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dc conductivity of two-temperature warm dense gold
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Using recently obtained ac conductivity data we have derived dc conductivity together with free electron
density and electron momentum relaxation time in two-temperature warm dense gold with energy density up
to 4.1 MJ/kg (0.8 × 1011J/m3). The derivation is based on a Drude interpretation of the dielectric function that
takes into account contributions of intraband and interband transitions as well as atomic polarizability. The
results provide valuable benchmarks for assessing the extended Ziman formula for electrical resistivity and an
accompanying average atom model.
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dc conductivity, or its inverse, electrical resistivity, is of
interest as it contains information on free electron density, ionic
structure factor, and electron-ion interaction potential. It may
also serve as a surrogate for assessing thermal conductivity
via the Wiedemann-Franz law. This is noteworthy. Thermal
conductivity is a critical property governing dynamic changes
in warm dense matter that are pertinent to experiments and
applications involving high-intensity laser-matter interaction.
Yet, measurements of thermal conductivity in such states are
lacking.

Direct measurements of electrical resistivity in equilibrium
warm dense matter near solid densities have been obtained
from capillary discharges [1,2], capillary-confined exploding
wires [3,4], water-confined exploding wires [5–7], exploding
wire z-pinch [8], and high-pressure vessel-confined exploding
foils [9–13]. Alternatively, electrical resistivity of similar states
has been derived from the self-reflectivity of a 400-fs, 308-nm
laser used to heat a 40-nm-thick Al film on glass substrate
[14], the reflectivity at 527 nm of tamped laser-heated Al [15],
and the reflectivity at 532 nm of polystyrene compressed by
laser-driven shock waves [16].

With the availability of femtosecond laser pump-probe
techniques to study isochoric heated solids [17], recent interest
has turned to nonequilibrium warm dense matter where the
electron temperature greatly exceeds the ion temperature.
Since the electron-ion energy relaxation time is expected to
be 10–100 ps, direct measurements of dc conductivity is not
possible. The first attempt to determine dc conductivity of
such states was reported by Widmann et al. [18]. In their
experiment, a 30-nm-thick free-standing Au foil was heated
by a 150-fs, 400-nm laser pulse to energy density <20 MJ/kg.
The reflectivity and transmissivity of the heated sample were
measured using a 150-fs, 800-nm laser probe with different
delays. The results revealed a quasisteady, isochoric phase with
nearly constant reflectivity and transmissivity lasting from
∼20 ps for excitation energy density of 0.4 MJ/kg to ∼2 ps at
20 MJ/kg. The measured reflectivity and transmissivity were
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used as input to the Helmholtz equations for electromagnetic
wave propagation in a uniform dielectric slab. The solutions
yielded the real and imaginary parts of the ac conductivity, σr

and σi . With the top of the 5d band of Au at ∼2 eV below
the Fermi level, interband contribution to ac conductivity at a
frequency of 1.55 eV was considered negligible. The measured
ac conductivity was assumed to be described by the Drude
equations from which the corresponding dc conductivity, free
electron density, and electron collision time were derived.
Although the results could not be checked against calculations,
there was an apparent anomaly that the free electron density
remained below the atomic density of Au even for excitation
energy density up to 2 MJ/kg [18]. This called into question
the neglect of interband contributions to ac conductivity. The
need to derive dc conductivity correctly from ac conductivity
has become even more pressing with the availability of new
data [19].

In this article we present a derivation of dc conduc-
tivity from ac conductivity that includes contributions of
free electrons, interband transition, and atomic polarizability.
Applying this to the results obtained by Chen et al. [19],
we have eliminated the free electron density anomaly noted
above. More importantly, we obtain new results of dc con-
ductivity, free electron density, and electron collision time
for assessing theoretical models on two-temperature warm
dense Au.

In the experiment of Chen et al. [19], a free-standing
30-nm-thick Au foil was heated with a 45-fs (FWHM), 400-nm
pump pulse. The ac conductivity of the heated foil was
determined from simultaneous measurements of reflectivity
and transmissivity using a frequency-chirped probe laser pulse
at 800 nm. Here, we focus on the initial state at ∼540 fs
after the peak of the heating pulse when the heated electrons
are thermalized based on the observed thermalization time of
∼500–800 fs in fs-laser heated gold at absorbed fluences up
to 0.3 mJ/cm2 [20,21]. For this state, we assume that only the
electrons are heated while the ions remain at 300 K. This is
supported by the good agreement in the measured real part of
ac conductivity with theoretical predictions [19].

The ac conductivity in Ref. [19] is first converted
into real and imaginary parts of dielectric function
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FIG. 1. (a) ε1(ω) and (b) ε2(ω) of nonequilibrium warm dense Au
derived from the ac conductivity data of Chen et al. [19].

(Fig. 1) for the application of the Drude equations
[22]:

ε1(ω) = εp + ε
f

1 (ω) + εib
1 (ω), (1a)

ε2(ω) = ε
f

2 (ω) + εib
2 (ω). (1b)

Here, εp = 4πnaαa , where na is the number of atoms
per unit volume and αa is the atomic polarizability. The
ground-state atomic polarizability of Au is 5.8 × 10−24cm3

[23], attributed to unpublished calculations using the method
of Zangwill and Soven [24]. This value is adopted here in the
absence of experimental value. The terms due to free electrons
are

ε
f

1 (ω) = 1 − ω2
pτ 2

1 + (ωτ )2
, (2a)

ε
f

2 (ω) = ω2
pτ

ω(1 + ω2τ 2)
, (2b)

where τ is the electron collision time, ωp = [4πnee
2/m∗]1/2 is

the electron plasma frequency, ne is the free electron density,
and m∗ is the effective mass of the electrons. Here, m∗ is
taken to be unity in atomic units at ambient conditions since
it has been found to be 0.94–1.06 [22,25–29]. For interband
contributions, εib

1 (ω) is derived from εib
2 (ω) using the Kramers-

Kronig relation,

εib
1 (ω) = 2

π

∫ ∞

ω0

ω′εib
2 (ω′)

(ω′)2 − ω2
dω′, (3)

where ω0 is the frequency for the onset of interband transitions.
To evaluate the Kramers-Kronig integral for Au at normal

conditions, we first compile ε2(ω) over 0.6–500 eV using the
experimental data from Johnson and Christy [30], Canfield
et al. [31], Hagemann et al. [32], Nilsson [33], and Zombeck
et al. [34] [Fig. 2(a)]. The onset of 5d-6s transitions appears
at 1.9 eV. Accordingly, ε2(ω) below 1.9 eV represents
contributions from free electrons only. Its best fit to the Drude
equation (2 b) for ε

f

2 (ω) is illustrated in Fig. 2(a), together with
an extrapolation (red-dashed line) to higher frequencies. This
yields ωp = 1.36 ± 0.02 × 1016 rad/s and τ = (9.4 ± 1.4) fs,
leading to ne = (5.84 ± 0.14) × 1022 cm−3 that is in good
agreement with one free electron per atom and dc conductivity
σ0 = [ω2

pτ/(4π )] = (1.4 ± 0.25) × 1017 s−1 or resistivity of
(6.5 ± 0.4) μ� cm that is consistent with 5.9 ± 0.5 μ� cm
obtained from a standard four-point resistivity measurement

FIG. 2. (a) ε2(ω), (b) εib
2 (ω), (c) Kramers-Kronig values of εib

1 (ω)
for Au at normal conditions, and (d) the imaginary part of the
dielectric function observed by Ping et al. [36].

[35] of the Au foils used. These values of ε
f

2 (ω) are then
used in Eq. (1b) to yield εib

2 (ω) in Fig. 2(b). Figure 2(c)
shows the corresponding Kramers-Kronig value of εib

1 (ω).
The increasing effect of the 5d-6s transition as photon energy
approaches 2 eV is evident. At 1.55 eV, this yields εib

1 (ω) =
6.38 ± 0.19.

Returning to the experimental data in Fig. 1, we first
consider the dielectric function at 1.55 eV under normal
conditions. From the measured value of ε(ω) = (−22.4 ±
1.8) + i(1.26 ± 0.10), our interpretation using Eqs. (1) and
(2) together with εib

1 (ω) = 6.38 ± 0.19 yields ωp = (1.38 ±
0.06) × 1016 rad/s and τ = (11.9 ± 2.0) fs. These lead to σ0 =
[ω2

pτ/(4π )] = (1.84 ± 0.45) × 1017 s−1 and a corresponding
electrical resistivity of (5.25 ± 1.25) μ� cm that is consistent
with 6.5 μ� cm noted above. To obtain ne from ωp, m∗ is
again taken to be unity in atomic units. This yields (5.99 ±
0.45) × 1022 cm−3, in agreement with the atomic density of
Au.

Before applying our interpretation to warm dense gold, we
need to consider possible changes of εib

1 (ω) with excitation
energy density. As yet, there is no validated calculation of
ε(ω) of two-temperature warm dense gold. The only available
guidance is the dielectric function observed by Ping et al.
[36]. From their measured ε2(ω) (Fig. 3(b) in Ref. [36]) we
have extracted εib

2 (ω) at excitation energy density of 2.2 and
4.7 MJ/kg as presented in Fig. 2(d). The values of εib

1 (ω) in the
spectral range of 1.5–2.7 eV are found to be ∼6.2 at 2.2 MJ/kg
and ∼8.1 at 4.7 MJ/kg, using the Kramers-Kronig relation.
Compared with its ambient value of 6.38, εib

1 (ω) increases by
1.7 at 4.7 MJ/kg. This is relatively minor since ε1(ω) has also
changed from (−22.4) at ambient conditions to (−28.5) even
at 4.1 MJ/kg [Fig. 1(a)]. Accordingly we have neglected the
dependence of εib

2 (ω) on temperature in this work, keeping its
value constant at 6.38 ± 0.19. By applying Eqs. (1) and (2) to
the data in Fig. 1, we derive ωp and τ to yield ne and σ0. The
results for ne, τ , and σ0 are presented in Fig. 3.

A long-standing method for calculating electrical resis-
tivity is the extended Ziman formulation [37] that leads
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FIG. 3. (a) Free electron density, (b) electron relaxation time,
and (c) dc conductivity derived from measured dielectric function of
nonequilibrium warm dense Au.

to [38]

η = 1

3πα

(
�0

Zi

)2 1

�0

×
∫ ∞

0
dε

d

dε
fβμ(ε)

∫ 2p

0
dqq3S(q)σε(q), (4)

where η is the resistivity, α is the fine structure constant, �0 is
the atomic volume, Zi is the ion charge, fβμ(ε) is the Fermi-
Dirac distribution function, β is the inverse temperature, μ is
the chemical potential, S(q) is the ion-ion structure factor, and
σε(q) is the electron-ion cross section for momentum transfer
for electron energy ε. This can also be expressed in a Drude
form of η = (4π/ω2

p)τ where τ is the electron-ion collision
time. The input parameters to Eq. (4) are Zi , σε(q), and S(q).

To apply the Ziman formulation we follow the work of
Hansen et al. [39] that is based on an implementation of a
DFT approach with an average atom model in the PURGATORIO

code [40]. Specifically, the wave functions of bound and free
electrons are obtained as solutions of the Dirac equations
that incorporate a Kohn-Sham exchange potential [41], a
correlation potential due to Perdew and Zunger [42], and a
Coulomb potential for the ion core. Zi is evaluated from the
ideal density of state Xideal(ε) that excludes quasibound or
resonant states,

Zi =
∫ ∞

0
f (ε,μ)Xideal(ε)dε. (5)

Furthermore, the cross section for momentum exchange σε(q)
is expressed as

σε(q) =
∫ 2p

0
q3

(
dσ (p,θ )

dθ

)
S(q)dq, (6)

-15 -10 -5 0 5 100

2

4

6

8
 6s electrons
 6p electron
 6s+6p electrons

E
D

O
S

 (a
.u

.)

Energy(eV)

(a)

-15 -10 -5 0 5 100

2

4

6

8 (b)

E
D

O
S

 (a
.u

.)

Energy(eV)

FIG. 4. Electron density of states of solid-density Au calculated
with (a) ABINIT at an electron temperature of 3 eV and (b) PURGATORIO

at an electron temperature of 3 eV.

where the differential cross section dσ (p,θ)
dθ

is obtained from
the scattering cross sections in the average ion potential. The
relativistic dispersion relation p2 = ε(2 + εα2) is assumed
and the integration is performed over the momentum transfer
vector q2 = 2p2(1 − cos θ ). For the isochoric heated state of
interest, the ion structure factor S(q) of solid gold is used in
our calculation.

This approach is designed to generate reasonable equation-
of-state data and transport properties for any ion over a very
wide range of conditions. Clear, it has several drawbacks: The
ion-sphere approach excludes correlations that are important at
low ion temperatures [43,44] and the transport integral given
in Eq. (4) draws on cross sections not derived from a con-
sistent potential (as in Ref. [45]). Nonetheless, conductivities
calculated with this approach capture general qualitative trends
observed in the sparse collection of experimental data in the
regime of interest here.

Turning our attention first to Zi , we find that Eq. (5) yields
ne = Zini of 1.07 × 1023cm−3 at ambient conditions. This
is ∼1.8 times the atomic density of gold. The calculated
ne continues to exceed the experimental values by a similar
factor throughout our observation [Fig. 3(a)]. Interestingly,
both the theoretical results and our presented results show a
similar scaling with excitation energy density. This prompted
an alternative approach to derive ne, using the electron struc-
ture calculated from the density functional theory–molecular
dynamics (DFT-MD) code ABINIT [46]. Here, the Kohn-
Sham equations for electrons are solved using a Kohn-Sham
exchange potential, a correlation potential due to Perdew and
Wang [47], and a projector augmented wave (PAW) data
set that has been extensively tested [48]. This yields the
s-projected, p-projected, and d-projected electron density of
states. An example is shown in Fig. 4(a) for an electron
temperature of 3 eV, corresponding to an excitation energy
density of 4.5 MJ/kg. The electron temperature is calculated
from the excitation energy density using the electron specific
heat Ce(Te) given by the derivative of the total electron energy
density U with respect to the electron temperature Te at
constant volume V [49],

Ce =
(

∂U

∂Te

)
V

. (7)

This expression contains all thermal effects within DFT,
including the temperature dependence of the electron density
of states. The free electron density is evaluated from the occu-
pied 6s and 6p states. This yields ne = 5.49 × 1022 cm−3 at
ambient conditions, close to the atomic density of gold. It also
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yields ne that is in good agreement with our values as illustrated
in Fig. 3(a). The difference in ne calculated from ABINIT and
PURGATORIO can readily be traced to differences in the electron
density of states (DOS) derived from the two codes. From
Figs. 4(a) and 4(b) for Te = 3 eV, it is evident that PURGATORIO

yields higher values of DOS for 6s and 6p electrons, so
that even excluding the 5d resonance states, as prescribed by
Eq. (5), leads to an overestimate of the free electron density.
This behavior persists down to zero K. This difference is
due to a feature in PURGATORIO that requires local charge
neutrality within the atomic sphere. In the case of gold, the 5d

electrons extend beyond the radius of the equilibrium-volume
atomic sphere, resulting in only 9.2 5d electrons within the
sphere. The shortfall is compensated for by increasing the
chemical potential, which adds an additional 0.8 s-p electrons
and accounts for the observed factor of 1.8 increase in Zi . This
is clearly an artifact resulting from the charge-neutrality ansatz
used in PURGATORIO. This ansatz is commonly used in many
atom-in-jellium codes. The present result indicates that care
must be applied to ensure that the results of interest are not
an unphysical consequence of this ansatz. Concerns with this
ansatz have been noted before [50]. Here, we have not tried
to remedy this problem—we simply note that it is present,
and its effect is to increase the effective value of Zi over the
temperature and density range for which the 5d states are
occupied. The error introduced will reduce with increasing
temperature. The quantitative value for the conductivity is
altered, but the qualitative variations with temperature are
less affected, as shown by the similar variations between
PURGATORIO and ABINIT in Fig. 3(a).

Next we compare τ and σ0 derived from the Ziman formula
to our values. As shown in Figures 3(b) and 3(c), further
discrepancies are evident. In particular, the increase in the
calculated values of σ0 with excitation energy density above
∼0.2 MJ/kg is a striking contrast to the observed scaling.
As shown in Eq. (4), our implementation of the Ziman
formula takes into account only the change in momentum
of the conduction electrons via electron-ion scattering. This
is adequate for describing Au at low electron temperature
with a filled 5d band. However, for the warm dense states
of interest vacancies are created in the 5d band. Scattering
by the remaining bound 5d electrons lead to the change in
momentum of the 6s and 6p electrons. To account for its effect
on electrical conductivity, we construct an effective collision
frequency νeff = (νei + νsd ) where νei = 1/τei is the electron-
ion collision frequency, τei is the electron-ion collision time
obtained from the Ziman calculation in PURGATORIO, and νsd

is the frequency of collisions between 6s and 6p electrons
with 5d electrons that is given in a total electron collision
frequency νse = (νsd + νss) calculated by Petrov et al. [51],

where νss is the frequency of collisions among the 6s and
6p electrons that conserve their total momentum. This total
frequency was recently used by Fourment et al. in the
interpretation of experimental results [52]. Here, we extract
νsd from νse using νss calculated from the best fit given
in Ref. [51], which interpolates between dynamic screening
of degenerate relativistic electrons and static screening of
Coulomb interaction at higher temperatures. As illustrated in
Fig. 3(b), the resulting effective collision time τeff = 1/νeff

shows significantly better agreement with experimental data
above 0.5 MJ/kg. At lower energy density, the discrepancy
may result from the polycrystalline structure of the Au foils
while the calculations describe a single crystal. It can also
be seen in Fig. 3(c) that the value of σ0 calculated using ne

from ABINIT together with τeff yields similar improvement,
in agreement with our values. This is encouraging but some
caveats should be noted. The electron collision frequencies are
derived from different models and the effect of overestimating
ne on νss and νei is not known. Change of momentum may also
result from electron-electron scattering via Umkalpp processes
[53] but the corresponding collision frequency in warm dense
gold is not known.

It may be noted that using a Drude fit of σr calculated from
the Kubo-Greenwood formula to derive σ0 is not practical
with ABINIT. Convergence of result cannot be reached as the
energy resolution of the eigenstates is limited by the number
of atoms in the simulation cell [54]. The alternative approach
of calculating σ0 directly from the Kubo-Greenwood formula
is beyond the scope of this work.

In conclusion, we have obtained a new set of free electron
density, electron collision time, and dc conductivity values
using a Drude interpretation of the measured ac conductivity
of two-temperature warm dense gold. These are compared with
calculations based on an average atom model and the Ziman
formula for electrical resistivity. The average atom model
appears to overestimate the electron density by a factor of ∼1.8
in comparison with experiment and DFT-MD calculation. This
has been shown to be due to the charge-neutrality ansatz in the
PURGATORIO model. Greater discrepancies are found between
our calculated and interpreted electron collision time and dc
conductivity. The calculation of electron collision time can be
improved by taking into account the scattering of 6s and 6p

electrons with 5d electrons. Improvement in the calculation of
dc conductivity requires the additional correction of electron
density using results of density functional theory implemented
in solid-state physics codes.

We wish to thank M. W. C. Dharma-wardana for many
valuable discussions and research funding from the Natural
Sciences and Engineering Research Council of Canada.
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