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Influence of phase connectivity on the relationship among capillary pressure, fluid saturation,
and interfacial area in two-fluid-phase porous medium systems
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Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles
of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure
and saturation. These models require closure relations to produce solvable forms. One of these required closure
relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological
invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that
are used in traditional models, which typically consider only the relationship between capillary pressure and
saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and
topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method,
we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which
includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack
of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated
using generalized additive models to quantitatively assess the degree to which functional relationships can explain
the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude
that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a
deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the
Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set,
the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and
the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides support for
an evolving class of two-fluid-phase flow in porous medium systems models.
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I. INTRODUCTION

Multiphase systems arise routinely in subsurface envi-
ronments. Examples include geologic carbon sequestration
[1–3], vadose zone hydrology, and oil and gas recovery [4].
Engineered systems such as fuel cells are also multiphase
porous medium systems [5–8]. The challenges associated with
multiphase flow through porous media are widely recognized,
and sustained efforts have been made to better understand
the physics of these flow processes [9–16]. Mathematical
models that describe transport phenomena in these systems
are routinely used to test understanding, predict future states,
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and support design and management decisions. Models must
capture essential multiscale physics that determine system
behavior. Because natural porous medium systems must often
be described at length scales that are long compared to the
natural length scale, which corresponds to a grain diameter
or a characteristic length or aperture of a fracture, macroscale
models are commonly used. Macroscale models are posed in
terms of averaged properties over a length scale that yields
an averaging domain containing representative extents of
all of the entities (phases, interfaces, and common curves).
Physical processes that occur at small length scales must
be represented adequately within the macroscale description.
Multiscale theories and models that formalize the connection
between the microscale and the macroscale can be used to
methodically advance understanding, and are of fundamental
importance within this context.

Fundamental study of transport phenomena in porous
medium systems is often undertaken at the microscale, where
the morphology and topology of the phase distributions are
resolved in space and in time. The physics of multiphase
transport phenomena are relatively well understood at the
microscale as compared to the macroscale. Methodologies
designed to directly access microscale information as a way to
advance macroscale understanding have become widespread
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[17–25]. Such studies have yielded many enhancements to our
understanding of pore-scale transport mechanisms involved in
multiphase flow [26–29]. Unfortunately, macroscale models
are often posed directly at the macroscale and lack a rigorous
connection to the microscale. Consequently, quantities that
are known to be important at the microscale (such as
contact angles, interfacial tensions, curvatures, and areas, and
common curve properties) do not appear explicitly in common
macroscale model formulations. Closure relations relating
fluid pressures to fluid saturations are required, but depend
on the physical processes that lead to a particular system
state. This so-called hysteresis has been posited to result
from an implicit representation of the underlying microscale
physics in empirical model forms and coefficients used to
close macroscale equations [30]. Efforts to describe capillary
pressure within macroscale models is an active research area
[see, e.g., Refs. [31,32]].

The thermodynamically constrained averaging theory
(TCAT) provides a systematic approach to construct mathe-
matical models of multiscale transport phenomena in which
thermodynamics are used to constrain the allowable form
of closure relations. The TCAT approach has been applied
to produce macroscale models for several types of porous
medium systems [30]. A major contribution of the method
is that a consistent upscaling procedure is applied such
that all macroscopic variables are concretely defined in
terms of averaged forms of microscale quantities. This is
significant because the precursor conservation equations and
thermodynamics are well-understood at the microscale, from
the standpoint of continuum mechanics, classical thermo-
dynamics, and kinetic theory. Macroscopic definitions of
thermodynamic quantities such as pressure, temperature, and
entropy are derived precisely from microscale quantities to
ensure that the macroscopic models that are produced observe
the laws of thermodynamics [30]. Similarly, the conditions that
must apply at equilibrium at the macroscale for multiphase
systems have also been derived using variational methods and
rigorous upscaling from the microscale. TCAT naturally in-
corporates essential components from thermodynamics, con-
servation principles, and fundamental geometric relationships.

To describe the thermodynamics of a multiphase system,
it is necessary to account for the thermodynamics of phases,
the interfaces where two phases meet, and the common curve
where all three phases are present. This is true because the total
energy of the system includes contributions from each of these
entities (phases, interfaces, and common curves). Interfacial
areas are important extensive properties of a multiphase system
that are associated with a nonnegligible fraction of the system
energy at equilibrium. Traditionally, these energy contribu-
tions have been ignored in macroscopic models of multiphase
porous medium systems. More recently, interfacial areas have
been posited to be an important state variable needed to
describe fluid states in a two-fluid-phase porous medium
system that must be accounted for to reduce or eliminate
hysteresis observed in the macroscale relationship between
capillary pressure and fluid saturation [33]. Technologies such
as microcomputed tomography (μCT) have made it possible
to observe directly the three-dimensional microstructure of
real porous media, including the interfacial configurations
[34–42]. Numerical simulation tools can also provide this

information [43–47]. As information about the interfacial
behavior has become more accessible, many authors have
undertaken experimental and numerical efforts to incorporate
interfacial areas into closure relations for multiphase porous
medium systems [see, e.g., Refs. [30,48–50]]. A large number
of equilibrium states must be considered to assess whether
or not these relationships are truly unique, and careful
theoretical analysis is required to deduce a representation of
the relationship among state variables.

The presence of disconnected nonwetting phases has
received sustained study, including investigations focused on
the statistical distribution of disconnected phases and their role
in macroscopic equilibrium relationships [51–57]. Entrapped
nonwetting phases are routinely present in multiphase porous
medium systems, with important ramifications for both the
equilibrium state and transport phenomena [51,58]. Regions
of nonwetting phase become trapped, and disconnected, with
a particular capillary pressure; pressure gradients will not be
transmitted between different disconnected regions of the non-
wetting phase. Accounting for disconnected phase regions is
essential to properly account for both the equilibrium state and
dynamic behavior of multiphase systems [47,59,60]. Efforts to
adequately account for the connectivity and topology of the
multiphase fluid configurations is therefore of great potential
importance to develop a more comprehensive understanding
of these complex transport processes [42,61].

In a general sense, a macroscopic equilibrium relationship
must account for the possible microscale equilibrium states of
a system and describe the internal energy that results from
those states. In subsurface porous medium systems, many
different physical processes can influence the microscale state.
Examples include changes in temperature or pressure, phase
changes, chemical reactions, and mechanical stimulation from
acoustic or seismic activity. It is essential to consider all
possible microscale states that may arise as a consequence of
these processes if one wishes to develop a general macroscale
closure relation.

Exploration of the range of possible equilibrium states is
not possible from standard experimental setups in which fluid
distributions are controlled through manipulation of boundary
conditions of the system alone. In standard experiments,
fluid saturations and pressures are measured based upon
boundary conditions, yet fluid pressures measured at the
boundary of a system do not account for the pressures of
any fluids that are not connected to that boundary. Examples
of processes affecting fluid configurations that are inaccessible
from standard experiments are evaporation and transpiration,
which can lead to wetting phase saturations that are lower than
the so-called “irreducible saturation” frequently observed in
traditional experimental setups [62–66]. These states occur
routinely, suggesting that alternative approaches should be
developed to better account for a more complete range of
equilibrium states [67].

It has also been observed that changes in wettability can
occur dynamically within multiphase porous medium systems
[68,69]. Dissolution of an entrapped non-wetting phase is
a key mechanism to sequester carbon dioxide in the sub-
surface. As individual features dissolve, their size decreases
and the resulting equilibrium state must also change. Such
processes invariably lead to multiphase fluid configurations
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that are not observed during traditional drainage and imbibition
experiments based on established experimental procedures.
Nevertheless, a complete thermodynamic description of a
multiphase system must be capable of describing the state
of a system irrespective of the system history. To be fully
general, one must consider all possible microscale states; it is
not sufficient to consider only a subset of these states, such as
those that arise from a particular flow process or experimental
design.

The overall goal of this work is to characterize the equi-
librium behavior of two-fluid-phase porous medium systems.
The specific objectives of this work are as follows:

(1) to develop a theoretical framework to analyze mi-
croscale states in the context of phase connectivity;

(2) to advance an efficient computational approach to
generate independent realizations of possible microscale states
in multiphase porous medium systems;

(3) to evaluate the macroscale states that correspond to the
generated microscale equilibrium states; and

(4) to evaluate the uniqueness of various parametrizations
of capillary pressure.

II. THEORY

We consider averages for a two-fluid-phase porous medium
system within a domain � with boundary �. Three phases are
present, denoted with a corresponding index for the wetting
phase (w), the nonwetting phase (n), and the solid (s). Each of
the phases occupies a three-dimensional subset of �, denoted
by �w, �n, and �s , respectively. The corresponding closed
domains, which include the boundaries, are �̄w = �w ∪ �w,
�̄n = �n ∪ �n, and �̄s = �s ∪ �s . Since three phases are
present, three interface types are possible, each of which occu-
pies a two-dimensional subdomain within �. These include the
interface between the wetting and nonwetting fluids, denoted
by �wn, the interface between the wetting fluid and the solid,
�ws , and the interface between the nonwetting fluid and the
solid, �ns . Finally, a common curve can exist where all three
phases meet, which is a one-dimensional subdomain within �

denoted by �wns . The complete set of entities for the two-fluid
phase system includes all phases and interfaces in addition to
the common curve, which together comprise the index set of
entities, I = {w,n,s,wn,ws,ns,wns} = IP ∪ II ∪ IC, where
IP is the index set of phases, II is the index set of interfaces,
and IC is the index set of common curves. It will also be
convenient to refer to If , which is the index set of fluid phases
expressed as If = {w,n}. The corresponding domain occupied
by the fluid phases is denoted by �f . For the interfaces and
common curve the order of phase indexes comprising an entity
index is not important. For example, �wn and �nw both refer to
the same wetting phase-nonwetting phase interfacial domain.

Macroscale TCAT models involve the systematic upscaling
of microscale thermodynamic relations as well as conservation
and balance equations to the macroscale using averaging
operators and theorems [30]. An element of this procedure is
the upscaling to the macroscale of microscale thermodynamic
equilibrium conditions, which can be derived using variational
methods. Of special interest are macroscale state equations
that are needed for a closed model and which express a
posited functional from among macroscale variables. Meeting

the objectives of this work requires an examination of certain
averaged quantities arising from upscaling from the microscale
to the macroscale.

The macroscale averages of concern herein are computed
using an averaging operator of the form

〈P 〉�α,�β
=

∫
�α

P dr
∫
�β

dr
, (1)

where P is a microscale property and �α and �β are domains
of integration. Averages of interest include extent measures
for each entity in the system, such as fluid volume fractions,
specific interfacial areas, and the specific common curve
length. These extent measures are computed as

εα = 〈1〉�α,� for α ∈ I, (2)

where the double-barred superscript denotes a specially
defined macroscale variable. Equation (2) defines a volume
fraction when α ∈ IP, a specific interfacial area when α ∈ II,
and a specific common curve length when α = IC. The fluid
saturations are determined as

sα = 〈1〉�α,�f
for α ∈ If . (3)

The intrinsic macroscale averaged fluid-phase pressures are
computed as intrinsic volume averages over the respective
phases as

pα = 〈pα〉�α,�α
for α ∈ If, (4)

where pα is the microscale fluid pressure.
The nature of the equation of state relating capillary

pressure, fluid saturations, and specific interfacial areas is
of essential importance. The macroscale capillary pressure
between the wetting and non-wetting fluid phases is defined
as

pwn = −〈γwnJw〉�wn,�wn
= 〈pwn〉�wn,�wn

, (5)

where γwn is the microscale interfacial tension between the two
fluid phases, Jw = ∇′ · nw is the mean microscale curvature
of the interface, and nw is the outward unit normal vector from
the w phase. The negative sign accounts for the convention that
capillary pressure is a nonnegative quantity, and the curvature
of the interface between the wetting and nonwetting fluids is
measured by the surface divergence of the outward normal
vector from the wetting phase.

The Euler characteristic is an invariant topological measure
that is linked to the connectivity of an object. Along with the
volume, surface area, and integral of mean curvature, the Euler
characteristic is one of four invariant topological measures
that is used to characterize three-dimensional objects based on
integral geometry [70–72]. The results of integral geometry
have been applied broadly to characterize the microstructure
of porous materials [73–77]. The Euler characteristic χ is most
often computed by counting the number of vertices V , edges
E, and faces F on the surface of a closed object,

χ = V − E + F. (6)

Equivalent definitions for χ are well-known within the field
of topology. The Euler characteristic can also be computed
from the Betti numbers, which relate the definition of χ to the
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connectivity of an object. For a three-dimensional object, the
Euler characteristic can be written as

χ = B0 − B1 + B2. (7)

Each of the Betti numbers has a physical interpretation: B0

is the number of connected components; B1 is the number
of redundant pathways (or tunnels); and B2 is the number of
cavities [78]. This interpretation ties the Euler characteristic of
an object to invariant aspects of the connectivity of that object.
For a fluid phase, connectivity will clearly influence transport
within the phase since this aspect of topology determines the
flow paths and energetic states that are accessible.

A third theoretical result relates the Euler characteristic
of an object to the integral curvature over the boundary of
that object. This definition allows the Euler characteristic
of a phase to be expressed as an average in the general form of
Eq. (1). Based on the Gauss-Bonnet theorem, the normalized
Euler characteristic per unit volume of the domain relates to the
average of the Gaussian curvature Kα over the closed-phase
boundary �α ,

χα = 1

2π
〈Kα〉�α,�. (8)

In practice, an approximation to χα can be obtained
by constructing a numerical approximation to �α using the
marching cubes algorithm and counting the vertices, faces,
and edges [79]. The computed Euler characteristic is then
normalized by dividing by the total volume of the domain.

In two-fluid-phase porous medium systems, the fluid phases
can become disconnected because of the interplay among
capillary, viscous, and gravitational forces, which can lead to
mechanisms such as nonwetting phase snap off and unstable
displacement patterns. To account for these well-known
physical phenomena, we consider the implications of such
fluid distributions on macroscale variables and thermody-
namic equilibrium conditions. To do this, we decompose
the domain for a fluid phase �α into connected regions.
The connected regions are a set of subdomains �αj

where
j ∈ Nα = {1,2, . . . ,Nα}, where Nα is the total number of
connected components for the α fluid phase. The subdomains
satisfy the equations

�αi
∩ �αj

= ∅, ∀i,j ∈ Nα ∧ i �= j, and (9)

�α = ∪Nα

i=1�αi
. (10)

That is, the connected subdomain regions �αi
do not intersect

with other members of the set of connected regions, and the
union of the domains of all members of the set of connected
regions yield the entire domain of the respective fluid phase.
The number of connected regions of a phase is the zeroth Betti
number Bα

0 , which is also the cardinality of the set Nα .
An example two-dimensional system illustrating the sub-

division of phases within a two-fluid system is shown in
Fig. 1. In this case, the wetting phase (blue) can be subdivided
into three connected regions, denoted as �w1 ,�w2 , and �w3 .
The intersection between any two of the three wetting-phase
regions is the null set, since the boundary of each subregion
touches only nonwetting phase (red) or solid (black). Likewise,
the nonwetting phase can be subdivided into two connected

n1

n2

w1

w2

w3

w2n2

w2n1

FIG. 1. Phase regions within an example porous medium: both
the wetting and nonwetting phases can be subdivided into connected
regions. The interfaces between fluids can also be subdivided based
on connectivity. For example, the fluid interface region labeled in
yellow is formed as �w2n1 = �w2 ∩ �n1 , while the region formed in
green is formed as �w2n2 = �w2 ∩ �n2 .

regions, �n1 and �n2 . Mechanical equilibrium can only be
achieved if a balance of forces exists for each interfacial
region. Laplace’s law relates the curvature of an interface
to the pressure difference between two adjoining phases.
Based on this, different pressures may be obtained within each
connected region, subject to mechanical equilibrium criteria
for each region of the interface. For example, the interfacial
region identified in yellow and green may have different
interfacial curvatures at equilibrium. To describe the equilibria
in general, we must subdivide the interfacial regions based on
the underlying phase connectivity.

Subsets can be determined for the interfacial regions by
considering the intersection of the closed domains of two
phases such that

�αiβj
= �̄αi

∩ �̄βj
for α,β ∈ IP, α �= β. (11)

The identification of subregions of the interface based on the
phase connectivity is illustrated in the example system of
Fig. 1. Common curve regions associated with the intersection
of the closed domains of three phases can be identified as

�αiβj γk
= �̄αi

∩ �̄βj
∩ �̄γk

for α,β,γ ∈ IP, α �= β �= γ,

(12)

where i,j, and k are indices for a phase region.
Let the set Nα, for α ∈ II contain all pairs of phase region

indices that result in a domain with a nonzero extent. For
common curves, let Nα for α ∈ IC contain all triples of
phase region indices that result in a domain with a nonzero
extent. The resultant domains account for regions of space
occupied by that part of the interface or common curves that
are associated with the intersection of the respective phase
region domains, respectively. Certain phase regions might not
intersect, so some combinations of phase regions will yield a
domain with an extent measure of zero.
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If an index of a phase qualifier is omitted, then summation
is implied. For example, it follows that

�αlβ = �αβ ∩ �̄αl
=

∑

ij∈Nαβ
i=l

�αiβj
, (13)

which is the fraction of the total �αβ interface formed by an
intersection with the closed phase region �̄αl

. It follows that
when both indices are contracted that

�αβ =
∑

ij∈Nαβ

�αiβj
, (14)

which is the total αβ interfacial domain. Similarly, the
fraction of a common curve domain formed by an intersection
involving a closed phase region is

�αlβγ = �αβγ ∩ �̄αl
=

∑

ijk∈Nαβγ
i=l

�αiβj γk
, (15)

and the fraction of a common curve domain formed by
an intersection involving two closed phase regions, or an
interface, is

�αlβmγ = �αβγ ∩ �̄αl
∩ �̄βm

=
∑

ijk∈Nαβγ
i=l,j=m

�αiβj γk
. (16)

It follows that when all indices of a common curve are
contracted that

�αβγ =
∑

ijk∈Nαβγ

�αiβj γk
, (17)

which is the total αβγ common curve domain. Because all
order combinations of an entry in an index set Nα,α ∈ II ∪ IC

are equivalent, the definitions given by Eqs. (13)– (17) define
all fractional domains associated with a specific closed phase
region(s).

The averaging operator can also be applied over regions of a
domain and summed to yield the overall macroscale averages,
which can be written for a phase as

〈P 〉�α,�κ
=

∑

i∈Nα

〈P 〉�αi
,�κ

for α ∈ IP, (18)

for an αβ interface as

〈P 〉�αβ,�κ
=

∑

i∈Nα

〈P 〉�αiβ
,�κ

for α,β ∈ IP, (19)

and for a common curve as

〈P 〉�αβγ ,�κ
=

∑

i∈Nα

〈P 〉�αi ,β,γ ,�κ
for α,β,γ ∈ IP, (20)

or

〈P 〉�αβγ ,�κ
=

∑

i∈Nα
j∈Nβ

〈P 〉�αi ,βj ,γ ,�κ
for α,β,γ ∈ IP, (21)

where �κ ⊆ �.
Specifying P = 1, the entity extent measures can be

decomposed for a phase as

εα =
∑

i∈Nα

〈1〉�αi
,� =

∑

i∈Nα

εαi for α ∈ IP, (22)

for an αβ interface as

εαβ =
∑

i∈Nα

〈1〉�αiβ
,� =

∑

i∈Nα

εαiβ for α,β ∈ IP, (23)

and for the αβγ common curve as

εαβγ =
∑

i∈Nα

〈1〉�αiβ,γ ,� =
∑

i∈Nα

εαi ,β,γ for α,β,γ ∈ IP,

(24)
or

εαβγ =
∑

i∈Nα
j∈Nβ

〈1〉�αiβj ,γ ,� =
∑

i∈Nα
j∈Nβ

εαi ,βj ,γ for α,β,γ ∈ IP.

(25)
The intrinsic macroscale fluid pressure over a region can be

written as

pαi = 〈pα〉�αi
,�αi

for α ∈ If, (26)

and the overall macroscale fluid pressure can be written in
terms of averages over regions as

pα =
∑

i∈Nα

〈pα〉�αi
,�α

= 1

εα

∑

i∈Nα

εαi pαi for α ∈ If . (27)

Similarly, the intrinsic macroscale capillary pressure can
be obtained for an individual fluid-phase region by averaging
over a subset of the interface �αiβ , which can be formulated
as

pαiβ = −〈γwnJw〉�αiβ
,�αi β

for α,β ∈ If, α �= β, (28)

and the macroscale capillary pressure can be recovered from
the sum over all regions as

pαβ = 1

εαβ

∑

i∈Nα

εαiβpαiβ for α,β ∈ If, α �= β. (29)

Equation (29) allows for the computation of the macroscale
capillary pressure as a function of the macroscale capillary
pressure of the component regions associated with a specified
set of regions for either of the fluid phases. This approach is
useful for the case where either of the fluid phases becomes
disconnected and forms multiple connected regions, which can
result for example from fingering or snap off of the nonwetting
phase.

Variational methods can be used to derive a set of conditions
that must hold at equilibrium in a microscale two-fluid-phase
system [30]. A capillary pressure condition resulting from this
analysis can be written as

pwn + pw − pn + ρwngwn · nw = 0 for x ∈ �wn, (30)

where x is a position vector that is restricted to lie on the wn

interface, ρwn is the density of the wn interface, and gwn is
a body force acceleration acting on the wn interface. In the
limiting case of a massless interface, Eq. (30) reduces to

pwn + pw − pn = 0 for x ∈ �wn. (31)

The macroscale equilibrium condition can be determined by
applying an averaging operator to Eq. (31), yielding

〈pwn + pw − pn〉�wn,�wn
= 0, (32)
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which can also be written as

〈−γwnJw + pw − pn〉�wn,�wn
= 0, (33)

or in terms of macroscale variables after evaluating the
averaging operator as

pwn + pwn
w − pwn

n = 0, (34)

where pwn = 〈−γwnJw〉�wn,�wn
, pwn

w = 〈pw〉�wn,�wn
, and

pwn
n = 〈pn〉�wn,�wn

.
Just as the overall intrinsic macroscale average of phase

pressures can be decomposed into intrinsic averages over
regions, the capillary pressure can be written in terms of re-
gional interface averages as well. Decomposition of interfacial
quantities are more complicated because of the potential for
the existence of multiple regions of each fluid phase. The
microscale equilibrium condition given as Eq. (31) can be
averaged over a region of a fluid phase yielding the regional
macroscale equilibrium condition for capillary pressure given
as

〈pw − pn + pwn〉�αiβ
,�αi β

= 0 for α,β ∈ If, α �= β,

(35)

or evaluating the averaging operator as

pαiβ
w − pαiβ

n + pαiβ
wn = 0 for α,β ∈ If, α �= β, (36)

where the subscript denotes the microscale quantity being
averaged, and the superscript denotes that the averaging is
computed over the fraction of the wn interface corresponding
to an interaction with the closed domain of the ith region of
the α fluid phase.

Equation (36) is an equilibrium condition that applies to a
specified fluid region, forming an additional set of macroscale
equilibrium constraints in addition to Eq. (34). However, the
equilibrium conditions given by Eq. (36) will in general not
agree term for term with Eq. (34). Put another way, the
capillary pressure of the wn interface can vary from region
to region. For example, such variation is expected for the case
of disconnected regions of a nonwetting phase, which may
form due to bypassing and snap-off processes and each region
may then equilibrate at its own distinct rate. The resulting
equilibrium capillary pressure of a region is thus affected by
conditions under which the disconnected phase formed.

Note that in Eqs. (34) and (36) the fluid phase pressures
are averaged over a boundary of the phase. Under dynamic
conditions and for irregularly shaped distributions of fluids for
systems with significant gravitational effects, these interface
averaged pressures can be different from their volume averaged
counterparts. When such conditions do not exist, the capillary
pressure averaged over the interfacial domain �winj

can be
approximated as

pwinj + pwi − pnj = 0. (37)

The volume-averaged region pressures may also be good
approximations for certain dynamic equations involving capil-
lary pressure, because phase pressures equilibrate much more
quickly than the interfacial curvature equilibrates [80].

Equation (34) can be related to the set of conditions given
by Eq. (37) according to

pwn + pw − pn = 1

εwn

∑

ij∈Nwn

εwinj (pwinj + pwi − pnj ),

(38)

where recall that each entry in Nwn is an index pair cor-
responding to regions of each fluid phase, respectively. The
particular weighting chosen ensures correspondence between
the respective terms on each side of the equation.

In this work, we assume that the wetting phase is connected
and focus on the connectivity of the nonwetting phase. In this
case, Eq. (37) simplifies to an equilibrium condition for each
component of the nonwetting phase:

pwni + pw − pni = 0. (39)

This expression reflects that each individual component of
the nonwetting phase reaches equilibrium independently of
the others based on the local pore geometry. The equilibrium
conditions are therefore determined independently for each
individual feature. The removal of any individual nonwetting
phase component does not alter the equilibria of the remaining
components. It is natural to consider how changing the number
of regions would affect the overall macroscale equilibrium
state. Based on a particular realization of a multiphase
equilibrium state, we can consider those equilibrium states
that would arise if some fraction of the regions of a fluid phase
were removed from the system and replaced by the region
of the other fluid phase bounding the removed region. Since
each nonwetting phase feature reaches its equilibrium state
independently, the removal of one feature will not effect the
equilibria of the remaining features.

Given a nonwetting phase configuration that is composed
of multiple components, multiple equilibrium states can be
deduced based on the removal of components. That is, we
may generate additional equilibrium states by considering
subsets Cn ⊂ Nn. If some features are removed, then Bn

0 will
attain a new value equivalent to the cardinality of Cn. The
strategy is to manipulate directly the topology based on the
equilibrium conditions and to consider the consequences for
the macroscopic equilibrium relationships. Since the resulting
configurations satisfy all relevant equilibrium conditions, they
represent valid equilibrium states. The values of relevant
macroscale quantities can be obtained from partial sums for a
subset Cn:

Bn
0 (Cn) = |Cn|, (40)

εn(Cn) =
∑

i∈Cn

εni , (41)

εwn(Cn) =
∑

i∈Cn

εwni , (42)

εns(Cn) =
∑

i∈Cn

εnis , (43)

χn(Cn) =
∑

i∈Cn

χni , (44)

εwns(Cn) =
∑

i∈Cn

εwnis , (45)
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pn(Cn) = 1

εn(Cn)

∑

i∈Cn

εni pni , and (46)

pwn(Cn) = 1

εwn(Cn)

∑

i∈Cn

εwni pwni . (47)

The wetting phase properties must also be updated to reflect
the removal of nonwetting phase components. The equilibrium
pressure pw remains unchanged based on the equilibrium
conditions. The volume fractions and specific interfacial areas
are updated as

εw(Cn) = εw +
∑

j∈Nn−Cn

εnj , (48)

εws(Cn) = εws +
∑

j∈Nn−Cn

εnj s, and (49)

sw(Cn) = εw(Cn)

εn(Cn) + εw(Cn)
. (50)

III. RESULTS AND DISCUSSION

Equilibrium configurations were generated for a two-fluid-
phase system within a periodic random close pack of 1964
equally sized spheres. The cubic computational domain was
discretized to 9003 and wetting and nonwetting phases were
randomly distributed within the pore space to match a desired
saturation. Equilibrium states were thereby explored by fixing
the fluid saturations and allowing the fluid pressures and
interfaces to relax until an equilibrium state was reached.
The evolution of the multiphase system was computed at
the microscale using a multiphase implementation of the
lattice Boltzmann method. Full details on the implementation
of the two-fluid-phase flow scheme are provided by McClure
et al. [81,82]. Further details, including a demonstration that
the method is able to recover dynamic behavior of the interface
and common curve from the microscale, and a resolution study
for flow in porous media, are also available in the literature
[83]. Once an equilibrium state was achieved, the macroscopic
state of the system was evaluated based on the results of the
previous section. The connected components of the nonwetting
phase were determined numerically, then averaged properties
of each connected component of the nonwetting phase were
then evaluated by numerically reconstructing the relevant
domains to perform averaging for the phases, interfaces, and
common curves [84].

Two approaches were used to initialize fluid saturations
in an attempt to influence the connectivity of the nonwetting
phase. For the first approach, blocks of wetting phase were
randomly inserted into a domain that was initially saturated
with a fully connected nonwetting phase. The second approach
considered the insertion of blocks of nonwetting phase into
a system initially saturated with wetting phase. We find
that either initialization procedure can be used to generate
two-fluid configurations as needed to capture the relationships
explored in this work. In both cases cubic blocks of phase
were added to the system until a specified wetting phase
saturation was achieved. The three-dimensional position of
the inserted blocks was determined randomly. The size of the
individual blocks was 323. Any portion of an inserted block

that overlapped with the solid phase remained as solid phase.
Note that no attempt was made to generate physically probable
initial configurations for the phase locations; we simply sought
to explore a wide range of possible equilibrium states. Thus,
the objective was to sample the space of possible microscale
states and evaluate the corresponding macroscale state.

Based on the initial phase configurations, a range of
different microscale equilibrium states were reached. The
connectivity of a phase determines the energetic states that
are possible. Molecules within a particular component of the
nonwetting phase can only explore the energetic states that are
accessible locally, which is constrained by the topology. To
account for this, it is natural to consider the Euler characteristic
as a way to quantitatively account for the role of topology at the
macroscale, since it is the relevant topological invariant that
accounts for the connectivity of an object. Due to the discrete
width of the interfacial region in the LBM, a fully connected
wetting phase is obtained for each of the cases considered.

The set of simulations performed included 46 equilibrium
configurations distributed across 0 < sw < 1. We consider
possible states by generating a sequence of subsets for each
realization. Given a particular multiphase configuration, the
nonwetting phase components were indexed based on their
volume fraction such that εn1 > εn2 > · · · > εnNc . We then
defined a sequence of subsets C(k)

n , such that all nonwetting
components i � k are included in C(k)

n . Nonwetting compo-
nents with i > k were removed from the system. Macroscopic
states were evaluated by applying Eqs. (41)– (50) based on
C(k)

n for k = 1,2, . . . ,Bn
0 . This approach allowed equilibrium

states to be generated in a very computationally efficient
manner. Since fluid saturations were initialized randomly,
arbitrarily many configurations could be simulated in parallel.
Furthermore, when the nonwetting phase was composed of
multiple connected components, additional macroscopic states
could be generated based on the results of the previous section.
Applying this approach yielded a total of 42 908 macroscopic
states from the set of 46 initial fluid configurations. The
resulting dense set of equilibrium points was used to evaluate
the uniqueness of the relationships pwn(sw), pwn(sw,εwn), and
pwn(sw,εwn,χn).

The equilibrium relationship between the macroscale cap-
illary pressure, fluid saturation, specific interfacial area, the
Euler characteristic, and the specific common curve length
as a function of Bn

0 is explored in Fig. 2. Quantities are
plotted in nondimensional form based on the sphere diameter
D = 83.67 δx and interfacial tension γ wn = 30mN/m, where
the lattice length was δx = 1.0 μm. To obtain an equilibrium
configuration using the lattice Boltzmann method, 1.8 × 106

time steps were required. The simulation was continued until
the macroscopic value of the interfacial curvature stabilized.
Based on the results of previous study, the timescale required
for the curvature to reach an equilibrium state is longer than
the time required for other macroscopic variables of interest
to equilibrate, in particular the fluid pressures [80]. The error
associated with the curvature measurement was estimated by
computing εJ = |pwn

w − pwn
n − γ wnJwn

w |, a quantity that is
identically zero at equilibrium. This error is plotted in Fig. 3.
Deviations from zero are considered to be numerical errors
associated with the measurement of the interfacial curvature.
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FIG. 2. Equilibrium quantities plotted in nondimensional form as a function of the wetting phase saturation sw and the number of features
Bn

0 : (a) capillary pressure; (b) specific interfacial area per unit volume; (c) Euler characteristic per unit volume; and (d) specific common curve
length per unit volume.
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FIG. 3. Relative error for the interfacial curvature for equilibrium
configurations generated from the lattice Boltzmann method. The
mean error is 1.5%; significantly higher errors are encountered when
the interfacial curvature is large.

The mean error is 1.58% over all configurations. Significantly
larger errors are encountered when the interfacial curvatures
are high. These errors are most apparent at very low wetting
phase saturations. As the curvature increases, the radius of
curvature decreases. For example, when pwn = 10 the mean
radius of curvature is 13.3 δx, pwn = 20, the mean radius
of curvature is only 6.67 δx. The interfacial width in the
LBM is ∼3 δx, so a decrease in accuracy is inevitable at high
curvatures. When the capillary pressure is high, measurements
of the interfacial curvature will tend to underestimate the true
value as a result.

The value of pwn is plotted as a function of fluid saturation
in Fig. 2(a). This relationship demonstrates similar features
as compared to experimentally determined relationships.
Nevertheless, it is important to distinguish the capillary
pressure-saturation data plotted in Fig. 2(a) and the capillary
pressure-saturation data generated from standard experiments.
In experiments the capillary pressure is typically determined
from the difference between the phase pressures measured
at the boundary of the system. At equilibrium, this will match
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the capillary pressure of the nonwetting component that is con-
nected to the boundary. The capillary pressure of trapped non-
wetting is not taken into consideration. However, the volume of
these features do contribute to measured values of saturation,
since these are also determined from the boundary—if the
results are not represented in terms of a transformed saturation.
Thus, the two variables may be measured in a fundamentally
inconsistent way. In Fig. 2(a), the capillary pressure is deter-
mined as an average over the entire interface �wn, weighting
each feature according to the amount of interface—it is simply
the average capillary pressure of the system.

The specific interfacial area per unit volume and specific
length of the common curve per unit volume are plotted in
nondimensional form in Figs. 2(b) and 2(d), respectively.
While the length of the common curve can be reasonably
approximated as a function of the fluid saturation, the specific
interfacial area can take on multiple values for a given value
of sw > 0.25. The possible values are clearly associated with
the number of nonwetting phase components in the system,
with the minimum interfacial area corresponding to a small
number of features. This is the case because a larger and
more well connected nonwetting phase has the tendency to
minimize the global surface energy. This global minimum is
inaccessible from fluid configurations with a large number
nonwetting phase components.

Previous studies have focused primarily on the development
of empirical functional forms to predict the capillary pressure.
Among these forms are traditional relationships between the
capillary pressure and fluid saturation, pwn(sw), such as those
defined by Leverett, [85], van Genuchten [86], and Brooks and
Corey [87]. More recently, efforts have focused on studying
the role of interfacial area as an additional state variable.
[48,88–92]. While neither pwn nor εwn are a unique function of
the fluid saturation, it has been suggested that pwn(sw,εwn) is
a unique function. In this context, the data plotted in Figs. 2(a)
and 2(b) result from the projection of a three-dimensional
system onto a two-dimensional plane. Many authors have
continued the tradition of empirically constructing analytic
functional forms to approximate trends observed from data
[38,45,49,93–96]. In this work, we consider a very dense
set of points that can be used to quantitatively evaluate the
uniqueness of the relationship between capillary pressure and
other geometric variables. The set of data points generated
are shown in Fig. 4, with the Euler characteristic plotted
in color. The surface shows that the possible values for the
interfacial area are constrained to a ribbon, with the width
of this ribbon increasing when a relatively large number of
nonwetting phase components are possible. For low wetting
phase saturations where the nonwetting phase is almost
entirely connected, the interfacial area tends to take on only
a single value for a given fluid saturation. For sw > 0.5,
many possible configurations are possible due to the fact
that the nonwetting phase is divided into a large number of
components that occupy different parts of the pore space.
Since the connectedness of the nonwetting phase is directly
related to χn, the Euler characteristic is likely to be important
to characterize the average behavior of these microstates.

An important aspect of the analysis of the data presented
in Fig. 4 is the method used to assess the uniqueness of
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FIG. 4. Data points for the relationship between the fluid
saturation, specific interfacial area, capillary pressure, and Euler
characteristic.

multidimensional relationships. If we consider pwn(sw),
pwn(sw,εwn), and pwn(sw,εwn,χn) as a hierarchy of macro-
scopic approximations designed to capture the essential
information from the microscopic states, we must then develop
a consistent approach to assess how well these various
approximations perform. While the data should be smooth if a
unique function exists, constraining the fits to a posited specific
particular functional form introduces additional errors that
can be avoided if more general relationships are considered.
In order to assess the impact of additional variables, errors
must be assessed in a consistent way for higher-dimensional
data sets. Generalized additive models (GAMs) provide a
straightforward means to address the challenges of evaluating
smooth relationships for multidimensional data sets, and
estimating the associated errors. GAMs are routinely applied
to produce locally smooth spline approximations for general
data. We rely on the GAM implementation available in the
mgcv package within the R software distribution. A complete
description of the procedure used to produce the GAM fits for
this paper is provided by Wood et al. [97–99]. A predictor is
constructed from a sum of smooth basis functions, with coef-
ficients that are automatically determined from the data based
on principles of maximum likelihood. Fits are determined
using generalized cross-validation (GCV) with tensor product
smoothing penalties to ensure the surface is smooth. The ability
of the GAM to explain the variance within the data indicates
the extent to which the functional form explains the observed
behavior. We generated GAM fits for each of the relationships
pwn(sw), pwn(sw,εwn), and pwn(sw,εwn,χn). The residuals
for the fits are plotted in Fig. 5. Results clearly demonstrate
that successively better approximations are obtained when
including the interfacial area and the Euler characteristic.
The implication is that including a measure of connectivity is
important to characterize systems where many topologically
distinct microstates are possible. The Euler characteristic is
especially important at high wetting phase saturations, due to
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FIG. 5. Residual for GAM fits associated with each of the
relationships pwn(sw), pwn(sw,εwn), and pwn(sw,εwn,χn). Including
the interfacial area reduces the hysteresis significantly, and including
both the interfacial area and Euler characteristic eliminates nearly all
hysteresis from the underlying data.

the fact that as the non-wetting phase becomes increasingly
disconnected many configurations are possible. All three
relationships are nonunique in the immediate vicinity of
sw = 1. This is unsurprising, since as sw → 1, awn → 0, but
pwn is undefined in the limit. For the low nonwetting phase
saturation limit, the nonwetting fluid is trapped in a small
number of components. Depending on the pores where these
components are trapped, a different pwn will be obtained, and
the relationships become nonunique.

The mean and median absolute relative errors were com-
puted based on the information plotted in Fig. 5. These values
were 15%, and 8%, pwn(sw) 1%, 0.8% for pwn(sw,εwn), and
0.3%, 0.2% for pwn(sw,εwn,χn). From these results, it is
clear that including the interfacial area does not completely

eliminate hysteresis observed in the pwn(sw) relationship. This
is attributed to the fact that connectivity is an essential aspect
of the topology of a phase, which constrains the equilibrium
states that are accessible to the system. The Euler characteristic
provides a quantitative measure of the connectivity such that
the microscale states can be characterized more completely at
the macroscale.

IV. SUMMARY AND CONCLUSIONS

(1) Theory was developed to describe interfacial equilib-
rium conditions for a multiphase porous medium system in
which the nonwetting phase is subdivided into an arbitrary
number of connected components.

(2) An efficient approach was developed to generate
equilibrium states based on the connected nonwetting phase
components and used to evaluate directly the corresponding
equilibrium states at the macroscale.

(3) A dense set of 42 908 equilibrium configurations
were generated to determine equilibrium values for the fluid
saturation, phase pressures, interfacial curvatures, specific
interfacial areas, and specific length of the common curve.

(4) Analysis of the equilibrium data demonstrates that a
relationship among capillary pressure, interfacial area, and
Euler characteristic removes nearly all of the hysteresis in the
capillary pressure relationship.
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