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Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

Gyula I. Tóth*
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In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible
multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase
transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion
dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary
stress are determined in the framework of gradient theories. Next the general definition of incompressibility is
given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the
theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard
system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed
free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.
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I. INTRODUCTION

Although the theory of multicomponent liquid diffusion
is well developed and in use in chemical engineering and
materials science [1–4], the generalization of theory describing
the time evolution of liquid systems being out of mechanical
equilibrium is still lacking. Nevertheless, even results of
simple continuum theories indicate that the hydrodynamic
mode might influence pattern formation significantly even on
small length scales [5–8], which indeed comes into play in
microfluidics [9–12] or even in oil industry related research:
CO2-water-hydrocarbon emulsions may offer a novel and
ultimate solution for the global CO2 storage problem with
combined enhanced oil recovery; however, the continuum
description of kinetic processes in these molecularly complex
liquids is nontrivial [7]. In addition, significant volume changes
occur in case of formation or dissociation of CO2-CH4 hydrates
(clathrates), also necessitating a hydrodynamic description.
Efforts regarding the effect of fluid flow on microscopic
pattern formation phenomena were made in the framework of
diffuse interface models addressing various pattern formation
problems including fluid flow-assisted solidification, as well
as binary and ternary liquid phase separation [13–20]. During
pattern formation in systems of practical importance interfaces
move typically much slower than the speed of sound, therefore,
the simplest (and most efficient) approaches include incom-
pressible flow [8,21], assuming constant density. In contrast,
other theories operate with artificial compressibilities (result-
ing in a significant reduction in the speed of sound) [17–19]
in order to access the time scale of solidification. The
“golden mean” between the two methods can be the quasi-
incompressible approach [15,16,20], in which sound waves
are eliminated, but a density gap may exist between the bulk
components. The problem of this approach, however, is the
mathematical complexity of the related numerical methods,
making the theory unpractical [22]. For these reasons, it is
desirable to develop a physically consistent and numerically
efficient, general dynamic framework describing the time

*Gyula.Toth@uib.no

evolution of multicomponent liquids. The essence of a general
framework is keeping the coherency between the funda-
mental equations of continuum mechanics (the conservation
of momentum and mass) and the principles of irreversible
thermodynamics (the first and second law of thermodynamics,
the Curie postulate, and the Onsager-Casimir theory). Besides
the theoretical aspects, the model have practical importance
only if it can handle variable density on pattern formation time
scales and can be solved numerically efficiently.

The structure of the paper is as follows. In Sec. II general
dynamic equations will be derived on the basis of simple phys-
ical principles for compressible liquids of arbitrary number of
components. In Sec. III a mathematically exact definition of
general incompressibility is given. All derivations are done in
the framework of the classical Ginzburg-Landau theory of first
order phase transformations. In Sec. IV we apply the model for
quasi-incompressible liquids and derive an operator-splitting
based, pseudospectral semi-implicit numerical scheme to solve
the dynamic equations. The incompressibility condition is
handled by a generalization of Chorin’s projection method.
We show that a suitable discretization of the Navier-Stokes
equation results in a generalized Poisson equation, which
can be solved directly by using a two-step pseudospectral
method. In Sec. V a recently published multiphase-field model
is used to address liquid-liquid phase separation in a quasi-
incompressible multicomponent Cahn-Hilliard liquid, where
the densities of the components as well as the pairwise equi-
librium interfacial properties can be calibrated independently
from each other. To demonstrate the physical consistency of
the dynamic framework, we address equilibrium trijunctions
and pattern formation in an asymmetric four-component liquid
in the case of both constant and variable density, which is
followed by concluding remarks in Sec. VI.

II. COMPRESSIBLE SYSTEMS

A. Fundamental equations

In continuum mechanics a mixture of N liquids is charac-
terized by the local and temporal mass density [ρi(r,t)] and
velocity [vi(r,t)] fields of the components (i = 1, . . . ,N). The
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conservation of mass and momentum read [23–25]

∂ρi

∂t
+ ∇ · (ρivi) = 0, (1)

∂(ρivi)

∂t
+ ∇ · (ρivi ⊗ vi) = ∇ · Si + Fi , (2)

where ⊗ stands for the tensor product. In Eq. (2) the stress
tensor Si accounts for self-specie interactions, while Fi =∑

j �=i fij is the net “external” force density on component
i emerging solely from interspecie momentum exchanges
(denoted by fij ). The time evolution of the system is driven
by the stresses Si and the force densities Fi . Since these
are abstract quantities that cannot be observed directly in
experiments, a more convenient form of the dynamic equations
is chosen. Since Newton’s third law prescribes fij + fji = 0,
Fi cancels in the sum of the momentum equations (i.e., the
Navier-Stokes equation):

∂(ρ v)

∂t
+ ∇ · (ρ v ⊗ v) = ∇ · S, (3)

where ρ(r,t) = ∑
i ρi(r,t) is the mixture density, and

v = (1/ρ)
∑

i ρivi is the velocity of the local center
of mass. Furthermore, the capillary stress reads S =∑

i {Si − ρi[(vi − v) ⊗ (vi − v)]}. Analogously to Eq. (3),
summing up Eq. (1) for all components results in the continuity
equation:

∂ρ

∂t
+ ∇ · (ρ v) = 0. (4)

Introducing now the mass fractions (or phase fields) ci(r,t) =
ρi(r,t)/ρ(r,t) and using Eq. (4) in Eqs. (1) and (3) yield general
dynamic equations of convection-diffusion type:

ρ
dci

dt
= ∇ · Ji ; ρ

dv
dt

= ∇ · S, (5)

where d/dt = ∂/∂t + v · ∇ stands for the material derivative,
and Ji = −ρi(vi − v) is the negative mass flux of component
i in the barycentric coordinate system, trivially resulting in the
condition

N∑
i=1

Ji = 0. (6)

The phenomena “convection” and “diffusion” are postulated
here in a complementary sense: While convection is attributed
to the motion of the local center of mass, diffusion is interpreted
as a motion relative to it.

B. Constitutive relations

1. Diffusion fluxes

Equations (4) and (5) govern the system via Ji and S for
which constitutive equations have to be set up. Due to the
Curie postulate, the diffusion process should be decoupled
from the momentum transport in the framework of linear
transport. Accordingly, the isotherm entropy production rate
(time derivative of the entropy density) attributed to diffusion
reads [26–28]:

T ṡ =
N∑

i=1

Ji · ∇λi ≡
N∑

i=1

Qi · ∇μi, (7)

where λi is the specific chemical potential (chemical potential
per unit mass), the conjugate variable to the mass flux
Ji , whereas μi = Mi λi and Qi = Ji/Mi are the chemical
potential and the molar flux, respectively (Mi is the molar
mass). According to the linearity postulate, the molar fluxes
are the linear combination of the chemical potential gradients:

Qi :=
N∑

j=1

αij∇μj , (8)

where αij is a symmetric matrix [26]. Furthermore, the
second law of thermodynamics prescribes T ṡ � 0, which,
together with Eqs. (7) and (8), indicates a positive semidefinite
transport matrix. Using Eq. (8) together with the variable
transformation yields

Ji :=
N∑

j=1

Lij∇λj , (9)

where Lij = MiMjαij is also symmetric (and positive
semidefinite). Furthermore, using Eq. (6) results in

N∑
i=1

Lij =
N∑

j=1

Lij = 0. (10)

2. Stress tensor

The stress tensor in Eq. (5) is usually divided into two
contributions:

S = R + D, (11)

where R is the nonclassical reversible stress [29]:

R = −P I + A, (12)

where P is the (scalar) thermodynamic pressure and I the
identity matrix, while the Korteweg stressA can be determined
by using the condition of mechanical equilibrium (also cited as
a generalized Gibbs-Duhem relation or least action principle
in statistical physics) [30]:

∇ · R = −
N∑

i=1

ni∇μi ≡ −
N∑

i=1

ρi∇λi, (13)

where ni = ρi/Mi is the molar density. Besides the reversible
stress, the other contribution to S is the viscous stress D.
Assuming a Newtonian fluid it can be approximated as

D := η(c){[(∇ ⊗ v) + (∇ ⊗ v)T ] − (∇ · v)}, (14)

where

η(c) :=
N∑

i=1

ηici (15)

is the local (composition dependent) dynamic viscosity of the
material. The dissipative stress defined by Eq. (14) naturally
satisfies D : ∇v � 0 (the condition of non-negative entropy
production) for η(c) � 0 [20].

C. Ginzburg-Landau Theory

The Helmholtz free energy of the system (F ) is often given
as a functional of the local densities of the components. Since
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the density is conserved, the relevant thermodynamic potential
of the system is the grand potential, which reads

� = F −
N∑

i=1

μ0
i

∫
dV ni ≡ F −

N∑
i=1

λ0
i

∫
dVρi, (16)

where μ0
i = const is the equilibrium chemical potential of

component i (analogously, λ0
i is the corresponding specific

chemical potential). The equilibrium configurations of the
system can be found by solving the Euler-Lagrange equations
prescribing constant chemical potentials:

δ�

δρi

= 0 ⇒ δF

δρi

= λ0
i , (17)

where δ/δρi denotes the functional derivative with respect to
ρi . A suitable nonequilibrium generalization of the specific
chemical potential then reads [31]

λi := δF

δρi

. (18)

Furthermore, since � = −P V in equilibrium, the equilibrium
scalar pressure can be expressed from Eq. (16), yielding −P =
f − ∑N

i=1 μ0
i ni ≡ f − ∑N

i=1 λ0
i ρi , where F = ∫

dVf , and
f is evaluated here for an equilibrium solution. This im-
mediately indicates the nonequilibrium generalization of the
pressure [13]:

−P := f −
N∑

i=1

ρiλi, (19)

where λi is defined by Eq. (18). Assuming that the free energy
is of the Ginzburg-Landau type [32] (i.e., f [ �ρ,∇ �ρ] is given in
terms of the densities and their gradients) and using Eq. (19)
in Eq. (13) results in the Korteweg stress [13]:

A = −
N∑

i=1

∇ρi ⊗ ∂f

∂∇ρi

. (20)

D. Mass fraction formalism

Since the dynamic equations defined by Eqs. (4) and (5)
are written for the total mass density and the mass fractions,
it would be practical to express the diffusion fluxes and the
stress tensor in terms of these variables. Since the chain rule
of derivation applies also for the functional derivative (see
Appendix B in Ref. [33], for example), one can write

δF

δρi

=
(

δF

δρ

)(
∂ρ

∂ρi

)
+

N∑
j=1

(
δF

δcj

)(
∂cj

∂ρi

)
. (21)

Using that ∂ρ/∂ρi = 1 and ∂cj /∂ρi = (δij − cj )/ρ (where
δij is the Kronecker-delta function giving 1 for i = j and
0 otherwise), the specific chemical potential reads

λi = δF

δρi

= 1

ρ

(
δF

δci

)
+

(
δF

δρ
− σ

ρ

)
, (22)

where σ = ∑N
j=1 cj (δF/δcj ). Note that the term in the second

bracket on the right-hand side is independent from i. Using
Eq. (22) in Eq. (9) and taking Eq. (10) also into account

results in

Ji =
N∑

i=1

Lij∇
(

1

ρ

δF

δci

)
. (23)

Furthermore, using Eq. (22) in Eq. (19) yields the scalar
pressure:

−P = f − ρ
δF

δρ
. (24)

The last step of the derivation is to express the Korteweg stress
defined by Eq. (11) as a function of ρ and the mass fractions,
which can be done analogously to Eq. (21), yielding

A = −∇ρ ⊗ ∂f

∂∇ρ
−

N∑
i=1

∇ci ⊗ ∂f

∂∇ci

. (25)

Summarizing, the dynamic equations [see Eq. (5)] to-
gether with the constitutive relations described by
Eqs. (11), (12), (14), (15), (23), (24), and (25) define a complete
convection-diffusion-type dynamic framework for a given free
energy functional F [ρ,c,∇ρ,∇c].

III. INCOMPRESSIBLE SYSTEMS

The constitutive equations derived in the previous section
describe compressible systems; however, incompressible sys-
tems have much higher practical importance in applications,
where time scales much larger than the time scale of sound
waves are addressed. The exact mathematical definition of
incompressibility is that the local density is an explicit function
of the local composition:

ρ(r,t) ≡ 
[c(r,t)], (26)

where 
(·) is a known function. Since ρ is not a free variable,
F [c,∇c] is a functional only of the mass fractions (and
their gradients). Note that Eq. (26) together with Eq. (4)
overdetermine the dynamic equations. The degeneration of
the solution can be eliminated by applying the Lagrange
multiplier method as follows. The continuity equation can be
trivially rewritten in the form dρ/dt = −ρ(∇ · v), where the
material derivative of the density can be expressed now as
dρ/dt = ∑N

i=1(∂
/∂ci)(dci/dt). Furthermore, the diffusion
equations indicate ρ(dci/dt) = ∇ · J̃i , resulting in

∇ · v =
N∑

i=1

si (∇ · J̃i), (27)

where si = −(1/
2)(∂
/∂ci), while the diffusion fluxes J̃i

(i = 1, . . . ,N) are to be defined later. Note that Eq. (27) is
an alternative form of the continuity equation for general
incompressible systems. It prescribes a condition between
the compositions and the velocity field, which can be taken
into account by including the local condition

∑N
i=1 ρi(r,t) =


({ρi(r,t)}) in the derivation of the nonequilbirium specific
chemical potential. Accordingly, equilibrium represents a
conditional extremum of �, yielding

δF

δρi

− θ (r)

(
1 − ∂


∂ρi

)
= λ̃i

0
, (28)
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where θ (r) is the Langrange multiplier attributed to the local
condition, whereas

∂


∂ρi

=
N∑

j=1

∂


∂cj

∂cj

∂ρi

= 1




⎛
⎝ ∂


∂ci

−
N∑

j=1

∂


∂cj

cj

⎞
⎠ (29)

is nontrivial and must be calculated from the known 
(c)
relationship. Accordingly, the (conditional) specific chemical
potential reads

λ̃i := δF

δρi

− �(r,t)
(

1 − ∂


∂ρi

)
. (30)

Note that the relevant thermodynamic force is now ∇λ̃i , since
it becomes constant in equilibrium [according to Eq. (28)].
The diffusion fluxes are then postulated as

J̃i :=
N∑

j=1

Lij∇λ̃j . (31)

Analogously to the chemical potential, the conditional pressure
reads −P̃ := f − ∑N

i=1 ρiλ̃i . Expanding the expression yields

−P̃ = −P + �(r,t)

(

 −

N∑
i=1

ρi

∂


∂ρi

)
, (32)

where P is defined by Eq. (19). The conditional reversible
stress then reads

R̃ := −P̃ I + A, (33)

where A is defined by Eq. (20). Comparing Eqs. (32) and (33)
results in ∇ · R̃ = −∑N

i=1 ρi∇λ̃i (a conditional Gibbs-Duhem
relationship), correctly accounting for mechanical equilib-
rium. Furthermore, using Eqs. (22), (24), and (29) in Eqs. (30)
and (32) results in the conditional specific chemical potential
expressed in terms of the mass fractions:

λ̃i = 1




δF

δci

+ (f + P̃ )si, (34)

where all terms canceling in Eq. (31) due to Eq. (10) are
neglected. Note that the appearance of the pressure in Eq. (34)
expresses the fact that inertia must be taken into account in case
of varying density [34]. Finally, the Korteweg stress simply
reads

A = −
N∑

i=1

∇ci ⊗ ∂f

∂∇ci

, (35)

which follows from the fact that F is not a function of ρ.

IV. CHORIN’s PROJECTION METHOD FOR
QUASI-INCOMPRESSIBLE LIQUIDS

It is very practical to test the theory for quasi-
incompressible liquids. In these systems, the bulk components
are incompressible, while they can have different densities. In
addition, Amagat’s law of additive volumes also applies for
these systems; i.e., the partial volumes of the components do
not change upon mixing. These conditions can be expressed

in terms of the mass fractions as [20]

1



=

N∑
i=1

ci

ρ0
i

, (36)

where ρ0
i is the bulk density of component i. From Eq. (36) it

follows that

si = − 1


2

∂


∂ci

= 1

ρ0
i

(37)

is constant in Eqs. (27) and (34). In solving the dy-
namic equations numerically, we face two major problems:
(i) The mass fractions and the velocity are nonconserved, and
(ii) the pressure appears in both the conditional specific
chemical potentials and the reversible stress tensor. The first
can be resolved by taking into account that

∂(y
)

∂t
+ ∇ · [(y
)v] ≡ 


dy

dt
(38)

(where y = ci,v), simply because of the continuity equation
[see Eq. (4)]. Therefore, the dynamic equations can be
rewritten as

∂ρi

∂t
= ∇ · (J̃i − 
 civ), (39)

∂p
∂t

= ∇ · (R̃ + D − 
 v ⊗ v), (40)

where the right-hand sides are still expressed in terms of the
mass fractions and the velocity field, which are explicitly
related to the absolute densities and the momentum via p = ρ v
and Eq. (36). Eq. (36) can also be expressed in terms of the
absolute densities, yielding 1 = ∑N

i=1(ρi/ρ
0
i ). Consequently,

dividing Eq. (39) by ρ0
i , then summing them up trivially results

in Eq. (27), an alternative form of continuity for prescribed
total density. It means that once

∑N
i=1(ρi/ρ

0
i ) = 1 and Eq. (27)

are satisfied, Eq. (36) always applies for Eq. (39). To solve
the dynamic equations we apply an operator-splitting based,
pseudospectral semi-implicit method, yielding [8,35]

ρt+t
i (k) := ρt

i (k) + t

1 + t Sc(k)

[
(ı k) · bt

i(k)
]
, (41)

p∗(k) := pt (k) + t

1 + t Sv(k)
[(ı k) · Bt (k)], (42)

where k is the wave number, t the time step, bt
i(k) and

Bt (k) the Fourier transform of the right hand sides behind
the divergence in Eqs. (39) and (40), respectively, while Sc(k)
and Sv(k) are suitably chosen splitting operators (for details,
see Ref. [8]). Following Chorin’s projection method [36], the
momentum density given by Eq. (42) should be corrected as

pt+t (r) := p∗(r) − t [∇δP (r)], (43)

where P t+t (r) := P t (r) + δP (r) is the new pressure. Note
that Eqs. (41)–(43) ensure the conservation of the mass and
the momentum densities numerically exactly. The pressure
correction δP can be determined from Eqs. (27) and (43) by
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taking into account that pt+t ≡ 
t+t vt+t , yielding

∇ · vt+t = ∇ ·
(

v∗ − t ∇δP


t+t

)
=

N∑
i=1

∇ · J̃t+t
i

ρ0
i

, (44)

where v∗ ≡ p∗/
t+t . Note, that J̃t+t
i contains P t+t because

of Eq. (34). Introducing J∗
i as J̃i evaluated for ct+t and P t

results in

∇ · v∗ −
N∑

i=1

∇ · J∗
i

ρ0
i

= ∇ ·
⎡
⎣

⎛
⎝ t


t+t
+

∑
i,j

Lt+t
ij

ρ0
i ρ

0
j

⎞
⎠∇δP

⎤
⎦,

(45)

where a general transport matrix L having composition
dependent elements is assumed. Note that Eq. (26) is a h(r) =
∇ · [g(r)∇f (r)] type equation, which, assuming periodic
boundary conditions, can also be solved by applying a two-step
pseudospectral method as follows. First, the outer equation
∇ · z(r) = h(r) is solved, yielding

z(k) = h(k)

ı k2
k. (46)

Having z(k), z(r) = g(r)∇f (r) can be solved for f (k).
Introducing w(r) := z(r)/g(r) results in

f (k) = k · w(k)

ı k2
. (47)

In our problem, h(r) is the left-hand side of Eq. (26), g(r)
is the term in the round bracket on the right-hand side, and
f (r) ≡ δP (r). Having δP (k), the momentum update described
by Eq. (43), together with the pressure update P t+t (k) =
P t (k) + δP (k) can be directly applied. In practice, the time-
stepping scheme contains the following steps:

(1) Calculating ct
i (r) = ρt

i (r)/
t (r) and vt (r) = pt (r)/

t (r) from ρt

i (r) and pt (r) [where 
t (r) = ∑N
k=1 ρt

k(r)]
(2) Evaluation of bt

i(r) and Bt (r) appearing on the right-
hand sides of Eqs. (41) and (42), respectively

(3) Time stepping to generate ρt+t
i (k) and p∗(k)

(4) Calculating the new variables ct+t
i (r) = ρt+t

i (r)/

t+t (r) and the intermediate velocity field v∗(r) =
p∗(r)/
t+t (r)

(5) Solving Eq. (45) for δP (k)
(6) Updating the pressure and the momentum density to

have P t+t (k) and pt+t (k).
Finally we note that solving Eq. (26) is “safe,” since the term

in the parentheses on the right-hand side [i.e., g(r)] is strictly
positive, due to the fact that L is a positive semidefinite matrix.

V. CAHN-HILLIARD LIQUIDS

A. Free energy, dynamic equations, and scaling

The free energy density of a general multicomponent
liquid undergoing liquid-liquid phase separation can be defined
as [8,33]

f (c,∇c) := [w(c)g(c) + A3f3(c)] + ε2(c)

2

N∑
i=1

(∇ci)
2, (48)

where

g(c) = 1

12
+

N∑
i=1

(
c4
i

4
− c3

i

3

)
+ 1

2

∑
i<j

c2
i c

2
j ,

f3(c) =
∑

i<j<k

|ci ||cj ||ck|, (49)

w(c) =
∑

i<j wij (cicj )2∑
i<j (cicj )2

; ε2(c) =
∑

i<j ε2
ij (cicj )2∑

i<j (cicj )2
,

while the transport matrix reads

Lij = −κij

2

∣∣∣∣ ci

1 − ci

∣∣∣∣
∣∣∣∣ cj

1 − cj

∣∣∣∣ for i �= j, (50)

Lii = −
∑
j �=i

Lij ,

with κij > 0 pairwise diffusion mobilities. The model param-
eters wij and ε2

ij can be related to the interfacial tension σij

and the interface thickness δij of the pure binary planar (i,j )
interface as

wij = 3 σij /δij and ε2
ij = 3 σij δij . (51)

Furthermore, the pairwise mobilities κij can be related to
the diffusion coefficients as follows. Having the diffusion
coefficient Dij of component i in bulk component j , a single
mobility κij might be defined as

κij := ρ0
i ρ

0
j D̄ij /wij , (52)

where D̄ij := √
DijDji . In gradient theories the diffusion

equations reduce to the Lorentzian limit close to equilibrium:

∂δci,j

∂t
= κijwij(

ρ0
j,i

)2 [∇2(1 + ωij∇2)]δci,j (53)

for v → 0, ci(r,t) + cj (r,t) = 1, δci,j (r,t) → 0 and
ck �=i,j (r,t) ≡ 0. Using Eq. (52) in Eq. (53), the modified
diffusion coefficients read

D′
ij = (

ρ0
i /ρ

0
j

)
D̄ij and D′

ji = (
ρ0

j /ρ
0
i

)
D̄ij (54)

(approximates of the original ones). In a recently published
work [8] it has been shown that the construction described by
Eqs. (48)–(50) has the following advantages:

(1) The model naturally reduces or extends on the level
of both the free energy functional and the dynamics when
removing or adding a phase, respectively

(2) The pure planar binary interfaces ci(x) = {1 +
tanh[x/(2δij )]}/2, cj �=i = 1 − ci(x) and ck �=i,j minimize the
free energy functional with interfacial tension σij

(3) The system shows the fbulk < finterface < ftrijunction <

· · · energy hierarchy, i.e., it hierarchically penalizes local
multicomponent states

(4) The appearance of spurious phases are excluded.
These features apply in case of constant density. To address
variable density, the structure of equilibrium solutions is in-
vestigated first. The general Euler-Lagrange equations follow
from substituting Eq. (22) into (28), and using Eq. (29),
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yielding

∇
[

1




δF

δci

+ λ(r)

ρ0
i

]
= ∇

[
1




δF

δcj

+ λ(r)

ρ0
j

]
(55)

for i,j = 1, . . . ,N , where λ(r) is the equilibrium value of
f + P̃ . Since for all solutions of the Euler-Lagrange equations
the functional derivatives δF/δci vanish [8], the solutions of
the original model represent solutions of Eq. (55) too for
arbitrary λ(r) = const. Therefore, the equilibrium solutions of
the present model coincide for constant and variable density.

Choosing now the length scale δ, the time scale δ2/D

(where D is the scale of the diffusion coefficients), the density
scale ρ, and the interfacial tension scale σ , and the free energy
density scale 3 σ/δ results in the dimensionless diffusion
equations:


̂
dci

dt̂
= ∇̂ · Ĵi , (56)

where

Ĵi =
N∑

i=1

L̂ij ∇̂λ̂i ; λ̂i = 1


̂

δF̂

δci

+ f̂ + P̂

ρ̂0
i

,

δF̂

δci

= ∂f̂

∂ci

− ∇̂ ∂f̂

∂∇̂ci

, (57)

f̂ = ŵ(c)g(c) + Ã3f3(c) + ε̂2(c)

2

∑
i<j

(∇̂ci)
2,

where ŵij = σ̂ij /δ̂ij , ε̂2
ij = σ̂ij δ̂ij [see Eq. (49)], and κ̂ij :=

ρ̂0
i ρ̂

0
j

ˆ̄Dij/ŵij [see Eq. (52)]. The dimensionless Navier-Stokes
equation reads


̂
dv̂
dt̂

= ∇̂ · (βRR̂ + βDD̂), (58)

where

βR = 3 σ δ

D2ρ
and βD = η

ρ D
, (59)

and η is the viscosity scale. The reversible and irreversible
components of the dimensionless stress tensor read

R̂ = −P̂ I − ε̂2(c)
N∑

i=1

(∇̂ci ⊗ ∇̂ci), (60)

D̂ = η̂(c)[(∇̂ ⊗ v) + (∇̂ ⊗ v)T ] − (∇̂ · v̂) I. (61)

Finally, the incompressibility condition simply transforms into

∇̂ · v̂ =
N∑

i=1

∇̂ · Ĵi

ρ̂0
i

. (62)

It is straightforward to see the role of the dimensionless model
parameters βR and βD: The dynamics is diffusion dominated
when βR/βD ∝ σδ

Dη
� 1, since any flow generated by the

capillary stress is suppressed. In contrast, for βR  1 together
with βD/βR � 1, the dynamics is fluid flow dominated, since
convection overwhelms diffusion.

TABLE I. Characteristic model parameters for two system types.

Type ρ (kg/m3) σ (mJ/m2) δ (Å) D (μm2/s) η (mPas)

I 1000 50 1 500 1
II 5000 200 10 1000 0.5

B. Results of numerical simulations

The numerical solution of the dimensionless equations
have been done in two dimensions on 2048 × 1024 and
1024 × 1024 computational grids with grid spacing x̂ = 1/2
and time step t̂ = 5 × 10−3. The physical parameters used
mimic a typical water/hydrocarbon/CO2 system at room
temperature and high pressure (system type I in Table I).
For comparison, typical parameters for liquid metals at high
temperature and atmospheric pressure were also considered
(system type II in Table I). The resulting scale parameters
prescribe fluid flow dominated dynamics for both types.
In our numerical simulations, we chose βR = 6 × 104 and
βD = 2 × 103 (system type I).

The equilibrium contact angles were investigated in a four-
component system first. The dimensionless interfacial tensions
were σ̂12 = 1.0, σ̂13 = 1.1, σ̂14 = 0.75, σ̂23 = 0.9, σ̂24 = 1.25,
and σ̂34 = 1.0, while the interface thicknesses and the diffusion
coefficient were chosen to be unique, i.e., δ̂ij = D̂ij = 1.0.
Â3 = 1.0 was chosen to stabilize the equilibrium binary
planar interfaces. The dimensionless viscosities and densities
were η̂1 = η̂3 = 1.0, η̂2 = 0.5, and η̂4 = 2.0, and ρ̂0

1 = 0.5,
ρ̂0

2 = 1.5, ρ̂0
3 = 1.25, and ρ̂0

4 = 0.75, respectively. The initial
condition was a binary background “sandwich” consisting of
two (3,4) planar interfaces, while two circular dots of liquids
1 and 2 were placed onto these interfaces [see Fig. 1(a)]. In the
early stage of the simulation significant fluid flow [the maximal
velocity magnitude was max(v̂) ≈ 0.3] was generated by the
nonequilibrium interfaces [see Fig. 1(b)], but after 106 time
steps the system was approaching equilibrium [the average
velocity magnitude is 〈v̂〉 ≈ 10−4, corresponding to 1 pixel
shift in 106 time steps]. The equilibrium configuration is shown
in Fig. 1(c). The equilibrium contact angles of the trijunctions
can be calculated from the condition of mechanical equilibrium
by using the interfacial tensions. Accordingly, the equilibrium
contact angles for the (1,3,4) trijunction read

α1 = π − cos−1

(
σ̂ 2

13 + σ̂ 2
14 − σ̂ 2

34

2 σ̂13 σ̂14

)
≈ 117.92◦, (63)

α3 = π − cos−1

(
σ̂ 2

13 + σ̂ 2
34 − σ̂ 2

14

2 σ̂13 σ̂34

)
≈ 138.49◦, (64)

α4 = π − cos−1

(
σ̂ 2

14 + σ̂ 2
34 − σ̂ 2

13

2 σ̂14 σ̂34

)
≈ 103.59◦. (65)

Analogously, the contact angles for the (2,3,4) trijunction read
α2 ≈ 127.59◦, α3 ≈ 97.903◦, and α4 ≈ 134.51◦. The contact
angles can be measured directly from the simulations [see
Figs. 1(d) and 1(e)], indicating less than 1.5% relative error
compared to the exact values. Furthermore, the individual
fields (see Fig. 2) show no static spurious phases, i.e., no
third component appears at the binary interfaces, even close to
the trijunctions. In conclusion, equilibrium is invariant for the
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FIG. 1. Equilibrium contact angles in a four-component Cahn-
Hilliard liquid. The spatial distribution of the scalar variable h(r̂,t̂) :=∑4

i=1 ci(r̂,t̂)[(i − 1/2)/4] is displayed at t̂ = 0, t̂ = 7.5, and t̂ =
12 500 on panels (a)–(c), respectively. The fluid flow is indicated
by vectors on panel (b). Panels (d) and (e) show the ci(r̂,t̂) = 1/2
contours (solid lines) in the small vicinity of the trijunctions indicated
by the small black squares in panel (c), while the dashed lines indicate
the corresponding contact angles.

density contrast, as expected from Eq. (28), but we emphasize
that this feature follows directly from the special choice of
the free energy functional and the mobility matrix: First, any
solution of the constant density Euler-Lagrange equations, at
which the functional derivatives are equal, also satisfies the
general Euler-Lagrange equations with an arbitrary constant
Lagrange multiplier λ(r). In addition, the stationary solutions
of the dynamic equations are identical to the equilibrium
solutions of the free energy functional for the present choice of

FIG. 2. Equilibrium trijunction in a four-component Cahn-
Hilliard liquid. Panels (a)–(d) show the individual density fields
ρ̂i(r̂) (i = 1, . . . ,4, respectively) at the (1,3,4) trijunction shown in
Fig. 1(d). Note the lack of spurious phases.

the mobility matrix. Consequently, the solution of the dynamic
equations must converge to an equilibrium solution of the free
energy functional. We also emphasize that these requirements
(for the equilibrium solutions and the mobility matrix) are
not fulfilled automatically, and always have to be checked, as
pointed out in some recent works [8,33].

After validating the theory for equilibrium, the effect of
density contrast on phase separation is investigated. Since
pattern formation is a volumetric phenomenon, the volume
fractions φi(r,t) ≡ ρi(r,t)/ρ0

i are used to set up the initial
condition. Note that φi(r,t) is also conserved for quasi-
incompressible liquids, making thus the constant and vari-
able density simulations comparable. The initial condition
reads φ1(r,0) = 0.1 + aR[−1,1], φ2(r,0) = 0.2 + aR[−1,1],
φ3(r,0) = 0.3 + aR[−1,1], and φ4(r,0) = 1 − ∑3

i=1 φi(r,0),
where a � 1 and R[−1,1] is a uniformly distributed random
number on [−1,1]. Two scenarios were considered, one for
constant (ρ̂i = 1.0) and another for varying (ρ̂0

1 = 1.0, ρ̂0
2 =

0.5, ρ̂0
3 = 1.5, and ρ̂0

4 = 1.0) density. All other dimensionless
model parameters were chosen to be 1.0. Snapshots of the
simulations are shown in Fig. 3. The difference between
the constant and variable density case is remarkable: In
case of constant density, the three minority components
aggregate in the majority component. The aggregates consist of
bubbles of various sizes of the dominant minority component
connected by bubble “chains” of the other two minority
components. In the case of variable density, however, the
majority component forms individual bubbles surrounded by
chains made of the two minority components. The explanation
of the difference relies on the density difference: In case of
constant density, the effective mobility of the components
are equal, i.e., the magnitude of the velocity “reply” to the
force density generated by the interfaces is the same in all
component. Indeed, comparing the pattern to Fig. 9 of Ref. [8]
shows qualitative agreement. In contrast, a significant density
difference between the components has a major influence on
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FIG. 3. Phase separation in a four-component Cahn-Hilliard
liquid. Snapshots of simulations taken at time points t̃ = 375,
t̃ = 1500, and t̃ = 6000 are shown (from top to bottom, respectively)
in case of constant density (on the left) and variable density (on the
right). The scalar field defined in the caption of Fig. 1 with the same
color bar is shown.

pattern formation. In the present case, the third component
is the least mobile, since it has the highest density. The
formation of the individual islands can be explained by the drop
coalescence process. When two bubbles of component 3 meet,
small bubbles (consisting of the other three components) stuck
in between receive high velocity and move quickly towards
the perimeter of the type-3 bubbles. After the coalescence, the
bubbles made of the two minority components have a relatively
small chance to meet with each other; therefore, they simply
form a chain around the big type-3 bubble, and, consequently,
the original majority component forms a background.

Finally the time dependence of the total free energy of
the system is addressed. According to the second law of
thermodynamics, the entropy production rate must be non-
negative. This condition is fulfilled for a non-negative viscosity
and a positive semidefinite transport matrix appearing in the
condition

∑
i,j

∇λ̃iLij (c)∇λ̃j � 0. (66)

 10

 100

 100  1000
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time

const
quasi

FIG. 4. Time evolution of the total free energy in phase separating
four-component systems shown by Fig. 3 for constant (solid line) and
variable (dash-dotted line) density.

Note that Eq. (66) prescribes the positive semidefiniteness
of L, independently from the form of the forces, which is
just a consequence of the linearity postulate. In addition,
the contribution emerging from the Navier-Stokes equation is
solely attributed to the viscosity. Following these arguments,
a pressure stable numerical scheme is necessarily energy
minimizing even in the general incompressible case. It is
demonstrated in Fig. 4, showing monotonously decreasing
total free energy during the phase separation process shown in
Fig. 3. Summarizing, we have a numerical evidence that both
constant density and quasi-incompressible systems described
by the dynamic equations and the free energy construction
presented in this work obey the second law of thermodynamics.

VI. SUMMARY

Herein we derived dynamic equations describing the time
evolution of an isothermal multicomponent liquid mixture,
where the free energy is given in the framework of gradient the-
ories. The model integrates the fundamental equations of fluid
mechanics and the principles of irreversible thermodynamics,
and can be straightforwardly applied for both compressible
and general incompressible systems. Since the mathematical
formulation is compact, the model can be applied for many
liquid systems of practical importance featuring variable
density. It is important to mention that the extension of the
model with phase transformation and variable temperature is
also possible [17,18]. The only difficulty in utilizing the model
for nontrivial incompressible systems [i.e., when 
(c) �= const]
is the implementation of the pressure solver, which, however,
has been solved at least for quasi-incompressible systems. As
has been demonstrated, the solver is pressure stable or energy
minimizing, without using complex discretization schemes.
It has also been demonstrated that the choice of the free
energy functional and the mobility matrix must be compatible
with the dynamic equations, in order to preserve the structure
of constant density equilibrium solutions in case of variable
density, allowing the analytic calibration of the model. In
addition, we observed that the effect of density contrast on
pattern formation could be crucial even in the case of a density
contrast of two.
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[8] G. I. Tóth, M. Zarifi, and B. Kvamme, Phys. Rev. E 93, 013126

(2016).
[9] T. Shukutani, T. Myojo, H. Nakanishi, T. Norisuye, and Q. Tran-

Cong-Miyata, Macromolecules 47, 4380 (2014).
[10] M. F. Haase and J. Brujic, Angew. Chem. 126, 11987 (2014).
[11] M. M. De Villiers and Y. M. Lvov, Nanoshells for drug delivery,

in Nanotechnologies for the Life Sciences, edited by C. S. S. R.
Kumar (Wiley-VCH, Weinheim, Germany, 2007), pp. 527–
556.

[12] M. Stoffel, S. Wahl, E. Lorenceau, R. Höhler, B. Mercier, and
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