the value in the bulk.

This, however, is not the only contribution to the excess.
Regular surface terms, coming, for example, from Van der
Waals interactions and leading to a surface free energy [22,23],
also make important contributions that can be taken into
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FIG. 1. Typical configuration for the binary fluid in slab geom-
etry. Particles of type A (blue) and type B (orange). The image is
shown for density n = 0.7 and dimensions L⊥ = 5 and L|| = 60; see
text.

account both experimentally [4] and numerically [10]. In
the present work they are minimized as we use periodic
boundaries, but even here, the incommensurability of the pair
correlation function with the boundaries leads to noncritical
contributions [24].

The critical excess free energy has universal scaling
properties that are at the root of all critical phenomena in a
finite system [25]. Limiting here to the temperature axis one
finds

ωs
ex(t,L⊥) = L−d

⊥ �(xt ), xt = t

(
L⊥
ξ+

0

)1/ν

, (3)

where ξ+
0 is a nonuniversal amplitude that depends on n, which

can be estimated from the small wavelength part of the density
structure factor [16,19,26].

The critical confinement force per unit area, perpendicular
(parallel) to the confinement axis, is the critical contribution
to the excess of P̃⊥(‖),

f c
⊥ = (P̃⊥)sex/kBT = L−d

⊥ θ (xt ),

f c
‖ = (P̃‖)sex/kBT = −L−d

⊥ �(xt ), (4)

with

θ (xt ) = (d − 1)�(xt ) − xt

ν

∂�

∂xt

∣∣∣∣
h̃

. (5)

The critical Casimir force, in units of kBT , is f c
⊥. Calculation of

μex can be bypassed by studying the pressure anisotropy, as the
chemical potential is intrinsically isotropic, so that P̃⊥ − P̃‖ =
P⊥ − P‖. This is pure excess and the critical contribution to it
takes the universal form

f c
⊥ − f c

‖ = L−d
⊥ [θ (xt ) + �(xt )]. (6)

Using Eq. (5), the function � can be calculated from θ and
vice versa [27], so that both functions can be extracted with
precision from simulations of the Ising model [8,19].

We have tested these ideas using a fluid of A and
B particles, interacting via a smoothly truncated potential:
v(r) = φ(r) − φ(rc) − (r − rc) dφ

dr
|
r=rc

for r � rc, where φ(r)

is the Lennard-Jones interaction, φ(r) = 4εαβ[(σαβ/r)12 −
(σαβ/r)6] between species α,β separated by distance r [28].
We take a symmetric mixture of equal mass m, with σAA =
σBB = σAB = σ , εAA = εBB = 2εAB = ε, rc = 2.5σ and take
ε, σ , m, and τ0 = σ

√
(m/ε) as the units of energy, length,

mass, and time, respectively.

We performed hybrid molecular dynamics (MD) and
metropolis Monte Carlo (MC) simulations (using LAMMPS
[29]) in slab geometry of width L‖ = 60 and thickness L⊥ = 5
and 6 with periodic boundaries (see Fig. 1 for a typical setup).
These are thin films that at first sight appear far from the
three-dimensional scaling limit. However, the crossover from
two- to three-dimensional criticality occurs for surprisingly
small film width [30], allowing three-dimensional scaling to
a reasonable approximation for this range of thickness. The
lateral size, L‖, is sufficiently large to place us in the scaling
limit for slab geometry [9,10,19]. The equations of motion
were integrated using the velocity Verlet algorithm with a time
step δt = 10−5. Constant temperature was achieved using a
Nosé-Hoover thermostat [31]. Particle identity switches were
made using MC, with a sweep of attempted changes made
every 103 MD steps. At each temperature we started from an
equilibrium configuration of A particles and equilibrated for
at least 3 × 107 MD steps.

The pressure Pk in direction k = x, y, or z can be accessed
by the Virial formula [32], from which we define the pressure
anisotropy:

P⊥ − P‖ = Pz − Px + Py

2
. (7)

The interaction part of the chemical potential was calculated
using the Widom insertion method [32,33], which was adapted
to the SGC with μAB = 0 by inserting either a virtual A or
virtual B particle at random.

The model has been benchmarked in detail for n = 1
and μAB = 0, showing a second order demixing transition
within the dense liquid phase at T = 1.4230 ± 0.0005 [16].
We anticipate from previous studies that for this parameter set
the phase transition continues along a line of critical points
in the n − T plane, intercepting the gas phase at a tricritical
point [34], which we avoid by working at sufficiently high
densities, n � 0.6.

In Fig. 2 we show the pressure anisotropy for n = 0.6
and n = 0.7 for L⊥ = 5 and L⊥ = 6 in the region of the
transition. The transition temperatures, TC(n = 0.6) = 1.18 ±
0.01, TC(n = 0.7) = 1.32 ± 0.01 were estimated from the
susceptibility maximum of a cubic system of size, L⊥ = L|| =
32, which for the values of L⊥ and precision attained here can
be considered as the bulk transition temperatures. Figures 2(a)
and 2(b) show the raw data as a function of temperature, which
illustrate both a critical effect through the transition and a
noncritical contribution, resulting in a nonzero value for the
anisotropy far from the transition.

The existence of a noncritical pressure anisotropy for
systems confined on this scale [24] is illustrated explicitly
in Fig. 2(c), where we show data for a single component
Lennard-Jones fluid with energy and length scales ε and σ

for n = 0.6 in the same temperature range. Away from the
transition the anisotropy for the binary and simple fluids
are of similar magnitude. As an ansatz for the noncritical
contribution, to be subtracted from the total anisotropy, we
take

Pnc(L⊥,n,T ) = Anc(L⊥,n) + Bnc(L⊥,n)|m|, (8)

where m is the order parameter for the transition, measured
during the simulation and Anc(L⊥,n) and Bnc(L⊥,n) are
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FIG. 2. (a) pressure anisotropy P⊥ − P|| in slab geometry with
L⊥ = 5 for n = 0.6,0.7. Dashed lines mark the noncritical pressure
anisotropy, estimated from the high and low pressure limits and using
Eq. (8); see text. (b) pressure anisotropy and estimated noncritical
pressure anisotropy for L⊥ = 6. (c) pressure anisotropy for a one
component Lennard-Jones fluid for L⊥ = 5; see text. (d) finite-size
scaling of the critical part of the pressure anisotropy for the systems in
(a) and (b). Data are compared to an estimate of the universal scaling
function θ + � computed from a simulation of an Ising model (solid
line) with L⊥ = 9 and 20 and L|| = 60 [19].

constants estimated from the high and low temperature values
for the data shown in Figs. 2(a) and 2(b). This represents the
pressure anisotropy of an effective single component fluid
whose characteristics evolve as the composition of the binary
fluid evolves through the transition. The amplitude of this
evolution is fitted, but the rate, as a function of temperature is
fixed by the evolution of m, which is determined numerically.
For L⊥ = 5 it was sufficient to set Bnc = 0, giving a constant
shift shown by the dashed line in Fig. 2(a). For L⊥ = 6 both
constants were taken to be nonzero with the resulting shift
functions shown in Fig. 2(b). The amplitude of this correction
is reduced on going from L⊥ = 5 to L⊥ = 6, as expected, as
being noncritical, it should fall exponentially to zero as L⊥
increases [24].

Removing the noncritical contribution gives an estimate
for the critical reduced pressure anisotropy, plotted against xt

in Fig. 2(d), with the estimated amplitudes ξ+
0 (n = 0.6) =

1 1.2 1.4 1.6
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FIG. 3. Excess part of the confinement pressure Pex,⊥ (symbols),
and excess chemical potential multiplied by the density, nμex (lines),
for L⊥ = 5,6 and n = 0.6 (a) and n = 0.7 (b).

0.46 ± 0.04 and ξ+
0 (n = 0.7) = 0.55 ± 0.04 The fluid data

indeed collapses, within statistical error onto a single master
curve constructed from simulations of the Ising model [19].
This function shows a minimum value just below but close
to the transition, with an overall form similar to θ (xt ). The
contribution from the excess free energy generates a broader
function, particularly above the transition and gives a depth at
T = TC , which is 3/2 that of θ (xt ) [19].

Given the small values for L⊥, one can expect the results to
be subject to corrections to scaling. These are relatively small
for spin systems with periodic boundaries [10,35–37]. The
incommensurability of the pair correlation function through
the boundaries constitutes a contribution to these corrections,
which is specific to a binary fluid. The smallness of the
other corrections, compared, for example, with open or fixed
boundaries [10], provides a convenient test for our procedure.

In Fig. 3 we show the excess values for the pressure
measured perpendicular to the confinement direction, Pex,⊥ =
P⊥ − P cubic, and for the product of density and chemical
potential, nμex = nμ − nμcubic. The quantities P cubic and
μcubic were estimated from the cubic sample with L⊥ = L‖ =
32, which we consider as the bulk values [9,19]. The first
thing to notice is that these two quantities exhibit a sharply
varying alternating function through the transition, similar
in form to the excess internal energy [19,25] but radically
different from the Casimir function exposed by the pressure
anisotropy. Second, comparing with Figs. 2(a) and 2(b), one
can see that the amplitude of these excess quantities is an
order of magnitude bigger than that expected for the Casimir
force for L⊥ = 5 and 6. These measurements then confirm
the thermodynamics presented above: in the SGC ensemble
the Casimir force is related to the excess of P̃⊥ rather than
the pressure itself. Its direct calculation poses the numerical
challenge of resolving this small signal from the difference
between these two quantities.

In Figs. 4(a) and 4(b), we show P̃ex,⊥ versus T for
L⊥ = 5,6 and n = 0.6 and n = 0.7, respectively, constructed
from the data shown in Fig. 3. The raw data shown in
Figs. 4(a) and 4(c) fluctuates around values that are of the
correct order of magnitude for the Casimir force but its
observation is obscured by what again we interpret as a
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FIG. 4. (a, b) Symbols correspond to the excess part of the
generalized pressure P̃ex,⊥ with L⊥ = 5,6 and for n = 0.6 (a) and
n = 0.7 (b). Dashed lines are estimates of the noncritical part of
P̃ex,⊥. (c, d) Scaling of P̃ex,⊥ and the scaling function θ (xt ) obtained
from Ising model simulation in Ref. [8] (full line).

noncritical contribution, P̃nc(L⊥,n,T ). We model P̃nc using
the functional form of Eq. (8). The results are superimposed
on Figs. 4(a) and 4(b). In each case the constants A and B

were fixed by estimating the asymptotes at high and at low
temperature. The subsequent data collapse, once P̃nc has been
subtracted, is shown in Figs. 4(c) and 4(d) and compared with
the universal function, as estimated from simulations of the
Ising model [8]. The data is extremely noisy and the process
is clearly somewhat exploratory, but despite this it seems clear
that the universal function is emerging from the simulation
data for the binary mixture.

In conclusion, we have shown that one can access Casimir
effects directly from simulations of a binary fluid undergoing a
critical demixing transition. We worked in the SCG ensemble
as it is thermodynamically equivalent to the Ising model
and because it offers an accessible route to direct simulation
in a fluid system. Measurement of the pressure anisotropy,
P⊥ − P‖ yields a universal scaling function intimately related
to the critical Casimir force, while direct calculation of the
force requires the excess of the generalized pressure P̃⊥ =
P⊥ − nμ. Resolving a signal from the difference between
these already highly fluctuating quantities proved to be at
the limit of our computing resources. In particular, obtaining
data for μ of high quality was extremely time consuming and
the key to future improvements is the development of more
efficient algorithms for estimating μ.

An alternative to our approach would be to work in the
grand canonical ensemble [13,17,34]. In this case, as the
chemical potential fixes the average density during a volume
change, the Casimir force should come directly from the excess
pressure exerted on the confining walls. However, simulating
density fluctuations is time consuming, making high-quality
data collection difficult. As a consequence, calculation of the
pressure anisotropy and other excess quantities such as
the internal energy are more straightforward in the SGC. For
the Casimir force, things are less clear and in the light of
the results presented here it would certainly be interesting
to explore grand canonical simulations further. The pressure
anisotropy exposed here could, in principle, be extracted from
spin models using the methods proposed in Ref. [14] and
it would also be of interest to pursue this issue in future
work.

Making direct simulations of a binary fluid has highlighted
the existence of the pressure anisotropy associated with
confinement; a rather unusual situation for an otherwise
isotropic fluid. This anisotropy could in principle be measured
experimentally and we hope that our work will stimulate
the development of protocols for this. One possible avenue
could be through the evolution of the forces between arrays of
colloidal particles pinned in anisotropic geometries, immersed
in a binary fluid as it passes through the demixing transition.

Finally, the most compelling motivation for making direct
simulations in a fluid system is that it allows the study of both
universal properties and microscopic processes. The use of
molecular dynamics gives access to real dynamical processes
and will open the door to studies of nonequilibrium processes.
In this paper, we have been limited to periodic boundaries,
but while more realistic boundaries will require increased
computing power and efficiency, there is no theoretical barrier
to the study of fixed, or open boundaries, corresponding to
experimental setups. Future experiments will certainly move
from detailed studies of Casimir forces in equilibrium situa-
tions to the study of nonequilibrium phenomena. Numerical
simulations of model fluid systems such as those presented
here will play an important role in understanding these exciting
developments.

Note added in proof. We recently became aware of the
following submission [38] which uses the same model to study
related concepts.
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PSMN at the ENS Lyon. P.C.W.H. acknowledges financial
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