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Green’s function nonequilibrium molecular dynamics method for solid surfaces and interfaces
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This study presents a comprehensive procedure to calculate the exact dynamic Green’s function of a harmonic
semi-infinite solid and the time trajectories of the atoms, in the framework of the Green’s function molecular
dynamics. This Green’s function properly describes the energy dissipation caused by excitations of the surface
phonons, and the simulated atoms serve as well-defined thermo- and barostats for the nonequilibrium surface
and interface systems. Moreover, the use of the exact dynamic Green’s function coupled with a fast convolution
algorithm significantly improves both the accuracy and the computing speed. The presented method is applied
to a diamond (001) surface, and the results demonstrate that the properties of the nonreflecting boundary, the
thermal fluctuations, and the energy dissipations involving long-wavelength phonons are correctly reproduced.
These distinctive performances potentially allow us to reveal the nonequilibrium phenomena in a wide spectrum
of applications such as catalysis, thermal transport, fracture mechanics, mechanochemistry, and tribology.
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I. INTRODUCTION

Pressing demands to reduce energy consumption have
heightened the need to predict energy transports and dissi-
pations at solid surfaces and interfaces in multidisciplinary
fields [1], which involve solid catalysis [2], thermal transport
of nanostructured materials [3,4], dynamic fractures [5,6],
mechanochemistry [7], and frictions between sliding solid
interfaces [8,9]. Since it is extremely challenging to access
the buried nonequilibrium interface through nanoscale ex-
periments [10,11], molecular dynamics (MD) and ab initio
calculations have been often employed to reveal the atomistic
mechanisms [12–16]. These atomistic simulations, however,
are prone to provide artificial influences on the results due to
the restricted calculable wavelength of the surface phonons.
Indeed, several studies have reported that energy-dissipation
properties associated with phonons, such as thermal conduc-
tivity and friction force, significantly depend on the size of the
simulated systems [4,17–20]. Another problem arises from the
thermo- and barostats methodologies [21–29]. For instance, a
conventional technique of a Nosé-Hoover thermostat based on
the NVT ensembles in thermal equilibrium is not well defined
for nonequilibrium systems [30,31]; in fact, it is known that
nonlinear transport properties are influenced by the type of the
thermostat used in the MD simulation [24].

Among many potential methods that attempt to overcome
the limitations described above [32–38], Green’s function
methods are of special interest. This approach allows us to
focus on a central region by taking into account also the infinite
degrees of freedom of the surrounding atoms [39,40]. For
surface systems, for example, by considering a semi-infinite
solid as a harmonic bath, we can derive the generalized
Langevin equation in which all the degrees of freedom of
infinitely large number of the solid atoms are projected on
the surface atoms in the simulation cell [30,31,41–43]. This
formulation enables us to simulate the surface atoms of the
semi-infinite solid without explicit calculations of the internal
atoms of the solid.

This semi-infinite Green’s function approach has been
successfully applied to assess static properties of mechanical
contacts [44,45], adsorbates [46,47], and electronic structures

of surfaces [48–54]. However, difficulties still remain in
practical implementations for the dynamical simulation, i.e.,
Green’s function MD (GFMD). The main problems involve (1)
the determination of a realistic, accurate, and easily calculable
form for the Green’s function and (2) the evaluation of the
convolution integral, which would become a critical bottleneck
for the actual simulations of the time evolution [30,44,55].
To overcome these drawbacks, numerous attempts have been
developed by means of the expansion by the continued
fraction form [56], the assumptions in the function form
composed of Gaussian and stationary vibrations [55,57], the
decomposition with eigenfrequencies and eigenvectors of the
solid of finite size [31,58,59], the estimation from a long MD
run based on the fluctuation dissipation theorem [44,60,61],
and the auxiliary dynamic degrees of freedom introduced to
the equations of motion [62–65]. The performances of all
these methods, however, crucially depend on the arbitrary
parameters that must be chosen so as to optimize the accuracy
of the approximated Green’s functions in their frameworks.
Therefore, an exact approach with applicable computational
loads is needed in order to secure and spread the use of the
GFMD simulations.

This study provides a comprehensive recipe of the exact
GFMD approach for the harmonic semi-infinite solid. The
main idea is to derive the analytic Green’s function in the
complex space by exploiting the fact that semi-infinite solids
are invariant with respect to the addition or the removal of
surface layers [52–54]. This exact Green’s function allows us
to use a fast convolution method combined with the inverse
Laplace transformation, and thus the computational costs due
to the convolution term are dramatically reduced [66–70].
These improvements render the method applicable also to large
systems of higher importance in realistic simulations that were
previously considered too demanding. Moreover, schemes to
make the GFMD atoms behave as proper thermo- and barostats
for solid surfaces and interfaces are also presented.

This paper is organized as follows. Section II describes
the theory and the algorithm of the GFMD method. The
GFMD method is applied to diamond (001) surfaces in
simple nonequilibrium systems of collisions of gas atoms,
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thermal fluctuations, and sliding friction. The test conditions
and results are reported in Secs. III and IV, respectively.
The movies of the simulations are also provided in the
Supplemental Material [71]. Conclusions are drawn in Sec. V.

II. THEORY

A. Green’s function

Let us consider a unitcell that contains atoms connected
to each other and repeats in the surface lateral directions so
as to form a solid layer. The periodic boundary conditions
are imposed on the boundary of the solid layer. The solid
layers, then, are stacked along the surface normal direction,
interacting with their nearest-neighbor layers in such a way
as to form a semi-infinite solid. Assuming that the intrabonds
among the atoms are elastic, the equation of motion for the
entire solid is (

M
d2

dt2
+ D0

)
u0(t) = f0(t),

where u0, f0, and M are the atomic displacement vector,
external force vector, and the atomic mass matrix, respectively.
The dynamical matrix D0 consists of the elastic force terms
for all the atoms in the solid. Note that uppercase, bold,
and lowercase letters are employed to indicate matrices,
vectors, and scalars, respectively. The above equation can be
expressed in a simpler form by mass normalization with a N
matrix defined as N 2 = M−1. Transforming the quantities as
D0 = N−1DN−1, u0 = Nu, and f0 = N−1f, we obtain(

d2

dt2
+ D

)
u(t) = f(t). (1)

Here we consider a surface lattice vector r// that consists of
the lattice-vector components parallel to the surface. Discrete
Fourier transformations between r// basis and the surface
reciprocal vector k// basis are defined with respect to arbitrary
vector x and matrix X as

x(k//) =
∑
r//

exp(−ik// · r//)x(r//)/
√

n,

X(k//,k′
//) =

∑
r//,r′

//

exp(−ik// · r//)X(r//,r′
//)

× exp(ik′
// · r′

//)/n,

where n is the number of the unit cells contained in a solid layer.
In the following, a matrix notation X(x) is used when a matrix
is diagonal with respect to the x base. According to the surface
periodicity and Bloch’s theorem, Eq. (1) can be diagonalized
by moving to the k// space. In the initial conditions u(t =
0) = u̇(t = 0) = 0, we can define the Green’s function of the
semi-infinite solid through the discrete Fourier and the Laplace
transformations of Eq. (1) as

G(z,k//) = [z2 + D(k//)]−1, (2)

where z represents a coordinate point in the complex plane.
The direct solution of Eq. (2) is notoriously difficult,

because one must treat the dynamical matrix which contains
the infinite degrees of freedom. This difficulty can be circum-
vented by considering a self-evident property, the semi-infinite

periodicity (SIP), which states that the dynamical properties
depend on neither addition nor removal of a finite number of
unit layers [52–54].

In order to lay the SIP on the present system, we treat each
solid layer individually by labeling from the top to the bottom
as ξ = 1,2,...,∞. An external force f1 is assumed to affect
only the top layer (ξ = 1). The displacement of the top layer,
u1, is given by

u1(z,k//) = G11(z,k//)f1(z,k//), (3)

where G11 = Gξ=1,ξ ′=1. To make the notations simpler, the
variables z and k// will be omitted if not specifically men-
tioned. In the r// basis, Eq. (3) becomes

u1(r//) =
∑
r′
//

G11(r//,r′
//)f1(r′

//). (4)

Then a new layer labeled by ξ = 0, which is identical to
the others, is piled on top of the layer ξ = 1 with the same
interlayer potential. The dynamical matrix of the new layer,
D00 = Dξ=0,ξ ′=0, consists of elastic terms that come from the
layer itself and the interaction with the ξ = 1 layer; namely,
it can be decomposed with D00 = L + D′

00, where L is the
elastic force matrix within the layer and the matrix D′

00 is the
elastic interlayer-force term with respect to the displacement
of the ξ = 0 layer. The motion equation of the displacement
u0 of the newly added layer is

z2u0(r//)

= −
∑
r′
//

L(r//,r′
//)u0(r′

//)

−D′
00u0(r//) −

∑
r′
//

D01(r//,r′
//)u1(r′

//) + f0(r//), (5)

where f0 is an external force applied on the layer ξ = 0. The
external force f1 in Eq. (4), in turn, becomes the counteracting
force due to the interlayer interaction with u0, as

u1(r//) =
∑
r′
//

G11(r//,r′
//)

×
⎡
⎣D′

11u1(r′
//)+

∑
r′
//

D10(r′
//,r

′
//)u0(r′

//)

⎤
⎦,

(6)

where D′
11 = D11 − L and D10 are the counterforce terms

against the D′
00 and D01 terms, respectively. Transformed to

the k// space, the simultaneous Eqs. (5) and (6) yield

(z2 + L + D̃00)u0 = f0, (7)

where D̃00 is an effective interlayer matrix:

D̃00(G11) = D′
00 + D01(k//)(1 − G11 D′

11)−1G11 D10(k//).

(8)

Since the displacement u0 becomes that for the top layer in
the semi-infinite solid, the form of Eq. (7) must be identical to
that of Eq. (3) to satisfy the SIP. Therefore, a matrix equation
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for G11 is given by

G11(z,k//) = [z2 + L(k//) + D̃00(G11)]−1. (9)

Equations (8) and (9) are the key formulas to compute the
exact Green’s function. The internal force matrices L, D′

00,
D′

11, D10, and D01 are extracted from ab initio calculations on
solid systems [72,73].

Numerical solutions of the Green’s functions can be derived
by conventional Newton-Raphson algorithms [74], which
require the Jacobian matrix. By introducing � = G−1

11 in
Eqs. (8) and (9), a nonlinear function W can be defined as

W (�m) = z2 + L + D̃00(�m) − �m, (10)

where the superscript m indicates a number of iterative steps of
the trial function �m. With a vector expression for the matrix
elements Wi,j , in which the indices i and j label the atoms,
the multivariables Newton-Raphson algorithm presents⎡
⎢⎢⎢⎢⎣

�11

�12

...

�nana

⎤
⎥⎥⎥⎥⎦

m+1

=

⎡
⎢⎢⎢⎢⎣

�11

�12

...

�nana

⎤
⎥⎥⎥⎥⎦

m

−μ

⎡
⎢⎢⎢⎢⎢⎣

∂W11
∂�11

∂W11
∂�12

· · ·
∂W12
∂�11

∂W12
∂�12

· · ·
...

... · · ·
∂Wnana

∂�11

∂Wnana

∂�12
· · ·

⎤
⎥⎥⎥⎥⎥⎦

−1

m

⎡
⎢⎢⎢⎢⎣

W11

W12

...

Wnana

⎤
⎥⎥⎥⎥⎦

m

,

(11)

where na is the number of the atoms in the unit cell and μ

is the damping parameter [74]. The element of the Jacobian
matrix is calculated by

∂W

∂�ij

= −D01(� − D′
11

)−1 ∂�

∂�ij

(
� − D′

11

)−1
D10 − ∂�

∂�ij

.

(12)

Concerning the initial trial function �m=0, a simple and
reasonable choice would be a mixture of two opposite limits:
one limit is characterized by D̃00 = D′

00 in which the top layer
is connected to the rigid body, while the other is characterized
by D̃00 = 0 in which the top layer is free from the semi-
infinite substrate in the zero limit of the effective interlayer
connection. Therefore, a plausible initial trial function is
�m=0 = z2 + L(k//) + λD′

00, where 1 � λ � 0 is the mixture
parameter.

Some limitations of the current scheme of the Green’s
function should be mentioned here. Since the semi-infinite
solid is approximated as a harmonic solid, this approximation
may lead to inaccurate dynamics due to the less realistic
description of the intrabonds. This problem, however, would be
minimized by considering a hybrid system [37,38] composed
of a central region, in which chemical reactions or nonlinearity
deformations occur, treated by more realistic methods such as
ab initio MD and the surrounding region described by the
GFMD method. Another drawback is that aperiodic systems
such as amorphous materials or systems with impurities cannot
be treated.

B. Solutions of the Green’s function MD atoms

Once the Green’s function is obtained, the time evolution
of the GFMD atoms can be computed as

v(t,k//) =
∫ t

0
S(t − t ′,k//)f(t ′,k//) dt ′

+ vT(t,k//) + vP(t,k//), (13)

where S(t) = N d
dt

G11(t)N , and the velocities and the external
forces are no longer normalized with respect to the mass. The
velocities vT and vP originate from thermal fluctuations and
applied stresses, respectively; they are the general solutions
determined by the initial displacements and velocities of the
system. The theoretical and numerical details of these solutions
are described below.

1. Convolution of the Green’s function with external forces

The first term of the right-hand side of Eq. (13) is the
velocity dictated by the response of the semi-infinite solid
to the external force. A conventional quadrature for the
convolution integral requires a simulation time of O(n2

t )
and a memory allocation of O(nt ), where nt is the total
number of the time steps. This demanding computational
cost is dramatically reduced by using the fast convolution
method combined with the modified-Talbot’s inverse Laplace
transformation [66–69]. More specifically, the time interval
of the convolution is divided by grids, and each convolution
component is calculated by the inverse Laplace transformation
of S(z,k//)f(z,k//) along a modified path of integration. The
integration path is formulated by bending the Bromwich line
in the complex plane so as to optimize the accuracy of the
convolution on the discretized time interval. Consequently,
this algorithm allows us to compute the convolution precisely
by requiring only a simulation time of O[nt log(nt )] and a
memory allocation of O[log(nt )].

Although several choices are available for the path of the
integration [70], an essence of all the procedures is to modify
the path so that it embraces the singularity points of S(iω,k//).
Prior to the use of the fast convolution methods, thus, the
position of the singularities must be identified. An efficient
way to locate the singularities is to focus on Im G11(iω,k//),
which is associated with the surface density of states [75].
As the infinite degrees of freedom in the solid are projected
on the surface atoms, the surface density of states forms a
continuous function of the frequency ω [18,19]. The supremum
and infimum frequencies in the range of the density of states,
in fact, can be located in the singularity points, according to
the context of Van Hove singularities [76]. As a result, the
singularity points are easily found by searching the frequency
range of the Im G11(iω,k//). Because of the divergent property
at the singularities, the transition of �(iω,k//) = G−1

11 can be
detected more stably in actual simulations.

To integrate numerically along the proper path, note that
once �(zi) is obtained at a certain discretized point zi , the
initial trial function for the next �(zi+1) should be chosen
recursively as �m=0(zi+1) = �(zi). Since the Green’s function
has the polyvalence property, this procedure is useful to keep
the integration path in the one Riemann surface corresponding
to the correct inverse Laplace transformation.
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2. Temperature

The thermal fluctuation vT is caused by the random forces
arising from vibrations of the semi-infinite solid placed at a
temperature T . From the context of the equation of motion,
the velocity vT is a linear combination of the general solutions
for initial displacements and velocities of the entire solid,
which serves as a harmonic bath [39]. Through the fluctuation-
dissipation theorem [40], a simple relation between vT and the
Green’s function can be written as

〈
vT

i,j (t,k//) vT
i ′,j ′ (t = 0,k//)

〉 = kBT Si,i ′,j,j ′ (t,k//), (14)

where vT
i,j is the velocity of the ith atom in j direction, and 〈〉 is

the ensemble average operator. An established algorithm based
on the Fourier series expansion combined with the Gaussian
process [77] readily produces vT that satisfy both the stochastic
movements and the constraint described in Eq. (14) for an
arbitrary form of the Green’s function.

3. Stress

The barostat scheme in GFMD simulations should be
designed in such a way that it reproduces the pressure exerted
on a thin layer of liquid or solid confined between two parallel
walls of the semi-infinite solids. Suppose that constant and
uniform external forces, f(t,k//) = −fcδk//,0, are applied on
the top layer of the solid at temperature of 0 K. At first, the
solid gets distorted, but the distortion process eventually stops
(v = 0) when the elastic force is balanced with the external
force. According to Eq. (13), the general solution with the
given initial conditions can be written as

vP(t,k//) = δk//,0fc

∫ t

0
S(t ′,k//) dt ′. (15)

This expression can be understood intuitively as follows: once
the applied external force is removed, the distorted solid starts
rebounding elastically, exerting a pressure as large as that of
the applied force. If we assume that the time interval t is much
longer than the decay time of S(t,k// = 0), Eq. (15) can be
simplified as

vP(k//) = δk//,0 S̄ fc, (16)

where S̄ = S(z = 0,k// = 0). Since the coefficients of S̄ are
calculated from Eq. (9), the magnitude and directions of the
applied stresses are controlled by the parameter fc. Equation
(16) holds the same form of a barostat introduced by Butler
and Harrowell [28,29], in which the velocity of the pressed
wall is proportional to the applied force. Unlike the previously
proposed barostats, the present scheme does not have any
arbitrary parameters.

C. Energy dissipation

As the last argument of this section, an important relation
between the Green’s functions and the internal energies is
presented. The internal energy relates to the energy dissipation
which is a fundamental observable in nonequilibrium phenom-
ena. The change of the internal energy of surface atoms over

the time interval �t is defined by

�U

�t
= 1

�t

∑
r//

∫ t+�t

t

f(t,r//) · v(t,r//) dt. (17)

Suppose that a semi-infinite solid has achieved a stationary
state under external forces. This system is observed for �t

that is long enough with respect to the atomic-time scale: i.e.,
the decay time of the Green’s function. The external forces can
be expanded by a Fourier series of f(t) = ∑

n exp(iωnt) f(ωn),
where n is the integer that goes from −∞ to ∞, and ωn =
2nπ/�t . By inserting Eq. (13) into Eq. (17), the energy change
is decomposed into the surface-phonon modes ωn and k// as

�U

�t
= 2

∑
k//

∞∑
n=1

f∗(ωn,k//) · Re S(iωn,k//) f(ωn,k//)

+ f̄ · S̄ (f̄ + fc), (18)

where f̄ = f(ωn = 0,k// = 0). In the derivation of Eq. (18),
the terms related to the thermal fluctuations were canceled
out due to the randomness. Furthermore, a relation S(iωn =
0,k//) = δk//,0S̄ was used, because the static external force
f(ωn = 0,k// �= 0) produces no velocities of the surface atoms
after achievement of the force balance between the f(ωn =
0,k// �= 0) and the corresponding elastic forces in the solid.

Equation (18) can be used to identify pivotal surface modes
in nonequilibrium phenomena [18,19,78]. As an example,
here we consider a friction system which is composed of
two identical semi-infinite solids. The two solids are first
positioned so as to face each other with their surfaces being
in contact. Then they slide relative to each other. This system
holds the reflectional symmetry against the interfacial plane.
The total internal energy of the sliding system is expressed as
�U1 + �U2, where the subscript indicates each solid. Since
the two solids are identical, the scalar quantities �U1 and
�U2 are the same values. Moreover, taking into account
the law of the conservation of energy for the total system,
�U1 + �U2 = 0; and thus �U1 must be zero. Therefore,
Eq. (18) leads to

− f̄ · S̄ (fc + f̄)

= 2
∑
k//

∞∑
n=1

f∗(ωn,k//) · Re S(iωn,k//) f(ωn,k//). (19)

As discussed in Sec. II B 3, the quantity S̄ (fc + f̄) is equal
to the mean velocity of the slab driven by the constant force
fc + f̄. Because of the balance between the mean forces in
the surface normal direction, only the sliding-direction term
contributes to the mean velocity, and its magnitude is half of the
relative sliding velocity V̄. Using this fact and considering the
direction of the sliding velocity opposite to the mean friction
force f̄ in Eq. (19), the energy dissipation rate j total

e = −f̄ · V̄
can be expressed by

j total
e =

∑
k//

∞∑
n=1

je(ωn,k//),

je(ωn,k//) = 2f∗(ωn,k//) · Re S(iωn,k//) f(ωn,k//). (20)
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It is noteworthy to mention that the proportionality coefficient
relating the energy dissipation to the the power spectra of
the external force is the real part of the Green’s function
S. The above formula provides a scheme to decompose the
energy dissipation with the surface phonon modes to determine
essential phonon modes, as will be demonstrated in Sec. IV C.

III. COMPUTATIONAL DETAILS

In order to test the presented GFMD method, a diamond
(001) surface is modeled by a (1 × 1) in-plane sized layer
containing four carbon atoms. The periodic boundary condi-
tions are imposed in the surface lateral directions. The internal
force matrices of L, D′

00, D′
11, D10, and D01 are obtained

by static ab initio calculations of the diamond bulk based on
density functional theory (DFT) and the DFT linear-response
approach to phonon calculations. [72] The pseudopotential
and plane-waves computer codes included in the QUANTUM
ESPRESSO package are used [73]. The Perdew, Burke, and
Ernzerhof generalized gradient approximation is used for the
exchange-correlation functional [79]. The electronic wave
functions are expanded on a plane-waves basis set with a
cutoff energy of 25 Ry, and the ionic species are described by
ultra-soft pseudopotentials [80]. The internal force matrices
are approximated so that they contain the elements related
only to the nearest-neighbor interactions, and the off-diagonal
elements of the directional indices are eliminated for the sake
of the numerical simplicity. The Green’s function is derived
from Eqs. (8) and (9) through the damped Newton algorithm.

The diamond layer is attached to the GFMD atoms with the
interlayer interactions. The fast convolution method combined
with modified-Talbot’s inverse Laplace transformation is used
to calculate the convolution term. To simulate the time
evolution of the GFMD atom, schemes of common MD
algorithms can be exploited by reduced external forces defined
as

f̃(t,k//) = M

∫ t

0
A(t − t ′,k//)f(t ′,k//) dt ′, (21)

where A(t) = d
dt

S(t). The velocity Verlet algorithm is applied
to compute the time evolutions with a time step of 0.96 fs.

To evaluate the GFMD method, conventional MD sim-
ulations attached to the Nosé-Hoover thermostat are also
performed for comparison. In this thermostat, the velocity
of the center of mass of the slab each atom belongs to is
subtracted from the atomic velocities that enter the thermostat
equations. This modification is made to prevent the thermostat
from directly being affected by the sliding motion [15,16].
The oscillation frequency of the Nosé-Hoover thermostat is
set at 20 THz, which is within a common range for the carbon
systems [15,16]. Constant stresses are directly applied on the
outer layer of the surface atoms in the sliding slabs [29].

IV. RESULTS AND DISCUSSIONS

A. Collisions of incident atoms

A neon atom is positioned at a distance of 10 bohr above
the surface atom of the diamond (001) at temperature of 0 K.
Then, it is injected perpendicularly to the diamond surface at
10000 m/s and collides with the surface atoms. The diamond
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FIG. 1. (a) The collision system attached to the GFMD atom and
(b) the atomic displacements along the surface normal direction [001].
The simulation movie is available as Supplemental Material [71].

surface is modeled by a carbon layer connected to the GFMD
atoms, as illustrated in Fig. 1(a). The interaction between the
neon and surface carbons is described by the Lennard-Jones
potential

φ(r) = 4ε{(σ̄ /r)12 − (σ̄ /r)6}, (22)

with ε = 0.5 × 10−21J and the interatomic distance σ̄ = 5.08
bohr [81].

Figure 1(b) shows that the collision of the neon atom
causes a downward displacement of the surface carbons,
and subsequently the displacement propagates into the inner
GFMD atoms. After the first impact, the carbon atoms exhibit
no significant movement over time and remain at the shifted
positions; namely, the shock wave is eliminated by the GFMD
atoms as if the wave keeps traveling in the semi-infinite
solid. This nonreflecting effect can be recognized by a direct
comparison with a diamond slab of the 10 layers with neither
thermostats nor damping terms in the equation of motion. In
this case, the displacements reoccur at around 0.4 and 0.7 ps
after the collision, as the shock wave is reflected back and forth
between the two ends.

B. Thermal fluctuations

In order to gain an insight into thermal fluctuations of the
semi-infinite solid system, two different cases are considered: a
one-layer diamond slab attached to the GFMD atoms placed at
300 K without external forces and a one-layer slab in the Nosé-
Hoover thermostat under the same conditions. The thermal
fluctuations of the two systems are simulated and compared to
each other.

Figure 2(a) displays the variations of the temperatures in
time. Both profiles indicate the mean temperatures 〈T 〉 of
300 K, as initially set. It is difficult to distinguish the two
cases by simply observing their variations in time. However,
a fundamental difference can be revealed by evaluating the
temperature fluctuations. According to statistical mechanics,
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FIG. 2. (a) Time variations of temperatures converted from the total kinetic energies of the diamond slabs and (b) trajectories of the surface
atoms in the phase space in the [110] direction. (c) Correlation functions of the thermal velocities in the [110] direction, that are obtained from
the ensemble average of 20 trajectories of the surface carbon atoms. The simulation movie is available as Supplemental Material [71].

the temperature fluctuation δT 2 should depend on number
of the simulated atoms that are taken into account in the
evaluation of the temperature, as

δT 2 = 〈T 2〉 − 〈T 〉2 = 2

3na

〈T 〉2, (23)

where na indicates the number of the simulated atoms. As
reported in Table I, the temperature fluctuation of the GFMD
system is in good agreement with the theoretical value, while
the MD method with the Nose-Hoover thermostat results in
the larger fluctuation.

Another essential difference arises from the trajectories of
the surface atoms in the phase space as shown in Fig. 2(b). The
trajectory in the GFMD system is distributed randomly, being
centered at the origin of the phase space. This randomness
is consistent with the ergodicity condition which is required
for a well-defined heat bath [25]. On the other hand, the
trajectory in the system in the Nosé-Hoover thermostat forms a

TABLE I. Mean temperatures and temperature fluctuations. The
values in the GFMD system and MD system with Nosé-Hoover
thermostat are calculated by the simulations of 100 ps long. The
theoretical value is obtained using Eq. (23) with na = 4.

Theory GFMD Nosé-Hoover MD

〈T 〉 [K] 300 305 291
δT 2/〈T 〉2 0.167 0.165 0.370

cyclic pattern, which obviously violates the ergodicity. Indeed,
it is well known that the extended-variable methodologies
including Nosé-Hoover thermostat are unable to produce
random trajectories in the solid systems composed of a few
atoms, though refined algorithms such as the Nosé-Hoover
chain would be able to recover the nonergodic behavior
[26,27].

Last, in order to verify the fluctuation-dissipation theorem
presented in Eq. (14), the correlation functions of the thermal
velocities are evaluated as shown in Fig. 2(c). The correlation
function in the GFMD method decays with the time, while
that of the system in the Nosé-Hoover thermostat behaves as a
steady oscillation. The correlation in the former case, in fact,
can be well fitted by the Green’s function S(t) of the surface
atoms in accordance with the fluctuation-dissipation theorem.
Therefore, given the consistencies with the temperature fluctu-
ation, the ergodicity, and the fluctuation-dissipation theorem,
the GFMD method functions as a well-defined thermostat for
nonequilibrium solid surface and interface systems.

C. Sliding friction

We consider a friction system composed of a pair of
diamond slabs which slide relative to each other at 0 K. The
two slabs face each other in accordance with the reflectional
symmetry against an interfacial middle plane between the two
slabs. Each slab is composed of one layer of the diamond,
and the GFMD atoms are connected to the opposite sides to
the contact interface. This system is compared with a pair of
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FIG. 3. (a) Time evolutions of the friction forces (upper panel)
and relative velocities of the interfacial atoms (middle and lower
panels). The friction force is defined by the interaction force which
opposes the actual relative sliding motion between two surfaces. (b)
Contributions of the phonon modes to the total energy dissipation
and real part of the Green’s function. To obtain the phonon-modes
contributions, the force trajectory ranging from 2.5 ps to 4.6 ps in
(a) is used to calculate the power spectrum of the external force
in Eq. (20). The simulation movie is available as Supplemental
Material [71].

10-layer slabs attached to the Nosé-Hoover thermostat in order
to remove friction heat. The dynamical simulations are started
from the optimized configuration of the slabs with a contact
pressure of 3 GPa. Subsequently, the sliding along the [110]
direction is initiated by applying 3 GPa shear stresses on the
two slabs opposite to each other. The interfacial atoms are
interacting across the slabs via the Lennard-Jones potential
shown in Eq. (22) with σ̄ = 4.78 bohr.

Figure 3(a) shows that the friction force of the GFMD
system evolves cyclically with a single periodicity. Since the
relative velocities of the interfacial atoms share the same
periodicity of the force trajectory, this periodicity is related
to the movements of the interfacial atoms that climb up and
down the potential corrugation of the sliding interface. The

force profile of the 10-layer system is considerably different
in terms of the two characteristic oscillations. Indeed, we
observe the longer periodicity and the shorter periodicity that
are attributed to the velocities in the surface normal and sliding
directions, respectively. Notice that the sliding speed increases
monotonically to reach a large value.

These distinctive differences essentially originate from the
difference of time-averaged friction force: i.e., mean friction
force. The GFMD system shows a mean friction force of
0.8 GPa. In contrast, the friction force in the ten-layer system
oscillates between positive and negative values, which result
in a very small net friction. In fact, the tangent of the sliding
velocity can be fitted almost perfectly by using the value for a
friction-free system in which the interaction force is terminated
[black solid line in the lower panel of Fig. 3(a)].

The mechanism behind the difference between the two
systems is elucidated by the phonon-modes decomposition
of the energy dissipation described in Eq. (20). Since the
present system consists of 1 × 1 unit cells which only contain
k// = 0 component, a simplified notation for the decomposed
energy dissipation je(ω) = je(ωn,k// = 0) is introduced in the
following.

Figure 3(b) (circles) shows that je(ω) decreases dramati-
cally as ω increases. The largest contribution, 90% of the total
energy dissipation, is found at the lowest frequency called
the washboard frequency [82]. Due to the projection of the
semi-infinite solid on the GFMD atoms, the surface phonon
forms a continuum band of eigenfrequencies [18,19] which
dissipates force fluctuations even at zero-limit frequency.
In fact, this energy-dissipative band, which is the real part
of the Green’s function, covers the low-frequency region
including the washboard frequency as shown in Fig. 3(b)
(solid line). A significant aspect of the washboard frequency,
ω1 = 2π/�t = πv̄/σ with σ being the surface lattice constant
of the unit cell, is that it is associated with the sliding velocity
v̄, which is of about 120 m/s in the present simulation. This
result, therefore, indicates that the surface phonon with the
frequency corresponding to the sliding velocity can be excited
and drain a considerable amount of the kinetic energy from
the sliding interface.

In the ten-layer system, on the other hand, the number of
the eigenfrequencies is limited and the discrete frequencies
[down arrows in Fig. 3(b)] are distributed in the region higher
than the washboard frequency. The key finding is that the
finite system cannot excite the slow phonon [17,18] that
corresponds to the sliding speed. As a result, the surface
repels adiabatically the interaction forces to the countersolid,
instead of absorbing the energy from the force fluctuation at
the washboard frequency. More specifically, by counting the
intersections of je(ω) with the eigenfrequencies of the 10-layer
slab, we can estimate that this finite system absorbs less than
0.1% of the energy dissipation that the semi-infinite surface
does; this tiny absorption explains the nearly zero friction that
we observed.

V. SUMMARY

The present study showed the equation of the exact Green’s
function in the complex space. Since this equation enables us to
employ the fast convolution method combined with the inverse
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Laplace transformation, the proposed method provides high
accuracy and computing speed in the evaluation of the time
evolutions. These improvements make the method applicable
also to large systems that are of higher importance in realistic
simulations which were previously considered too demanding.
The GFMD atoms act as the thermo- and barostats by adding
the solutions generated from the interrelations of the Green’s
function with temperature and stress. Moreover, the GFMD
formulation provides an analytical scheme to decompose the
energy dissipation with the surface phonon modes to identify
the pivotal phonon modes in the nonequilibrium phenomena.

The test simulations demonstrate that the proposed method
provides the non-reflecting property of phonons injected
from the surface, the thermal fluctuations, and the energy
dissipations involving long-wavelength phonons. Since the

approach is capable of realizing the non-reflecting boundary,
it may provide a crucial step forward in the development of
multiscale modeling based on the coupling of atomisticand
continuum methodologies [32–36]. Moreover, due to the
proper control of temperature and stress, the coupling of
ab initio MD/GFMD methods [37,38] enables accurate and
deep analysis of the reactive nonequilibrium interfaces, leading
to a wide range of applications such as catalysis, fracture
mechanics, mechanochemistry, and tribochemistry.
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