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Elastic fingering patterns in confined lifting flows
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The elastic fingering phenomenon occurs when two confined fluids are brought into contact, and due to a
chemical reaction, the interface separating them becomes elastic. We study elastic fingering pattern formation
in Newtonian fluids flowing in a lifting (time-dependent gap) Hele-Shaw cell. Using a mode-coupling approach,
nonlinear effects induced by the interplay between viscous and elastic forces are investigated and the weakly
nonlinear behavior of the fluid-fluid interfacial patterns is analyzed. Our results indicate that the existence of
the elastic interface allows the development of unexpected morphological behaviors in such Newtonian fluid
flow systems. More specifically, we show that depending on the values of the governing physical parameters,
the observed elastic fingering structures are characterized by the occurrence of either finger tip splitting or side
branching. The impact of the elastic interface on finger-competition events is also discussed.
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I. INTRODUCTION

The lifting Hele-Shaw cell system is nowadays a broadly
studied fluid dynamic problem [1–23]. The continued interest
on this particular physical arrangement is, in part, due to
its academic importance, related to the formation of vis-
cous fingering interfacial patterns in a confined geometry
complementary to the conventional, injection-driven, radial
Hele-Shaw cell situation [24–29]. On the practical side, the
attractive nature of the lifting Hele-Shaw cell problem resides
on the fact that it involves essentially the same experimental
setup as the so-called probe-tack test [30,31], a technique
widely used to study technologically relevant problems in
adhesion science [32–45].

Contrary to the usual injection-driven, radial viscous
fingering problem [24–29] which describes the displacement
of a more viscous fluid by a less viscous one in a constant-gap
Hele-Shaw cell (a device constituted by two parallel glass
plates separated by a small distance), the lifting version of
the problem considers flow in a variable-gap cell. Specifically
speaking, in the lifting case, the cell gap varies with time;
i.e., the upper cell plate is lifted parallel to the lower one,
while the lower plate is held fixed. As the upper plate is lifted,
the outer (less viscous) fluid invades the inner (more viscous)
fluid, so that the initially circular fluid-fluid interface retracts,
and is destabilized by the Saffman-Taylor, viscous fingering
instability [46,47]. As a consequence, small undulations arise
at the two-fluid interface. Afterwards, the amplitude of these
deformations grows, and finger-shaped structures of the outer
fluid evolve, and propagate towards the center of the cell.
As time progresses, increasingly complex, visually striking,
interfacial fingering patterns are formed [1–23,32–45].

The characteristic shape of the emerging interfacial patterns
that arise during lifting Hele-Shaw flows normally depends
on the nature of the fluids. If the fluids are Newtonian,
one usually observes that the invading fingers increase in
length and compete among themselves. These invading fingers
present smooth boundaries and only get slightly wider at their
tips as time advances. This general behavior is observed in
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laboratory experiments, as well as in numerical simulations
of the lifting flow system [5,12,13,15,20,33]. A completely
different pattern-forming scenario is detected experimentally,
if the lifted fluid materials are non-Newtonian (e.g., elastic,
viscoelastic, viscoplastic fluids, etc.). In such cases, even
though the penetrating fingers still compete, the shape of
the invading fingers can be considerably convoluted, pre-
senting morphological features like side branching and tip
splitting [10,16,17,19].

As discussed in Ref. [48], for Hele-Shaw flows with Newto-
nian fluids, fingers form structures showing side branching and
tip splitting only under very extreme experimental conditions,
such as vanishing surface tension or very high lifting velocity
or if the lower cell plate is etched [1,24,49]. On the other hand,
for Hele-Shaw displacements with non-Newtonian fluids, the
rheological properties of the fluids seem to naturally introduce
an intrinsic anisotropy into the system, so that fractal-like or
dendriticlike aspects such as side branching and tip splitting
are more easily produced (see, for instance, Refs. [50–57]).

In this work, we study the phenomenon of elastic fin-
gering in variable-gap Hele-Shaw cells. The occurrence of
elastic fingering has already been investigated in constant-
gap, injection-driven, radial Hele-Shaw flows [58–62] and
also in centrifugally driven, radial displacements in rotating
Hele-Shaw cells with fixed gap thickness [63,64]. How-
ever, the analysis of the development of elastic fingering
pattern-forming structures in lifting Hele-Shaw cells is still
lacking.

The elastic fingering phenomenon was originally observed
in an interesting experimental investigation performed by
Podgorski et al. [58]. Their experiments used two Newtonian
fluids of equal viscosities flowing in the usual, constant-gap,
injection-driven radial Hele-Shaw setup. The unconventional
nature of their system relied on the fact that, when the fluids
are brought into contact, a chemical reaction occurs, and
the fluid-fluid interface becomes elastic. So the system is
composed by two Newtonian fluids, but separated by an elastic
contact boundary.

It turns out that the existence of a localized elastic interface
in the problem studied in Ref. [58] leads to the emergence
of unforeseen dynamical effects, and the rising of peculiar
interfacial patterns. It has been observed experimentally [58],

2470-0045/2016/94(3)/033110(11) 033110-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.033110
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and later verified theoretically [59,60], that even under zero
viscosity difference, the two-fluid interface may become unsta-
ble. Moreover, the interfacial patterns obtained in Ref. [58] are
completely distinct from the flowerlike morphologies normally
detected in conventional viscous fingering experiments, where
interfacial elastic effects are absent [24–29]. The elastic
fingering patterns at matched viscosity conditions vary from
mushroom-shaped fingered structures to quite intricate shapes
containing tentaclelike fingers.

More recently, sophisticated numerical simulations [61]
and a mode-coupling study [62] have demonstrated that elastic
fingering at maximum viscosity contrast conditions (a viscous
fluid being displaced by a fluid of negligible viscosity) may
result in the appearance of dendritic side-branching and tip-
splitting patterns in a Newtonian fluid flow, injection-driven,
constant-gap Hele-Shaw system.

Motivated by the fact that the influence of elastic fingering
effects on the shape of emerging patterns in lifting Hele-Shaw
cells has been overlooked in the literature and stimulated
by the suggestive results obtained in Refs. [61,62] regarding
the development of dendriticlike elastic fingering structures
in Newtonian, fixed-gap Hele-Shaw flows, we carry out our
current study. So here we present a weakly nonlinear analysis
of the elastic fingering phenomenon in the lifting Hele-Shaw
flow arrangement. The main purpose of our work is to offer
useful analytical insights into the impact of the elastic interface
on the shape of the resulting pattern morphologies, as well as
on the habitual finger-competition events that take place during
confined lifting flows.

The rest of this paper is outlined as follows. In Sec. II we
present the elastic fingering problem in the lifting Hele-Shaw
setup and utilize a perturbative weakly nonlinear method to
derive a mode-coupling differential equation that describes the
time evolution of the interfacial perturbation amplitudes at the
early nonlinear regime. In Sec. III we examine how the elastic
nature of the fluid-fluid interface influences the intrinsically
nonlinear pattern-forming mechanisms of the system. Finally,
Sec. IV briefly summarizes our findings and presents chief
conclusions and perspectives.

II. GOVERNING EQUATIONS AND THE TIME
EVOLUTION OF THE INTERFACIAL DISTURBANCES

The physical system we investigate is constituted by a lifting
Hele-Shaw cell of a variable gap width b(t) containing a more
viscous fluid of viscosity μ1, surrounded by a less viscous fluid
of viscosity μ2. The fluids are Newtonian and immiscible, but
the interface separating them is elastic. At time t = 0 (left
panel of Fig. 1), the fluid-fluid interface has a circular shape,
presenting radius R0 = R(t = 0), and initial gap thickness
b0 = b(t = 0). Then, at time t > 0 (right panel of Fig. 1),
the upper cell plate is lifted along the direction perpendicular
to the plates (z axis), and the lower plate is held fixed. The plate
separation procedure is executed in such a way that the plates
always remain parallel to each other. As the upper plate is
moved upwards, the outer fluid 2 is sucked in, and the circular
interface retracts. From volume conservation, one can verify
that the time-dependent radius of the contracting unperturbed
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FIG. 1. Representative sketch of the flow in a lifting (time-
dependent gap) Hele-Shaw cell presenting an elastic fluid-fluid
interface.

interface is given by

R(t) = R0

√
b0

b(t)
. (1)

During the plate-lifting and fluid-sucking process, the
viscosity difference between the fluids and the elastic nature
of the two-fluid interface give rise to interfacial deformations.
In the framework of our weakly nonlinear perturbative model,
we describe the deformed fluid-fluid interface as

R(θ,t) = R(t) + ζ (θ,t), (2)

where θ represents the azimuthal angle. Here

ζ (θ,t) =
+∞∑

n=−∞
ζn(t) exp (inθ ) (3)

is the net interface perturbation with Fourier amplitudes ζn(t)
and integer wave numbers n. In contrast to purely linear
stability analyses (which are linear, i.e., first order, in ζ ), our
weakly nonlinear approach keeps terms up to the second order
in ζ . This allows one to explore analytically the development
of key morphological aspects of the elastic fingering interfacial
patterns at the onset of nonlinearities.

We follow He et al. [59] and consider that the interface
separating the fluids behaves as a thin elastic membrane,
presenting a curvature-dependent bending rigidity whose value
decreases as the local interfacial curvature κ increases:

ν = ν(κ) = ν0
[
Ce−λ2κ2 + 1 − C

]
. (4)

In Eq. (4) ν0 is the maximum rigidity that expresses the largest
resistance to disturbances, and 0 � C < 1 is the bending
rigidity fraction, which measures the fraction of intramolecular
bonds broken through surface deformation. In addition, λ > 0
denotes a characteristic radius. One can think of the quantity
1/λ as being a characteristic curvature beyond which ν(κ) has
a substantial decrease. Note that the constant bending rigidity
limit is reached by setting C = 0.

The lifting Hele-Shaw cell system is governed by two gap-
averaged equations: Darcy’s law [24,46],

vj = − b2(t)

12μj

∇pj , (5)
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plus a modified incompressibility condition [1,4,5],

∇ · vj = − ḃ(t)

b(t)
. (6)

In Eq. (5) vj = vj (r,θ ) and pj = pj (r,θ ) denote the velocity
and pressure in fluids j = 1,2, respectively. Moreover, in
Eq. (6) ḃ(t) = db(t)/dt is the upper plate velocity along
the z axis. For lifting flow we have that ḃ(t) > 0, while for
squeeze flow ḃ(t) < 0. In this paper, we aim attention at the
lifting flow case. It is worth noting that the use of Darcy’s
law (5) implies that the upper plate is neither being lifted fast
enough to induce any inertial effects nor being elevated high
enough to violate the usual Hele-Shaw assumption of thin fluid
layers [R(t) � b(t)]. As in most experimental and theoretical
studies in lifting Hele-Shaw flows [7,12,13,20,33,35,39], we
consider a constant lifting speed ḃ(t) = ḃ = V , so that b(t) =
b = b0 + V t . From Eq. (1), one can promptly verify that the
velocity of the contracting unperturbed interface Ṙ(t) = Ṙ is
conveniently related to the upper plate-lifting velocity ḃ(t) by
the relation Ṙ = −(ḃR)/(2b).

We proceed by noting that, from the irrotational nature of
the flow (∇ × vj = 0), one can define a velocity potential
φj , where vj = −∇φj . By substituting the latter expression
into Eq. (6), one can readily verify that φj obeys the Poisson
equation ∇2φj = ḃ/b, having the solution

φj (r,θ ) =
∑
n�=0

φjn(t)

(
r

R

)(−1)(j+1)|n|
einθ + ḃr2

4b
. (7)

To get the equation of motion for the interface at r = R, we
rewrite Eq. (5) for each of the fluids in terms of the velocity
potential. Integrate and then subtract the resulting equations
from each other to obtain [27]

A

(
φ1 + φ2

2

)∣∣∣∣
r=R

−
(

φ1 − φ2

2

)∣∣∣∣
r=R

= −b2(p1 − p2)|r=R
12(μ1 + μ2)

,

(8)

where A = (μ2 − μ1)/(μ2 + μ1) is the viscosity contrast, a
dimensionless viscosity difference between the fluids.

With Eq. (8) at hand, we need to establish the relevant
boundary conditions of the problem. First, we consider a
generalized Young-Laplace pressure boundary condition that
takes into account the contributions coming from the elastic
nature of the fluid-fluid interface. Such a pressure boundary
condition expresses the pressure jump across the perturbed
fluid-fluid interface as [59,60]

(p1 − p2)|r=R = − 1
2ν ′′′κ2κ2

s − ν ′′(3κκ2
s + 1

2κ2κss

)
− ν ′( 1

2κ4 + 3κ2
s + 2κκss

)
− ν

(
1
2κ3 + κss

)
, (9)

where the curvature-dependent bending rigidity ν = ν(κ) is
given by Eq. (4). In Eq. (9) the primes indicate derivatives with
respect to the curvature κ , while the subscripts of κ indicate
derivatives with respect to the arc length s. In deriving Eq. (9)

we have not taken into account the action of forces associated
with moving contact lines at the upper and lower boundaries
of the Hele-Shaw cell [60]. As a matter of fact, this is also the
case for the other elastic fingering investigations performed
by other authors (see, for instance, Refs. [59,61]). The elastic
fingering calculations are already sufficiently complicated by
neglecting such moving contact line effects, and we are not
aware of any existing study that addresses this issue for reactive
fingering phenomena in Hele-Shaw geometry. This is beyond
the scope of our present work. Moreover, notice that we have
also neglected the effect of the transverse interface curvature,
which is roughly given by 2/b. This is justified by the fact that
typical lifting velocities are too small, so that the gap thickness
b (and consequently, the transverse curvature) does not vary
dramatically during the weakly nonlinear stages of the lifting
process. Finally, notice that the inclusion of a constant pressure
term in Eq. (9) does not affect the motion in our problem, since
its gradient is zero [see Eq. (5)].

In addition to the pressure boundary condition (9), we apply
the kinematic boundary condition

∂R
∂t

=
[

1

r2

∂r

∂θ

∂φj

∂θ
− ∂φj

∂r

]
r=R

, (10)

which states that the normal components of each fluid’s
velocity are continuous at the interface [24,25]. The tangential
components are discontinuous, generating a line of vortices
(or, a vortex sheet) at the interface. Even though this tangen-
tial velocity condition can be of relevance for determining
stationary exact solutions for the interface (for example, in
rotating Hele-Shaw cells [64]), it is not really useful for
the time-dependent circumstances of the lifting Hele-Shaw
fingering phenomena under study in this work.

At this point, we have all the ingredients needed to
find a mode-coupling differential equation that describes the
time evolution of the interfacial amplitudes ζn(t). Following
traditional steps performed in previous weakly nonlinear
studies for Hele-Shaw flows [27,47], first we express φj

[Eq. (7)] in terms of the perturbation amplitudes ζn [Eq. (3)]
by considering kinematic condition (10). Substituting the
resulting relations and the pressure jump condition Eq. (9)
into Eq. (8), always keeping terms up to second order in ζ , and
Fourier transforming, we obtain the dimensionless equation of
motion for the perturbation amplitudes (for n �= 0)

ζ̇n = 	(n)ζn +
∑
m�=0

[F (n,m)ζmζn−m + G(n,m)ζ̇mζn−m], (11)

where the overdot denotes total time derivative, and

	(n) = − sgn(ḃ)

2b
(A|n| + 1)

+ 
b9/2

2q3
|n|(n2 − 1)[A1(C,η)(n2 + 1) + A2(C,η)],

(12)

is the linear growth rate. Notice that the sgn function equals
±1 according to the sign of its argument. The parameter


 = ν0

12(μ1 + μ2)R2
0 |ḃ| (13)
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measures the ratio of elastic to viscous forces, and

q = R0

b0
(14)

represents the initial aspect ratio of the system. Moreover,

A1(C,η) = Ce−η(−4η2 + 10η − 2) − 2(1 − C), (15)

A2(C,η) = Ce−η(8η2 − 22η + 5) + 5(1 − C), (16)

where η = η(t) = λ2b(t).
Furthermore, the second-order mode-coupling terms are

given by

F (n,m) = |n|b1/2

(
− sgn(ḃ)

2b

{
A

[
sgn(nm) − 1

2

]
+ 1

|n|
}

− 
b9/2Ce−η

q3
[B1(n,m) + ηB2(n,m)

+ η2B3(n,m) + 2η3B4(n,m)]

− 
b9/2(1 − C)

q3
B1(n,m)

)
(17)

and

G(n,m) = b1/2{A|n|[1 − sgn(nm)] − 1}. (18)

The expressions for the functions B1(n,m), B2(n,m), B3(n,m),
and B4(n,m) are given in the Appendix.

Expressions (11)–(18) represent the mode-coupling equa-
tions of the elastic fingering problem in a lifting Hele-Shaw
cell. We nondimensionalized these equations as follows: (i) in-
plane lengths are rescaled by R0; (ii) b(t) is scaled on its initial
value b0; (iii) likewise, time is rescaled by the characteristic
time T = b0/|ḃ(0)|. We call the reader’s attention to the fact
that for the rest of this paper we use the dimensionless version
of all the equations.

It should be pointed out that the mathematical expressions
obtained here for 	(n), 
, F , and G are similar to the
equivalent ones derived for the injection-induced displacement
in a constant-gap Hele-Shaw cell [62]. Essentially, in the case
of linear growth rate 	(n), the injection rate term shown in
Eq. (7) in Ref. [62] is replaced by the plate-lifting velocity
term [first term in Eq. (12)]. Similarly, while the parameter 


defined by Eq. (8) in Ref. [62] involves the injection rate Q in
the viscous force contribution, in Eq. (13) above it involves the
plate-lifting velocity |ḃ|. However, this equivalence between Q

and |ḃ| does not hold at the nonlinear level, and the expression
for the function F given by our Eq. (17) differs slightly from
the corresponding one shown in Eq. (11) in Ref. [62] due to
nonlinear couplings. Finally, notice that the function G given
by our Eq. (18) reproduces the one obtained in Ref. [62] [their
Eq. (12)] if we use the dimensionless version of Eq. (1), and
rewrite b1/2 as 1/R.

Already at the linear level, one can verify that the elastic
interface situation for which C �= 0 leads to somewhat un-
expected dynamical behaviors. For instance, from the linear
growth rate expression [Eq. (12)] one can see that when C = 0
[i.e., when ν(κ) = ν0 is constant], we have A1 = −2 and
A2 = 5, meaning that bending forces are stabilizing. However,
if C �= 0 the bending rigidity ν(κ) is curvature-dependent
[Eq. (4)], and elastic effects may lead to a destabilization of

the system. As discussed in Refs. [59,60] for the injection-
induced displacement in a constant-gap Hele-Shaw cell, such
a destabilization process can occur even if the system is not
viscosity driven. In the lifting flow case, this signifies that the
system could become linearly unstable, even if the viscosity
contrast is zero or positive (0 � A � 1).

Despite the appealing nature of the linear destabilizing
mechanism described above, once it has been extensively
studied in Refs. [59,60], here we concentrate on the impact
of the elastic effects on the early nonlinear dynamics of the
system. More specifically, we investigate how the curvature-
dependent elastic effects influence the weakly nonlinear shape
of the patterns formed under confined lifting flow. Throughout
this work, we focus on the important maximum viscosity
contrast situation A = −1, which is the most explored in
both real experiments and numerical simulations of the lifting
Hele-Shaw cell problem [5,7,12,13,15,20,33,35,39].

We emphasize that the values we take for all other
parameters considered in this study are consistent with typical
physical quantities used in these experimental and numerical
investigations. The specific values of the various physical
parameters we used in our calculations are taken from
Refs. [5,7,12,13,15,20,33,35,39]: ḃ = O(10−6) m/s, b0 =
O(10−4) m, R0 = O(10−2) m, μ1 = O(102) Pa s, and μ2 = 0.
Under such characteristic conditions we take the initial aspect
ratio as 200 � q � 300. It is worth mentioning that for this set
of input parameters the Reynolds number of the system, Re =
ρ|Ṙ|/12μ1 = O(10−4), where ρ1 = O(103)kg/m3 (ρ2 = 0)
is the density of the inner (outer) fluid, is very small so
that inertial effects can be safely neglected. In addition,
the parameters related to the elastic fingering phenomenon
are taken from Refs. [58,59,61] and are given as follows:
ν0 = O(10−8) kg m2/s2, 0 � C � 0.5, 0.10 � 
 � 0.15, and
0.50 � λ � 0.85.

Before we advance to the next section, it is worth pointing
out that when C = 0, the exponential term in Eq. (4) vanishes,
and we obtain a constant bending rigidity situation in which
ν = ν(κ) = ν0. This leads to a much simpler pressure jump
boundary condition expression [see Eq. (9)], involving only
a constant (ν0) multiplying derivatives of the interfacial
curvature κ . This C = 0 expression for the pressure jump
condition resembles the expression usually obtained in tra-
ditional Hele-Shaw cell problems where elastic effects are not
considered [24]. In this traditional case, the pressure jump
is simply represented by the product of a constant (surface
tension) by κ . In this sense, one could expect that in the C = 0
limit the constant bending rigidity ν0 would act similarly to
surface tension, having a stabilizing role. On the other hand,
when C �= 0 and ν(κ) is legitimately curvature-dependent, the
bending rigidity could also destabilize the interface, and much
more interesting effects may arise.

III. WEAKLY NONLINEAR BEHAVIOR OF THE ELASTIC
FINGERING PATTERNS

In this section, we use the set of Eqs. (11)–(18) and employ
a weakly nonlinear theory to elucidate key aspects related to
finger-shape behavior and finger-competition dynamics in the
lifting Hele-Shaw flow problem, when the fluid-fluid interface
is elastic. In order to simplify our discussion, we conveniently
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rewrite the net perturbation [Eq. (3)] in terms of cosine and
sine modes,

ζ (θ,t) = ζ0 +
∞∑

n=1

[an(t) cos(nθ ) + bn(t) sin(nθ )], (19)

where an = ζn + ζ−n and bn = i(ζn − ζ−n) are real valued.
In the Fourier expansion (19), we include the n = 0 mode
to maintain the area of the perturbed shape independent of
the perturbation ζ . Mass conservation imposes that the zeroth
mode is written in terms of the other modes as

ζ0 = − 1

4R

∞∑
n=1

[
a2

n(t) + b2
n(t)

]
. (20)

Without loss of generality, we may choose the phase of the
fundamental mode so that an > 0 and bn = 0.

It is well known [24] that the main pattern-forming
mechanisms of the viscous fingering process in conventional,
injection-driven Hele-Shaw flows (in the absence of interfacial
elastic effects) can be identified as spreading, splitting, and
competition. In late 1990s, it was shown that these basic
mechanisms could be consistently mimicked by considering
the weakly nonlinear coupling of just a few participating
Fourier modes [27,47]: (i) The characteristic shape of the
fingers (finger widening and narrowing) could be given by the
interplay between a fundamental mode n and its first-harmonic
cosine mode 2n, while (ii) finger-competition events (related to
finger-length variability) could be described by the interaction
of a fundamental mode n and its sine and cosine subharmonic
modes n/2.

Later on, it has also been demonstrated that the mechanism
of side-branching formation for the flow of non-Newtonian
(shear-thinning) [50–57] fluids in the injection-induced, radial
Hele-Shaw problem (still neglecting interfacial elastic effects)
would require the presence of mode 3n [55,57]. In this way,
the detected dendriticlike growth could be reproduced by
considering the nonlinear coupling between a fundamental
mode n and its harmonics 2n and 3n. Similar to what we
recently did in Ref. [62] for the study of elastic fingering
formation in the injection-driven problem under constant-gap
circumstances, we use the mode-coupling picture introduced
in [27,47,55] to probe the basic morphology of the elastic
fingering patterns generated in a lifting Hele-Shaw cell. For
a detailed discussion about the mode-coupling strategy, its
description and proposed interpretation of the typical pattern-
forming mechanisms occurring in Hele-Shaw flows, we refer
the readers to Refs. [27,47,55,57].

A. The shape of the fingers: Occurrence of tip splitting
and side branching

We begin our discussion by examining the finger-shape
behavior at the weakly nonlinear level. As commented ear-
lier, finger-tip-narrowing, -tip-broadening, and -tip-splitting
phenomena can be described by considering the influence of
a fundamental mode n on the growth of its harmonic 2n.
For lifting flow, it can be shown [14,27] that an enhanced
tendency of the inward-moving fingers of the outer fluid to get
wider (narrower) occurs when a2n > 0 (a2n < 0). So, a positive
growth for the cosine amplitude of the first harmonic mode 2n

would mean tendency toward finger-tip-splitting formation of
the invading fingers of the outer fluid. Likewise, as proposed
in Refs. [55,57], if the harmonic cosine mode amplitude a3n

is positive and sufficiently large, it can produce interfacial
lobes branching out sidewards, leading to side-branching
formation.

Therefore, to properly evaluate the resulting shape of
the fingers during lifting Hele-Shaw flows with an elastic
interface, we consider the simultaneous action of the three
morphologically relevant modes n, 2n, and 3n, and rewrite the
mode-coupling equation (11) in terms of the cosine amplitudes
to get

ȧn = λ(n)an + 1
2 {[T (n, − n) + T (n,2n)]ana2n

+ [T (n,3n) + T (n, − 2n)]a2na3n}, (21)

ȧ2n = λ(2n)a2n + 1
2 {T (2n,n)a2

n

+ [T (2n, − n) + T (2n,3n)]ana3n}, (22)

and

ȧ3n = λ(3n)a3n + 1
2 [T (3n,n) + T (3n,2n)]ana2n, (23)

where

T (n,m) = F (n,m) + λ(m)G(n,m). (24)

Note that, for consistent second-order expressions, on the
right-hand side of Eqs. (21)–(23) we replaced time derivative
terms like ȧn with λ(n)an. The time evolution of the amplitudes
an(t), a2n(t), and a3n(t) can be obtained by numerically solving
the coupled nonlinear differential equations (21)–(23).

It should be stressed that the task of searching for possible
pattern-forming morphologies in the elastic fingering problem
through a weakly nonlinear strategy is not exactly trivial. First,
notice that we have to deal with a multidimensional parameter
space, containing four relevant controlling quantities, namely,
C, λ, 
, and q. On top of that, to guarantee the generality of
the results, we have to explore and test various possible sets
of initial conditions for the perturbation amplitudes. Finally,
while varying physical parameters and initial conditions,
we also have to make sure that our second-order mode-
coupling theory remains valid for the whole range of time
intervals considered during the quest for attainable patterns.
Despite the relative simplicity of our theoretical approach,
we urge the reader to keep in mind that considerable effort
and caution are necessary in order to properly address,
and surpass, all these intrinsic difficulties. However, once
this is done, one can extract valuable physical information
about the fundamental architecture of the underlying pattern-
forming structures already at early nonlinear stages of the
dynamics.

In Figs. 2 and 3 we illustrate the typical pattern morpholo-
gies that may arise in lifting flows with Newtonian fluids if
the presence of an elastic two-fluid interface is taken into
consideration. In the left panels of these figures, we plot the
time evolution of the contracting fluid-fluid interface for three
increasing values of the bending rigidity fraction C. This
is done by utilizing Eqs. (19) and (20) and considering the
nonlinear interaction of the three relevant cosine modes, n, 2n,
and 3n, as prescribed by Eqs. (21)–(23). In order to facilitate
the visualization of the morphological details of the resulting
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FIG. 2. Time evolution of the fluid-fluid interface position R as a function of the polar angle θ (left panels), illustrating the representative
elastic fingering patterns that may emerge during lifting Hele-Shaw flows. The corresponding time evolution of the rescaled cosine amplitudes
an(t)/R(t) for modes n, 2n, and 3n, where n = 34, is depicted in the right panels. The values of the bending rigidity fraction parameter are (a)
C = 0, (b) C = 0.35, and (c) C = 0.45. In addition, 
 = 0.1, q = 300, and λ = 0.85. The final times used are (a) τ = 0.240, (b) τ = 0.235,
and (c) τ = 0.225. Note that the polar angle θ is given in radians.

fingering structures, for each time t , we plot the interface
position R as a function of the polar angle θ in such a way that
only a few fingers are shown. This is done because the plot of
the entire two-fluid interface for 0 � θ � 2π involves a larger
number of relatively small penetrating fingers, for which the
identification of the interfacial features is much more difficult.
Notice that, as represented in the left panels of Figs. 2 and 3,
the direction of the flow is from top to bottom (direction of
decreasing R).

In the plots presented in Figs. 2 and 3, we take the initial con-
ditions an(0) = 10−3, and a2n(0) = a3n(0) = 0 so that modes
2n and 3n are both initially absent. In addition, 
 = 0.1 and
q = 300. The time varies in the interval 0 � t � τ , where τ is

the time at which successive interfaces are about to cross one
another. Since this crossing is not detected in experiments and
fully nonlinear simulations in lifting Hele-Shaw flows [13,20],
we adopt the largest time before crossing as the upper bound
time (t = τ ) for the validity of our theoretical description.
Note that the values of τ and b(t = τ ) we use throughout
this work are consistent with the thin-layer approximation
mentioned in Sec. II right after presenting Eqs. (5) and (6). This
approximation holds because the typical lifting velocities are
very small, so that b does not vary much for the lifting process
that occurs during the weakly nonlinear regime considered in
our current study. Finally, in the right panels of Figs. 2 and 3, for
each value of C, we depict we the time evolution of the rescaled
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FIG. 3. Time evolution of the fluid-fluid interface position R as a function of the polar angle θ (left panels), illustrating the typical elastic
fingering patterns that may arise during lifting Hele-Shaw flows. The corresponding time evolution of the rescaled cosine amplitudes an(t)/R(t)
for modes n, 2n, and 3n, where n = 33, is depicted in the right panels. The values of the bending rigidity fraction parameter are (a) C = 0,
(b) C = 0.125, and (c) C = 0.25. In addition, 
 = 0.1, q = 300, and λ = 0.7. The final times used are (a) τ = 0.240, (b) τ = 0.203, and (c)
τ = 0.166. The polar angle θ is given in radians.

cosine amplitudes an(t)/R(t) for the three participating
modes.

Before we continue, it is important to discuss the reason
for the choice of the fundamental mode n plotted in Figs. 2, 3,
and 4. First of all, it should be pointed out that, under lifting
Hele-Shaw circumstances, the number of fingers varies quite
dramatically as the controlling parameters of the system (λ,

, q, and C) are changed. On the other hand, in order
to search for the possible different pattern morphologies
under lifting flow, one has to sweep different regions of the
parameter space. To do this, we varied the possible values
of the controlling parameters by requiring that the relevant
participating Fourier modes would remain linearly unstable
during the whole lifting process. This would allow one to

observe growth of all modes involved. In other words, for the
tip-splitting and side-branching cases, we require that modes
n, 2n, and 3n are linearly unstable up until time τ . This has
been done by imposing that the largest Fourier mode among
n, 2n, and 3n is the critical mode at t = τ . This corresponds
to setting 	(3n) = 0 at t = τ , ensuring that 3n is a critical
mode at the final time, so that modes n, 2n, and 3n always
remain inside of the band of unstable modes during the entire
lifting procedure. Something similar has also been done in
the finger-competition case to be investigated in Sec. III B,
in which the relevant participating modes are n and n/2. In
this case, we equivalently imposed the condition 	(n) = 0 at
t = τ . In conclusion, for a given set of parameters λ, 
, q,
and C, the number of fingers is set by imposing the condition
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	(3n) = 0 at t = τ for the tip-splitting and side-branching
cases (Figs. 2 and 3) and by the condition 	(n) = 0 at t = τ

for the finger-competition situation (Fig. 4).
Our search for the possible shapes assumed by the fingers

as the upper Hele-Shaw cell plate is lifted begins with the
inspection of Fig. 2. In this situation, we take λ = 0.85 and
consider the following values for the bending rigidity fraction
parameter: (a) C = 0, (b) C = 0.35, and (c) C = 0.45. First,
we analyze the case in which interfacial elastic effects are
independent of the interfacial curvature [Fig. 2(a)]. Under such
circumstances, nothing really unexpected happens, and the
morphology of the fingers is basically defined by the growth
of the fundamental mode n, which reaches significantly larger
amplitudes than the modes 2n and 3n. This is clearly illustrated
by the growth of amplitudes represented in the right panel of
Fig. 2(a). Therefore, when C = 0, the amplitudes a2n and a3n

are very small, and there is no sign of either tip splitting or
side branching.

An evidently different behavior is revealed in Fig. 2(b),
when the elastic effects depend on the curvature of the fluid-
fluid interface. Even though, for initial times, the interface
evolution in Fig. 2(b) is not that distinct from the one shown
in Fig. 2(a), as time advances one verifies that the tips of
the invading fingers of the outer fluid get wider and at late
times become progressively blunt, revealing the occurrence
of a finger-tip-flattening process. Within the scope of our
mode-coupling description, the reason for this morphological
behavior is that, nonlinear elastic effects favor the growth of
the first harmonic mode 2n, with a positive amplitude a2n [see
the right panel of Fig. 2(b)]. Consistent with comments earlier
in this section, this is precisely the phase of mode 2n that leads
to finger-tip broadening, and then to finger-tip flattening. On
the other hand, the mode 3n presents a negative phase, so that
side-branching formation is not favored [55,57]. In Fig. 2(b)
the fact that C �= 0 is indicative that the finger-tip-flattening
behavior is activated by the curvature-dependent nature of the
bending rigidity.

An even more emblematic dynamic response is observed in
Fig. 2(c), where C is nonzero and larger than the corresponding
value used in Fig. 2(b). By examining Fig. 2(c), one can see that
the invading fingers are not only broadened as time progresses,
but their tips ultimately split. In fact, the enhanced growth
of mode 2n for this situation can be easily visualized in the
right panel of Fig. 2(c). Once again, we see that a3n < 0,
and no side branching emerges. More physically speaking, the
development of finger-tip splitting in Fig. 2(c) is provoked by
an increase in the bending rigidity ν(κ) [Eq. (4)] at the tip of
the finger. This increase in ν(κ) is sufficient to suppress local
curvature growth, thus favoring the finger to split along regions
of reduced rigidity, as determined by the favored growth of
mode 2n.

Some of the observations made during the analysis of
Fig. 2 are somewhat surprising, in particular, the one related
to the occurrence of finger tip-splitting, which is not at all
common for lifting flow with Newtonian fluids. As discussed
in Sec. I, tip splitting in Newtonian lifting flows occurs only
at extreme conditions [48] (for example, at quite high lifting
velocities), which is not the case here. As already pointed out,
the dimensionless parameters we use are absolutely consistent
with typical, real experimental conditions [12,13,20,33,39]

and have not been exaggerated. So here, although the fluids are
Newtonian and the parameter values unexceptional, finger-tip
splitting can still be observed. In fact, the key element in
our system is the elastic nature of the fluid-fluid interface:
Curvature-dependent elastic effects localized at the interface
are the ones responsible for inducing finger-tip broadening,
finger-tip flattening, as well as finger-tip splitting.

As we continue in our pursuit of other possible pattern-
forming behaviors, we now examine Fig. 3. Similar to
what we did in Fig. 2, Fig. 3 plots the evolution of the
fluid-fluid interfaces in the left panels and the corresponding
time advancement of the rescaled perturbation amplitudes
an(t)/R(t) in the right panels. Figure 3 considers the same
initial conditions utilized in Fig. 2, and other than taking
different values of C, the most basic difference regarding
physical parameters is the fact that we set a distinct value
for the characteristic radius, so that now λ = 0.7. In essence,
to find something other than tip splitting, we wanted to keep
everything as close as possible to the physical circumstances
utilized in Fig. 2 and systematically varied λ up to a point at
which some other interfacial behavior could be unveiled.

Figure 3(a) addresses the situation in which the effects of
the elastic interface are curvature independent (i.e., C = 0).
As in the case of Fig. 2(a), nothing really peculiar is shown
in Fig. 3(a), and reasonably unstructured pointy fingers are
produced. The shape of the interface is mostly defined by the
fundamental mode n, which grows considerably larger than
modes 2n and 3n, as shown in the right panel of Fig. 3(a).
However, something notably different is observed in Fig. 3(b),
when the bending rigidity fraction is nonzero (C = 0.125):
As the interface evolves, one notices that the morphology of
penetrating inward-moving fingers of the outer fluid begin to
change, becoming sharper at their tips and wider at their sides.
By observing the right panel of Fig. 3(b), one can see that
this suggestive event is due to the favored growth of both
harmonic modes 2n and 3n, which now have sizable positive
amplitudes. Note that now a3n > 0 and side branching could
occur.

Then, by inspecting Fig. 3(c), which takes an even larger
value of C (now C = 0.25), one encounters something rather
interesting, namely the rising of broadened, threefold-shaped
fingering structures, showing interfacial lobes that branch
out sideways. This produces the formation of side-branching
patterns in our elastic fingering system. Such a curious
pattern-forming behavior can be justified by resorting to our
mode-coupling approach: From the right panel of Fig. 3(c)
one can readily see that this is induced by the enhanced
growth of mode 3n (with the proper positive phase), that
in conjunction with the growth of mode 2n, results in side-
branched finger shapes. It is important to underline that here,
similar to what was discussed in Fig. 2 regarding tip splitting,
the side-branching phenomenon identified in Fig. 3 is not
due to the non-Newtonian nature of the fluids (after all, the
fluids are Newtonian), but driven by the curvature-dependent
elastic effects that arise at the interface separating them. The
elastically induced side-branching phenomenon depicted in
Fig. 3(c) can be explained on more physical grounds by
the dynamical increase in the bending rigidity ν(κ) along
the directions of increased local curvature, as defined by the
stimulated growth of modes 3n and 2n.
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As we close this section, it should be stressed that we
have searched for other types of patterns within and beyond
the range of parameters (C, λ, 
, q) and initial conditions
considered in Figs. 2 and 3, but have not found any other
significantly distinct type of patterned morphologies than the
ones already presented in this work. Therefore, at least within
the scope of our weakly nonlinear theory, one can say that
the two basic morphological mechanisms for elastic fingering
formation in lifting confined flows are indeed tip splitting and
side branching.

B. Impact of elastic effects on finger competition

In addition to the characteristic shape of the fingers
discussed in Sec. III A, as already commented in Sec. I, another
salient aspect verified during lifting Hele-Shaw flows is the
phenomenon of finger competition. Regardless, the specific
nature of the fluids (Newtonian or non-Newtonian), numeri-
cal simulations, and experiments [5,10,12,13,15–17,19,20,33]
consistently reveal a situation in which slow penetrating fingers
of the outer, less viscous fluid are outrun by surrounding
invading fingers that move faster. So, manifestly, there exists a
competition (i.e., a finger-length variability) among the fingers
of the invading less viscous fluid, which advance towards the
center of the cell. Taking into consideration the importance of
the finger-competition dynamics to lifting Hele-Shaw flows in
general, in this section we examine the effect of the elastic
fluid-fluid interface on finger-competition events.

We follow Ref. [27], and consider finger-length variability
as a measure of the competition among fingers. Within our
mode-coupling approach, the finger-competition mechanism is
described by the influence of a fundamental mode n, assuming
n is even, on the growth of its subharmonic mode n/2.
By utilizing Eqs. (11)–(18), the equations of motion for the
subharmonic mode can be written as

ȧn/2 = {λ(n/2) + C(n,t)an}an/2, (25)

ḃn/2 = {λ(n/2) − C(n,t)an}bn/2, (26)
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FIG. 4. Behavior of the finger-competition function C(n,t) as
the bending rigidity fraction C is varied for three values of the
characteristic radius λ.
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is the finger-competition function. As we have done in
Eqs. (21)–(23), for consistent second-order expressions, on
the right-hand side of Eqs. (25) and (26) we replaced time-
derivative terms like ȧn and ḃn with λ(n)an and λ(n)bn,
respectively.

Now we briefly discuss how one can use Eqs. (25) and (26)
and the function C(n,t) to get valuable information about the
finger-competition behavior in our problem. By inspecting
Eqs. (25) and (26) and recalling that an > 0, we verify that
a negative C(n,t) increases the growth of the sine subharmonic
bn/2, while inhibiting growth of its cosine subharmonic an/2.
The result is an increased variability among the lengths of
fingers of the outer fluid 2 penetrating into the inner fluid 1.
This effect describes the competition of inward-moving fingers
of fluid 2. Notice that the magnitude of the function C(n,t) as
given by Eq. (27) measures the strength of the competition; i.e.,
increasingly larger absolute values of C(n,t) lead to enhanced
finger competition. Remember that what is observed in exper-
iments and numerical simulations of the lifting flow problem
(in the absence of elastic effects) [5,7,12,13,15,20,33,35,39]
is, in fact, the competition of the inward-moving fingers of the
outer fluid. These observations are consistent with a negative
finger-competition function.

Of course, reversing the sign ofC(n,t) would exactly reverse
conclusions we reached in the previous paragraph, such that
modes an/2 would be favored over modes bn/2. In other words,
a positive C(n,t) would indicate increased competition among
the outward pointing fingers of fluid 1, something that is not
observed in Refs. [5,7,12,13,15,20,33,35,39].

To illustrate a typical influence of the interfacial elastic
effects on the finger-competition behavior at second order, in
Fig. 4 we plot C(n,t) as a function of the bending rigidity
fraction C for three values of the characteristic radius λ =
0.5, 0.6, and 0.7. As discussed earlier, to observe growth of
modes n/2 and n, we carry out our finger-competition analysis
by considering that 	(n) = 0 at t = τ . Here we consider that
n = 62 for λ = 0.5 and λ = 0.6 and n = 64 for λ = 0.7. The
initial amplitudes are taken as an/2(0) = bn/2(0) = an(0) =
10−3. In addition, we set 
 = 0.15 and q = 200.

From Fig. 4, first we notice that the finger-competition
function C(n,t) assumes only negative values for C > 0.
This indicates favored finger competition among the inward-
pointing fingers of the less viscous, penetrating fluid. This
initial verification is somewhat reassuring, in the sense that
it is in line with what is usually observed in conventional
lifting Hele-Shaw flows. Another evident behavior is the fact
that, regardless the value of λ, the function C(n,t) becomes
increasingly more negative if C is increased. This means that,
for a given value of λ, finger competition tends to become
more intense for larger C. Finally, it is also apparent that
the finger competition depends on the value of λ, where for a
fixed C, larger values of λ tend to decrease competition among
inward-moving fingers. This can be explained as follows. Since
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λ is a characteristic radius beyond which the bending rigidity
has a substantial decrease [see Eq. (4)], for such higher values
of λ one has a significant decay of the elastic effects already
at the beginning of the lifting process. This leads to a less
intense, elastic-driven competition effects. All these findings
demonstrate that the finger-competition scenario in confined
lifting flows is, in fact, sensitive to changes in the basic elastic
properties of the two-fluid interface and that it can be regulated
by manipulating C and λ.

IV. CONCLUDING REMARKS

A large body of experimental and theoretical (both an-
alytical and numerical) research on the lifting Hele-Shaw
problem with Newtonian fluids shows that the resulting fluid-
fluid interfacial patterns involve the development of smooth
penetrating fingers that compete among themselves. However,
if the lifted fluids are non-Newtonian, a markedly different set
of patterns arise: Although competition among inward-moving
fingers is still present, the shapes of these fingers are much
more irregular, revealing the occurrence of finger-tip-splitting
and side-branching phenomena.

In this work, we have investigated a particular variant
of the traditional lifting Hele-Shaw problem that, in spite
of containing just Newtonian fluids, may still lead to the
formation of tip splitting and side branching. This somewhat
unexpected pattern-forming behavior emerges due to the
presence of a fluid-fluid interface that acts like an elastic
membrane, presenting a curvature-dependent bending rigidity.
By employing a perturbative mode-coupling approach, we
have been able to predict the appearance of such suggestive
elastic fingering structures (displaying split or side-branched
fingers), already at the lowest nonlinear level of the dynamics.
The influence of the elastic interface on the competition
among penetrating fingers has also been examined, indicating
that the competition events are indeed sensitive to changes
in the characteristic radius λ, and in the bending rigidity
fraction C. More precisely, we have found that elastic-induced
finger-competition effects tend to increase for larger values of
C, and smaller values of λ.

The theoretical predictions presented in this work have
not yet been ratified by fully nonlinear numerical simulations
and laboratory experiments. Despite the possibly challenging
nature of such studies, they constitute two possible avenues
within the scope of future work on the topic of elastic fingering
pattern formation in lifting confined flows. Incidentally, during
the course of our present research, it has been brought to
our attention that Professor Shuwang Li and collaborators are
working on a numerical investigation of elastic fingering in
the lifting Hele-Shaw cell arrangement. Their study explores
fully nonlinear aspects of the problem, utilizing the powerful
numerical scheme they have recently reported in Ref. [61], as

well as the numerical techniques presented in Refs. [29,65].
Hopefully, these and other investigators will have the oppor-
tunity to check some of our findings.

Possible extensions of this work could address the current
limitations of our theoretical model: for instance, (i) inclusion
of forces associated with the moving contact line at upper and
lower cell boundaries; (ii) consideration of Laplace pressure
effects related to the interfacial curvature along the transverse
direction to the cell plates; (iii) formation of new elastic
interfaces as b is increased; (iv) addition of inertial effects
and generalization to higher Reynolds number situations; and
(v) a more systematic exploration of the parameter space.
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APPENDIX: FUNCTIONS APPEARING IN THE
MODE-COUPLING TERM F(n,m)

This appendix presents the expressions for the functions
B1(n,m), B2(n,m), B3(n,m), and B4(n,m), which appear in
Eq. (17) of the text

B1(n,m) = −3 + 15

4
m(n − m) + 10(n − m)2

− 9

2
m2(n − m)2 − 6m(n − m)3

− 4(n − m)4, (A1)

B2(n,m) = 39

2
− 30m(n − m) − 71(n − m)2

+ 81

2
m2(n − m)2 + 54m(n − m)3

+ 32(n − m)4 − 12m2(n − m)4

− 12m3(n − m)3, (A2)

B3(n,m) = −14 + 25m(n − m) + 54(n − m)2

− 36m2(n − m)2 − 48m(n − m)3

− 26(n − m)4 + 18m2(n − m)4

+ 18m3(n − m)3, (A3)

and

B4(n,m) = 1 − 2m(n − m) − 4(n − m)2

+ 3m2(n − m)2 + 4m(n − m)3

+ 2(n − m)4 − 2m2(n − m)4

− 2m3(n − m)3. (A4)
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