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Instabilities of interacting vortex rings generated by an oscillating disk
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We propose a natural model to probe in a controlled fashion the instability of interacting vortex rings shed
from the edge of an oblate spheroid disk of major diameter c, undergoing oscillations of frequency f0 and
amplitude A. We perform a Floquet stability analysis to determine the characteristics of the instability modes,
which depend strongly on the azimuthal (integer) wave number m. We vary two key control parameters, the
Keulegan-Carpenter number KC = 2πA/c and the Stokes number β = f0c

2/ν, where ν is the kinematic viscosity
of the fluid. We observe two distinct flow regimes. First, for sufficiently small β, and hence low frequency of
oscillation corresponding to relatively weak interaction between sequentially shedding vortex rings, symmetry
breaking occurs directly to a single unstable mode with m = 1. Second, for sufficiently large yet fixed values of β,
corresponding to a higher oscillation frequency and hence stronger ring-ring interaction, the onset of asymmetry
is predicted to occur due to two branches of high m instabilities as the amplitude is increased, with m = 1
structures being dominant only for sufficiently large values of KC . These two branches can be distinguished
by the phase properties of the vortical structures above and below the disk. The region in (KC,β) parameter
space where these two high m instability branches arise can be described accurately in terms of naturally defined
Reynolds numbers, using appropriately chosen characteristic length scales. We subsequently carry out direct
numerical simulations of the fully three-dimensional flow to verify the principal characteristics of the Floquet
analysis, in particular demonstrating that high wave-number symmetry-breaking generically occurs when vortex
rings sequentially interact sufficiently strongly.

DOI: 10.1103/PhysRevE.94.033107

I. INTRODUCTION

Vortex rings are canonical fluid structures which arise in
a wide range of different circumstances, over a huge variety
of characteristic length scales. They have been observed in
the smoke generated in volcanic eruptions [1,2], in human
hearts during cardiac relaxation [3], and in the propulsion of
jellyfish [4], to name just a few examples. The characteristics
of vortex rings have been considered at least since the 19th
century, when Thomson [5] stated that the vortex ring in
an ideal fluid was indestructible. However, it is now widely
appreciated that vortex rings are prone to a rich variety
of instabilities once a relatively low threshold in Reynolds
number is crossed, and indeed, for sufficiently high Reynolds
numbers, the vortex cores can be fully turbulent [6].

Consideration of instability and turbulent transition of
vortex rings is an active area of research, not least be-
cause vortex rings, due to the inherent symmetry of their
characteristic state, allow the controlled investigation of the
relative importance of vorticity distribution, intensity, and
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flow curvature in the onset of instability. The instability of
a vortex ring was first documented as early as 1939 [7],
and there are now many known mechanisms by which a
ring may become unstable. Indeed, in essence, the study of
vortex ring instabilities falls into two generic categories. The
first category consists of isolated instabilities of a vortex ring
propagating through an otherwise quiescent fluid, where the
so-called Moore-Saffman-Tsai-Widnall (MSTW) instability is
responsible for the development of unstable waves in the vortex
core [6,8–11]. The MSTW instability was initially proposed
by considering a straight vortex tube subjected to a straining
field in a plane perpendicular to the tube axis [9], leading to
the deformation of the initially circular vortex core into an
ellipse. More recently, a new primary linear instability mode
was found to be driven by the effect of the inherent curvature
of a vortex ring [12,13]. A more detailed description of these
two sources of isolated instabilities can be found in Ref. [14],
in which both the elliptical instability and the curvature
instability were predicted by an asymptotic theory with two
respective corrections. In laboratory experiments, vortex rings
are commonly produced by pushing fluid out a tube or through
a hole, commonly referred to as a “vortex-ring gun.” In such
experiments the dimensionless ratio of stroke length L to exit
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diameter D, L/D, is a key parameter. For too large L/D,
the vortex ring will be followed by a trailing jet, while for
too small L/D, the vortex ring may not propagate away from
the tube. In these experiments, azimuthal waves with wave
number m = 8,9,12 [7], m = 6,7 [15], and m = 9 [16] have
been recorded.

The second, and richer, category of vortex ring instability
consists of coupled instabilities associated with the primary
vortex ring undergoing an interaction, for example, with
another ring [17] or with a boundary such as a wall [18–20].
Such coupled instabilities are typically more complicated
than the more studied isolated instabilities. For example,
when a vortex ring impinges on a solid wall, a strong
inviscid interaction occurs in the form of the ejection of
secondary or, indeed, tertiary vortex rings from the boundary
layer, with multiple azimuthal waves being observed both
experimentally [18] and numerically [19,21,22]. In the case
of vortex ring-wall interaction, interactions with permeable
walls have also been considered [23]. It has been observed that
the presence of a permeable wall leads to significant changes
in the flow field, and the final outcome of the interaction
is itself strongly influenced by surface permeability. Indeed,
under certain favorable conditions, the primary vortex ring was
observed to pass through the permeable wall and continue as
a modified vortex ring in its lee [20]. A vortex ring can also
interact with another one, as can be observed in the head-on
collision of two vortex rings. In this process, the two rings
become unstable and reconnect to form a series of smaller
rings, with the number ranging from 15 to 20 as the Reynolds
number is increased from 860 to 1500 [17].

Unraveling the inherent flow instability characteristics of
interacting vortex rings from the bulk flow evolution of the
interaction itself is an important and challenging problem, par-
ticularly due to the inevitable time dependence of such inter-
actions. Here we report a novel model which naturally enables
the periodic generation of vortex rings in a well-controlled
and repeatable fashion. These vortex rings inevitably interact,
and so it is possible to consider subsequently the instability
associated with ring-ring interactions in a controlled fashion.
The flows considered here are also complementary to ring-wall
interactions, as the periodic generation of the vortex rings from
an oscillating disk inevitably leads to a strong fluid-structure
interaction. Our primary aim is to identify the circumstances
in which high wave-number asymmetric instabilities onset
in ring-ring interactions in a context different from yet
complementary to head-on collision. To achieve this aim, the
rest of the paper is organized as follows. In Sec. II we formulate
our model and present our numerical methodology. In Sec. III
we then present our results, showing a pleasing correspondence
between our Floquet stability analysis and nonlinear direct
numerical simulations. Finally, in Sec. IV we draw our
conclusions and point towards further research directions.

II. PROBLEM FORMULATION AND NUMERICAL
METHODOLOGY

A. Definition of the problem studied

The basic flow geometry is shown in Fig. 1. Our model
consists of a periodically oscillating oblate spheroid “disk.” For
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FIG. 1. Geometric definition of the disk (actually an oblate
spheroid in rigorous geometric terms): (a) side view, where z is
the symmetry axis along which the disk oscillates, b is the minor
diameter, and the hollow arrow denotes the direction of oscillation;
(b) top view, where c is the major diameter of the spheroid.

simplicity, we fix the aspect ratio of the disk AR = b/c = 0.1,
where b is the minor diameter and c is the major diameter
of the oblate spheroid. We oscillate the disk vertically with a
frequency f0 (or a period of T0 = 1/f0) and amplitude A. This
oscillation periodically sheds vortex rings from either side of
the disk. The rings then propagate away from the disk and
interact with each other in a regular and controlled fashion.
We investigate the linear stability properties and nonlinear
evolution of such flows in an appropriately defined frequency-
amplitude parameter space. The conventional nondimensional
frequency or the Stokes number β and the nondimensional
amplitude or Keulegan-Carpenter number KC are defined as

β = f0c
2

ν
, KC = 2πA

c
, (1)

where ν is the kinematic viscosity of the fluid. We note that
if we regard c as the length scale and f0c as the characteristic
velocity, β is in the form of a Reynolds number, which is
commonly used to characterize a fluid flow. However, as we
will discuss below, the flow induced by an oscillating disk
does not depend on this parameter alone, as the oscillation
amplitude A, or its nondimensional form KC , also plays an
important role.

B. Numerical methodology

The flow induced by the vertical oscillation of a disk,
sketched in Fig. 1, can be simulated in a frame of reference
fixed to the disk. Assuming that the fluid is Newtonian and
incompressible, the flow is governed by the incompressible
Navier-Stokes (NS) equations. An extra term is simply added
to the right-hand side of the equations to account for the
noninertial reference frame. This approach is more efficient
than employing a deforming mesh to tackle the disk oscillation,
as has been used in previous studies [25–27]. This renders the
system to be solved as

∇ · u = 0, (2)

∂u
∂t

= −u · ∇u − ∇p + ν∇2u − a, (3)

where u and p denote the velocity vector field and the modified
scalar pressure (the real pressure divided by the uniform fluid
density) field, respectively, and t is the time. The boundary
conditions in the noninertial frame are such that the velocity
is zero at the disk wall and, at the external boundaries of the
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domain, the vertical component is equal to the negative of the
disk velocity.

Although we can also solve numerically the full unsteady,
three-dimensional problem given by (2) and (3), we mainly
focus on the global linear stability problem, which gives
an efficient estimation of the azimuthal symmetry breaking
of the vortex rings. The flow field is thus decomposed
into the summation of an axisymmetric base flow and a
perturbation, (u,p) = (U,P ) + (u′,p′). The small-amplitude
perturbation satisfies the unsteady Navier-Stokes equations
linearized around the base state, namely,

∇ · u′ = 0, (4)

∂u′

∂t
= −U · ∇u′ − u′ · ∇U − ∇p′ + ν∇2u′. (5)

Since the axisymmetric base flow has a natural periodicity,
we conduct a Floquet stability analysis. We use a spectral-
element method to calculate both the axisymmetric base
flow and the instabilities [28]. Asymmetric Floquet modes
are determined from the linearized Navier-Stokes equations
assuming sinusoidal variation in the azimuthal direction with
integer (due to the geometric periodicity) wave number m. Any
perturbation at time t = T can be decomposed as the sum of
modes

u′(r,θ,z,t) =
+∞∑

m=0

u(m)(r,z,t)eimθ , (6)

where i = √−1. To determine the structure of the most
unstable mode and its growth rate at a given wave number
m, we define a (T -periodic) operator A, which evolves
a perturbation from t = 0 to t = T = 1/f0 by integrating
the Navier-Stokes equations, linearized about the calculated
axisymmetric base flow, forward in time, and so

u′(T ) = A(T )u′(0). (7)

The Floquet modes and their multipliers, i.e., the growth rates
over a period, can be obtained by calculating the eigenvectors
and eigenvalues of A, through applying an Arnoldi method
to a Krylov subspace constructed by iteratively integrating
the linearized Navier-Stokes equations. These eigenvalues are
complex values, and the dominant one, namely, the one with
the largest magnitude, denoted as μmax, corresponds to the
least stable mode. If |μmax| > 1, this mode is unstable and will
exhibit perturbation energy growth.

Compromising between computational efficiency and ac-
curacy in this study, we find that a grid consisting of
approximately 800 quadrilateral elements resolves the flow
field with an accuracy of 0.5%. We minimize boundary
effects by considering a computational domain with the far
field boundary 25c from the disk. Each spectral element is
further decomposed into 64 (8 × 8) nodes through a spectral
expansion. This code has been successfully applied to various
flow problems [29–31].

To investigate the nonlinear development of the identified
unstable Floquet modes, we use a finite volume numerical
code to solve the fully nonlinear three-dimensional Navier-
Stokes equations. This code has been applied to both a flapping
airfoil [32–34] and an oscillating elliptical foil [35]. We ensure

that the Courant number of all cells is less than one and that
each oscillation period T is decomposed into at least 2000
time steps so that the unsteadiness caused by the oscillation
is well resolved. Through extensive validation, we find that a
mesh with approximately 4 000 000 cells resolves the three-
dimensional flow structures adequately.

III. RESULTS

In this section we present the stability results obtained
in the parametric space of (KC,β) as shown in Fig. 2, in
which β is varied in increments of �β = 100 (or 20 when
β � 150), and KC is varied in increments of �KC = 0.063
(or smaller increments within some distinct regimes to track
the transitions more accurately). Moreover, to provide an
intuitive understanding of the flow structure in its finite
amplitude saturated state, three-dimensional direct numerical
simulations (DNSs) have also been carried out for β = 500,
0.628 � KC � 0.942.

A. Stability characteristics

The two-dimensional simulation of (2) and (3) is conducted
for 50 cycles after which we find that the solution has become
periodic. We then save a complete state vector of the flow over
an oscillation period at time intervals separated by T0/64. In
stability analyses, these saved flow vectors are used to generate
the base flow at each time step using a third-order Lagrangian
interpolation. We find that in all cases the critical instabilities
are predicted to be nonoscillatory and nondegenerate, in that
the first Floquet multiplier to cross the unit circle is always
real and associated with a single wave number m. However,
there is a qualitative variation in the behavior with the flow
parameters, particularly between flows with “low” and “high”
frequency of oscillation, as shown in Fig. 2. At lower Stokes
numbers β, the axisymmetry breaks at a single wave number
m = 1. In the bottom right-hand corner of Fig. 2, we show
with a solid line the neutral stability curve in (KC,β) space
determined by Floquet analysis for “low” β � 130, which
separates symmetric flow to the left from asymmetric flow
(with m = 1) to the right.

Two typical saturated three-dimensional simulations on
either side of the neutral curve are also shown in Fig. 2 when
the disk has reached the lowest point in its trajectory. In the
symmetric regime, there is a single vortex ring above the disk,
while below the disk, the vortex ring shed at the previous
half-period of the oscillation has already been completely
dissipated due to the effect of viscosity, unsurprisingly because
of the low frequency of oscillation. Indeed, the empirically
determined boundary between symmetric and asymmetric flow
regime on the (KC,β) space shown in Fig. 2 with a solid line
may be interpreted as a critical low-β Reynolds number, as the
boundary corresponds to

ReL = β K
3/2
C = (2π )3/2f0A

√
cA

ν
= 180. (8)

For this flow regime, the appropriate length scale in the critical
Reynolds number is the geometric mean of the oscillation
amplitude and the disk diameter, as both quantities are
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FIG. 2. Floquet instabilities to the two-dimensional vortex ring flow. Neutral stability points are marked with open circles, and instabilities
are represented by filled circles with various colors to distinguish their wave numbers. The solid line, ReL = β K

3/2
C = 180 as defined in (8)

bounds the symmetry instability region (m = 0) to the lower left. The dashed line, ReH = βK2
C = 467 as defined in (9) bounds the region to the

upper-right of m = 1 asymmetry from higher wave number m > 1 modes in the high-β regime. The instabilities between these two lines can be
divided (by the empirical dot-dashed line, β K

7/4
C = 312) into two groups associated with the in-phase branch ‘I’ and the out-of-phase branch

“O” of instability as shown in Fig. 3, which plots the stability properties at β = 500 (marked with shading) for various KC . Also shown are two
three-dimensional structures of the vortex rings generated by an oscillating disk in the low-β regime, visualized using Q = 20 [24], obtained
by solving the full nonlinear three-dimensional Navier-Stokes equations, colored by the pressure distribution: for a typical axisymmetric flow
at KC = 1.88,β = 50 (marked by +); and for a typical asymmetric flow with azimuthal wave number m = 1 at KC = 3.14,β = 100 (marked
by �).

significant to ensure the required flow interactions to trigger
the observed instabilities.

At higher frequencies, or equivalently higher values of
the Stokes number β, the stability properties are qualitatively
different, as a regime of parameter space appears in which the
onset of asymmetry is due to (in general) two distinct branches
of higher wave number m > 1 Floquet modes. Although the
flow remains symmetric to the left of the solid line ReL = 180,
at higher values of β axisymmetry is broken by in general
two different branches of higher wave number (i.e., m > 1)
modes as KC increases, with dominant m = 1 asymmetry only
occurring to the right of the dashed line shown on Fig. 2. This
dashed line is defined by a different critical Reynolds number
ReH , defined as

ReH = β K2
C = (2π )2f0A

2

ν
= 467. (9)

At such high values of β, the high frequency of oscillation
suggests that the amplitude of the oscillation is the only key
length scale, consistently with the structure of this high β

Reynolds number.
As shown in Fig. 2, the stability properties between these

two curves are nontrivial. At fixed β, as KC increases through
the critical value associated with ReL = 208, an unstable mode
with m > 1 appears (shown with open symbols on Fig. 2)
with the value of m increasing with β. At a fixed value of β,
as KC is increased, the value of m associated with the most
unstable mode typically decreases initially. However, there
is typically a discontinuous increase in the azimuthal wave
number (followed once again by a decrease with increasing
KC) at some intermediate value, as marked by the dot-dashed
curve on Fig. 2.

Taking β = 500 as an example (as shown with shading
on Fig. 2), this behavior at fixed β as KC is varied can be
understood in terms of the relative importance of two distinct
branches of instability identified by our Floquet analysis. In
Fig. 3 we plot the variation of the Floquet multiplier magnitude
|μm| with wave number m at β = 500 for various KC . For
this value of β, the critical value of KC corresponding to
ReL = 180 is KCL = 0.506. For relatively small KC > KCL,
e.g., KC = 0.628 as shown in Fig. 3(a), nontrivial growth
rate occurs in the range of m = 1 − 5, with maximum growth
rate for this branch of instability being associated with an m

which decreases from 4 to 3. However, as we increase KC ,
another branch of instability appears at higher m = 5–10. The
maximum growth rate for this branch is associated with an m

which decreases from 8 to 6, although the lower m and now
subdominant branch of instability remains. This behavior is
perhaps not surprising, since it is not unusual for two distinct
branches of instability associated with distinct wave-number
bands to coexist in certain parameter ranges. For example, two
such branches are observed in the secondary transition in the
wake behind a bluff body [36], with two modes of instabilities
observed corresponding respectively to a short wavelength and
a high wavelength.

To illustrate the characteristics of these two branches, we
present the instantaneous vortical fields for the axisymmetric
base flow and the θ component of the perturbation velocity at
different phases in the base flow’s period for the branch “I”
in Fig. 4 and for the branch “O” in Fig. 5. First, we note that
the flow is indeed periodic due to the periodic oscillation of
the disk, which is apparently indicated by the evolution of the
base flow within a cycle. As shown in the top row of Fig. 4,
as the disk moves upwards, the vortex (in blue or dark gray)
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FIG. 3. Variation of Floquet multiplier magnitude |μm| with
azimuthal wave number m for different KC at β = 500, as marked
with shading on Fig. 2. Note the two distinct branches of high wave
number m > 1 instability (subdivided by a dot-dashed line in Fig. 2):
the in-phase branch “I” at lower m and the out-of-phase branch “O”
at higher m.

FIG. 4. Evolution of the vortical field for the axisymmetric base
flow (top row) and the θ component of the perturbation velocity for
m = 4 (bottom row) during a cycle for β = 500 and KC = 0.628.
From left to right, the disk starts from its lowest position then moves
upwards, and the images are evenly spaced by T0/8, where T0 is the
period of oscillation. Blue (dark gray) and red (light gray) denote
negative values and positive values, respectively.

FIG. 5. Evolution of the vortical field for the axisymmetric base
flow (top row) and the θ component of the perturbation velocity for
m = 7 (bottom row) during a cycle for β = 500 and KC = 0.816.
From left to right, the disk starts from its lowest position then moves
upwards, and the images correspond to eight evenly spaced phases in
a period of the disk oscillation. Blue (dark gray) and red (light gray)
denote negative values and positive values, respectively.

formed in the previous downstroke stage is shed to the lower
side of the disk, and pairs with the newly formed vortex (in
red or light gray) into a vortex dipole. This process repeats
during the downstroke. There are marked differences between
Figs. 4 and 5 (for top rows) in both intensity and complexity
of the vortices. In Fig. 4 the vortices shed from the disk are
immediately diffused as the disk reverses, while in Fig. 5 they
propagate further away from the disk. In the bottom rows of
Figs. 4 and 5, the θ components of the perturbation velocity
are normalized by the maximum value in the leftmost panel
respectively for each figure. At the bottom of Fig. 4, we observe
that the perturbation is localized within the base flow vortices
within the cycle. It is interesting to note that the θ component
of the perturbation velocity keeps positive values during the
whole cycle, implying that the resulting azimuthal waves
below the disk propagate in phase with those above the disk. On
the other hand, at the bottom of Fig. 5, the perturbation field has
very different characteristics. The perturbation field contains
finer structures, and the θ component of the perturbation
velocity during the upstroke and during the downstroke have
opposite sign.

B. Three-dimensional DNS results

Floquet analysis has elucidated the stability characteristics
of interacting vortex rings, and in particular predicted two
distinctly different branches at sufficiently high β. To investi-
gate these two high m branches of instability further, and in
particular to identify distinguishing characteristics between the
two branches, we perform three-dimensional direct numerical
simulations. Several oscillation periods are integrated to ensure
that the flow has reached a nonlinear saturated state. We note
that the three-dimensional direct numerical simulation results
for small β both before and after the symmetry breaking
have been shown in Fig. 2. In this section, we concentrate
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FIG. 6. Three-dimensional structures of the vortex rings generated by an oscillating disk, visualized using Q = 20 [24], obtained by
solving the fully three-dimensional Navier-Stokes equations, colored by pressure, with β fixed at β = 500 while KC varies. (a) KC = 0.628,
(b) KC = 0.735, (c) KC = 0.754, (d) KC = 0.816, (e) KC = 0.879, (f) KC = 0.942. Note that the vortical structures above and below the disk
are in phase for in panels (a)–(c) and out of phase in panels (d)–(f) corresponding to branch “I” and branch “O” instabilities, respectively.

on the regime with high β. In Fig. 6 we show the vortex
structures at β = 500 for different values of KC . Comparing
the wave numbers of these structures with those of the Floquet
modes (see Fig. 3) we find a reasonable agreement for most
cases, although for the cases at KC = 0.735 and KC = 0.754
[plotted in Figs. 6(b) and 6(c)] the nonlinear flow appears to
have locked on to the lower wave-number branch instability,
with m = 3, as opposed to the higher wave-number branch
with m = 9 and m = 8 respectively, as shown in Figs. 3(b)
and 3(c). Possible reasonable explanations for this nonlinear
discrepancy are that the higher wave-number modes are
more strongly affected by viscosity, or alternatively that the
high-wave-number modes saturate earlier and are overtaken
by the more robust low-wave-number modes during the flow’s
nonlinear development.

Physically the two different branches of instability have
qualitatively different structures, as is apparent by comparison
of Figs 6(a)–6(c) and 6(d)–6(f). For the modes associated with
the lower wave-number branch shown in Figs. 6(a)–6(c), the
vortical structures which develop above and below the disk
are synchronized “in phase” in that the structures appear at the
same azimuthal location. This finding accords well with the
stability results shown in Fig. 4. Therefore, we refer to this
branch as branch “I.” Conversely, for the modes associated
with the higher wave-number branch shown in Figs. 6(d)–6(f),
the vortical structures which develop above and below the
disk are aligned “out of phase,” in that the structures below the
disk appear at azimuthal locations corresponding to the gaps
between the structures above the disk, according well with the
stability results shown in Fig. 5. Therefore, we refer to this
branch as branch “O,” and it is clear that the two branches
are distinct in both wave-number range and physical nonlinear
structure.

IV. CONCLUSIONS

We have studied numerically the instabilities arising in the
interacting vortex rings generated by an oscillating disk. We
report that different regimes, characterizing the instabilities,
can be identified in the (KC,β) phase space. As we have
pointed out, the β parameter is in the form of a Reynolds num-
ber, although it cannot determine the dynamics of this system
completely, as the nondimensional amplitude, quantified by
the Keulegan number KC = 2πA/c, is also important. Instead
of using a single Reynolds number, in this paper we have

found that two alternate definitions of Reynolds number are
significant. First, for sufficiently small β, symmetry breaking
occurs at a critical Reynolds number of ReL = 180, directly
to a single unstable mode with m = 1. Second, for sufficiently
large yet fixed values of β, the onset of asymmetry is predicted
to occur due to two branches of high m instabilities as the
amplitude is increased, with m = 1 structures being dominant
only for sufficiently large values of KC , bounded by a critical
Reynolds number of ReH = 467 in the upper-right-hand part
of parameter space. Again, for high β, ReL = 180 bounds
the symmetry region (m = 0) in the lower-left-hand part of
parameter space.

We have focused on the regime of high β between the
two critical Reynolds numbers, in which organized unstable
modes have been predicted by linear theory and realized by
our three-dimensional direct numerical simulations. We have
divided this regime into two branches. For the first branch
“I,” the unstable waves arising in the vortex rings below
the disk and above the disk are synchronized “in phase,”
while for the second branch “O” they are aligned “out of
phase.” We note that the unstable modes in branch “I” with
small wave numbers, e.g., m = 2 or m = 3 do not appear
to have been physically observed or numerically predicted
previously.

Interestingly, our study suggests that very high wave-
number azimuthal instabilities arise in a relatively narrow part
of parameter space, with the right balance between amplitude
and frequency of the primary oscillation, and that a specific
phase relationship between perturbations is most conducive
to such high wave-number instabilities. It remains an open
question whether such instabilities can survive to even higher
values of Stokes number β, and indeed it is unclear just how
robust the predictions of linear stability theory are for strongly
nonlinear flows. Nevertheless, our results suggest a clear and
controlled method by which the break down of vortex rings to
high wave-number instabilities due to mutual interaction may
be considered in detail, either experimentally or numerically,
and so it seems natural to use this flow model to investigate
this important problem further.
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