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Multiple scales of shock waves in dissipative laminate materials
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The shock waves generated by a plate impact are numerically investigated in Al-W laminates with different
mesostructures. The main characteristic time scales (and the corresponding spatial scales) related to the formation
of the stationary shock are identified: the duration (width) of the leading front, the time (distance) from the impact
required to establish a stationary profile, and the shock front width, identified as a time span (distance) from
the initial state to the final quasiequilibrium state. It is demonstrated that the width of the leading front and the
maximum strain rates are determined by the dispersive and the nonlinear parameters of the laminate and not by
the dissipation, as is the case for uniform solids. The characteristic spatial scale of the leading front is related
to the spatial scale observed on solitarylike waves, which are satisfactorily described by the Korteweg–de Vries
(KdV) approximation, as well as the speed of the wave and the ratio of maximum to final strain. The dissipation
affects the width of the transition distance (shock front width) where multiple loading-unloading cycles bring the
laminate into the final quasiequilibrium state. This spatial scale is of the same order of magnitude as the distance
to form stationary shock wave. The period of fast decaying oscillations is well described by the KdV approach
and scales linearly with the cell size. The rate of the decay of the oscillations in the numerical calculations does
not scale with the square of the cell size as expected from the dissipative KdV approach that assumes a constant
viscosity. This is due to the different mechanisms of dissipation in high-amplitude compression pulses.
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I. INTRODUCTION

The response of nonlinear materials with periodic mi-
crostructure depends on the parameters of the incoming
disturbance. For example, short-duration pulses result in
solitary waves, longer pulses can produce a train of solitary
waves or shocklike stress pulses, and periodic excitations result
in strongly nonlinear periodic waves in granular chains [1,2].
The balance of weak nonlinearity and dispersion caused by a
periodic microstructure results in small-amplitude solitarylike
waves (stegotons) in nondissipative laminates [3]. In Ref. [4]
incoming, short, high-amplitude pulses (with respect to the
characteristic inner time scale determined by the cell size and
the sound speed of components) generated weakly decaying
compression solitarylike waves in the dissipative nonlinear
Al-W laminate.

In this paper we analyze the transient and quasisteady
responses of dissipative Al-W laminates to long-duration,
high-amplitude incoming pulses allowing the establishment of
steady shock wave profiles and quasiequilibrium states behind
the shock front. The response to high-amplitude shock loading
of homogeneous materials is usually analyzed assuming that
at high-amplitude loading, a steady state behind the shock
exists. This approach ignores the transient stage necessary
to establish a stationary shock front and does not account
for the possible maximum in stresses reached during the
intermediate stages preceding a steady state behind the shock.
The establishment of a steady shock wave is assumed to
happen when it has propagated for at least a few shock front
widths [2,5]. The assumption of a steady shock wave allows
the use of conservation laws across the shock front, which
results in the Rankine-Hugoniot equations connecting the
states behind and in front of the stationary shock wave [5–7]. In
laminate materials, the establishment of a steady state behind
the wave and steady propagation regime might not occur, as

can be seen in the case of short-duration incoming pulses.
The examples include powerful laser loading, impact by small
thickness plates, or contact explosion [8,9]. Some approaches
to create Hugoniot curves for mixtures (with different degrees
of success) are reviewed in [10], though they usually do
not address the spatial scales of the shocked materials when
they are applicable. The assumption that the shock wave has
reached a steady state might be incorrect, at least in cases
when characteristic duration of the shock wave is about the
characteristic time of pulse propagation through the cell [4,11].
The shock wave propagation in finite nonlinear laminates
can result in peculiar and counterintuitive effects such as the
increase of amplitude of the wave with the decrease of layer
thickness; this contradicts the behavior based on the difference
of acoustic impedances of linear elastic materials [2,12,13].

The dissipation processes during shock loading and nonlin-
earity of material behavior determine the width of the shock
wave in homogeneous materials [14–17]. In homogeneous
materials for strong shock waves, the fourth power law was
established to relate the maximum strain rate and stress behind
the shock in the form ε̇ = ασ 4, where ε̇ represents the strain
rate at the leading front and σ the maximum stress on the
leading front. This result was introduced by Grady and a
thorough explanation can be found in [18,19]. This fourth
power law has been widely adopted in the shock physics
community. Nevertheless, experimental results presented in
the paper by Zhuang et al. [20] demonstrated that this law
does not apply to laminate materials. Instead, a second power
law, i.e., ε̇ = ασ 2, was proposed to connect the maximum
stress and strain rate.

It was shown in [4,11] that the nature of high-amplitude
stress waves in dissipative Al-W laminate was determined by
the ratio of the duration of incoming pulses to the characteristic
time of pulse propagation through the cell (tr = 2dimp

Cimp
/ dlam

Clam
),
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FIG. 1. Three characteristic time scales related to the established
stationary shock profile detected at some point inside the laminate far
enough from the impacted end. The three time scales identified in the
graph are described as follows: time of propagation t1−t0 when the
shock excited by an external disturbance at time t0 becomes stationary
(it has achieved a steady amplitude and width of the leading front as
well as an oscillating profile of the shock and final state), shock front
width t3−t1 determined by the time difference corresponding to 0.1 of
the maximum stress amplitude and time when plastic deformation is
replaced by slowly decaying elastic reverberations (quasiequilibrium
state), and leading front width t2−t1 determined by the time difference
between a point with a maximum stress amplitude of 0.1 and a point
with a maximum stress amplitude of 0.9. The latter time difference
should be used to determine the maximum strain rate in the stationary
shock.

where Clam is the equivalent sound speed in the laminate; in
this paper Clam has a value of 3381 m/s, being the limit of
the long-wave approximation expressed by Eq. (4). At small
time ratios (tr < 2.5), numerical calculations demonstrated
that the incoming pulse was localized after a propagation
distance of about four to five cells. Its properties (speed and
shape) were similar to a weakly nonlinear Korteweg–de Vries
(KdV) solitary wave. Longer incoming pulses (tr > 5) were
transformed into a train of separated solitarylike waves or into
a triangular oscillatory shock profile depending on the level
of dissipation. Preliminary results related to the scaling of the
shock wave loading can be found in [11].

In this paper we investigate numerically the multiple scales
of high-amplitude shock waves generated by the plate impact
in Al-W laminates with different mesostructures. We identify
three different characteristic time scales presented in Fig. 1
related to the formation of the stationary shock: the time
from the impacted end required to establish a stationary
shock profile, the width of the leading front determining the
maximum strain rate of loading, and the width of the shock
wave identified as the time span from the initial state to the
final equilibrium (quasiequilibrium) state (slowly attenuating
elastic vibrations can still be present as well as differences in
the temperatures of Al and W).

The establishment of this stationary wave profile takes some
propagation distance depending on the cell size and properties
of components. In the first few cells, the leading pulse is still a
shock waves in individual components [4,11–13] and not part
of a stationary shock wave in the laminate. The transition from
the initial to the final equilibrium state in the Al laminate with
gaps (modeling porous materials) due to multiple reverbera-
tions of shock waves was numerically demonstrated in [14].

The schematic of the shock wave structure presented in
Fig. 1, strictly speaking, does not represent a final state due
to presence of oscillating elastic waves that have not decayed;
this state also has different temperatures in the components.
We can characterize this final state as a frozen state with a time
scale to reach equilibrium much longer than the characteristic
times of wave propagation in practical devices. Nevertheless,
the decay of the elastic reverberations and the equilibration of
the temperature between the components will probably have
only a slight effect on the final stress and particle velocity. The
characteristic times related to the attenuation of the elastic
oscillations and the even longer time required for thermal
equilibrium are not shown in Fig. 1. These characteristic scales
might be relevant for the nanolaminates.

The state in the leading front is a transient state and should
not be used as the final state of the laminate Hugoniot. It should
be mentioned that the Hugoniot curve has no information on
the type of dissipative processes leading to the establishment
of the final equilibrium state. The parameters that the leading
front depends on are the specific dissipative properties of
individual components of the laminate and, depending on
them, it can be different with the same final equilibrium state.

It was demonstrated that in the investigated Al-W laminate
that the width of the leading front (and subsequently time inter-
val t2−t1) is mostly determined by the laminate’s mesostruc-
ture, nonlinear parameters of components, and amplitude of the
shock. This time scale can be related to the characteristic scale
of the solitarylike wave observed in [4] that is satisfactorily de-
scribed by the Korteweg–de Vries approximation [4,11]. The
critical level of dissipation corresponding to the transition of an
oscillatory to a monotonic shock (as in Fig. 1) is determined
by the amplitude of the wave and the dispersive properties
of laminates similar to the stress wave profiles in discrete
dissipative granular chains [1,2]. The dissipation affects the
width of the shock front, during which multiple loading cycles
bring the laminate into a final quasiequilibrium state. This time
scale is of the same order as the propagation time to form a
stationary shock wave in the investigated Al-W laminate.

It is appropriate to mention that the shock wave solution
of the KdV equation with viscous dissipation has two
space scales. For weak dissipation, the shock front width
is determined by the nonlinear effects and depends on the
shock amplitude and the dispersion coefficient, unlike the
characteristic size of the shock front width that is determined
by viscous dissipation and dispersion. The characteristic size
of the oscillations behind the shock front is of the same order
as the width of the leading front width.

II. SIMULATIONS

One-dimensional numerical calculations were performed
using LS-DYNA, a general-purpose finite-element program
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FIG. 2. Geometry of laminate Al-W material. Black dots indicate
points in Al layers adjacent to the interfaces where the stress is
calculated.

[21] used in [4]. The material response was modeled with the
Steinberg-Guinan plasticity model coupled with Grüneisen’s
equation of state [22,23]. The experimental results of the
homogeneous materials (Al and W) were compared to the
results of the numerical calculations to verify the agreement
of temperature and stresses at the final state of the material
behind the shocks with published Hugoniot data.

The components in the laminates (see Fig. 2) had equal
thicknesses (a = b) with values of a and b equal to 2, 1, and 0.5
mm. All the layers were modeled as perfectly bonded, which
is an appropriate assumption for compression wave loading. In
this paper striker plates with relatively large thicknesses (Li =
80 and 800 mm) were used to create long-duration incoming
pulses with a time ratio tr ranging from 25 to about 1000.

The mesh size in all cases was equal 1 × 10−5m = 0.01mm
and the selected artificial viscosity resulted in a shock width in
Al and W at least ten times smaller than the smallest layer size
(0.5 mm). This ensures that a steady state is reached behind
the shock waves when they propagate inside each layer during
the initial stage of the pulse formation following the impact.
Of course, it is desirable that the numerical shock width is
similar to the one found in experiments [24,25], but the width
of the shock front is not important for the parameters of the
final state as long as the shock width is sufficiently smaller
than the layer thickness. This ensures that the material reaches
Hugoniot states at each shock loading. The Hugoniot states are
characteristic of stationary shocks and are independent of the

specific mechanisms of dissipation only defining the width of
the transient zone. In our calculations the plastic shock width
�x and the rise time �t are, for aluminum, �t = 3.72 × 10−9s
and �x = 3.38 × 10−5m (at a shock stress of 70 GPa) and for
Tungsten, at the same shock stress, the shock rise time is �t =
9.69 × 10−9s and �x = 4.79 × 10−5m. Both of the shock
widths are about 10 times smaller than the smallest cell size
(0.5 mm) used in the laminate and are much smaller than the
characteristic scale of oscillations observed in the shock wave.

III. RESULTS OF NUMERICAL CALCULATIONS

The results of one-dimensional numerical calculations
related to the formation and propagation of stress pulses
generated by a long duration of incoming disturbances, with
time ratios tr between 25 and 1015, are investigated in this
paper. At these higher time ratios, unlike in previous study [4],
a stationary shock wave with an oscillating tail, where the
frequency of the oscillations changes with the size of the cell,
can be observed. We present results related to the formation
and propagation of shock waves in 2+2 (2 mm Al plus 2 mm
W layers), 1+1 (1 mm Al plus 1 mm W layers), and 0.5+0.5
(0.5 mm Al plus 0.5 mm W layers) laminates impacted by
80- and 800-mm Al flyer plates. The numerical data presented
here correspond to a point in the Al layers right at the interface
with the W layers and (Fig. 2) all the distances are measured
from the impacted end.

A. A 2+2 laminate impacted by an 80-mm Al flyer plate
(tr = 25)

The stress evolution in a shock wave propagating in a
2+2 laminate impacted by an 80-mm Al plate is presented in
Figs. 3(a) and 3(b). From these figures we can observe that at a
depth of 12 mm, the duration of the leading front was already
close to its stationary value (evident at a larger depths). We
will later show how this corresponds to half of the duration of
the stationary solitarylike wave presented in [4] and thus can
be approximated by analytical equations presented in [4,11];

FIG. 3. Stress pulse evolution in a 2+2 laminate impacted by a 80-mm Al flyer plate at 2800 m/s at different distances from the impacted
end: (a) 0, 4, 8, and 12 mm and (b) 68, 140, 152, and 220 mm.
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FIG. 4. A 2+2 laminate impacted by a 80-mm Al flyer plate at 2800 m/s. (a) Maximum stress on the leading front of the shock versus
distance from the impacted end. (b) Leading front width versus distance from the impacted end.

from these equations, the width of the leading part of the shock
can be determined.

It is clear that the relatively fast decaying stress oscillations,
due to plastic deformation, exist immediately behind the
leading front (four first pulses). The amplitude of these
oscillations initially increases with the propagation distance
until they become quasistationary at some depth, as shown
by the leading oscillations in the stress profiles in Fig. 3(b).
This is typical for the dispersive behavior of materials with
periodic mesostructures and weak dissipation, e.g., granular
chains [26].

The mostly elastic oscillations behind the shock front
attenuate very slowly. For this impact condition, they did not
oscillate around an established mean value before the arrival
of the release wave from the free surface of the impactor. It is
interesting that the amplitude of elastic oscillations decreased
with the arrival of the rarefaction wave due to their compressive
nature. Thus the quasiequilibrium state, under this impact
condition, was not reached and the use of the Hugoniot curve
is not appropriate to describe the final states behind shock in
the laminate.

It is interesting that the amplitude of the leading pulse
has reached practically steady values (which we define as a
deviation from the mean value that is below 0.5%) at a distance
of about 120 mm [Fig. 4(a)]. The stationary leading front width
and the amplitude of the leading pulse were reached despite
the fact that the quasiequilibrium state behind shock (Fig. 1)
was not established due to the arrival of the rarefaction wave.
The leading front [0.1–0.9 wide (Fig. 1)] of the oscillatory
shock wave approaches a stationary value at a distance of 25
mm [Fig. 4(b)]. It seems that reaching the steady values of
the leading amplitude is a slower process than establishing
a leading front width. This is probably due to the different
mechanisms determining their establishment, where the latter
is mainly caused by the balance of the nonlinear and the
dispersive terms and the former is due to a slower dissipation
processes. We will illustrate that by using the KdV weakly
dissipative approach it is possible to approximate the leading
front width.

The speed of the shock when the leading pulse reached
its steady amplitude is equal to 4729 m/s. The nature of the
shock wave and that of the solitary wave are qualitatively
different. It is reflected in their different speeds of propagation;

a solitarylike wave at the same stress level (∼70 GPa) in the
same Al-W laminate has a speed of 4474.5 m/s [4].

Figure 5 presents a comparison of the solitary wave profile
in a 2+2 laminate with the real dissipative properties [4] hit by
the 8-mm Al plate with a velocity of 2800 m/s and the profile
of the shock wave with a similar stress amplitude generated in
the same laminate by the impact of the Al plate with a thickness
of 80 mm. The comparison of the two stress profiles clearly
shows that the shape and width of the leading stationary front
of the shock are closely approximated by the solitarylike wave.
Thus the strain rates in the leading part of the shock wave can
be estimated based on the properties of the solitarylike waves
presented in [4,11].

B. A 2+2 laminate impacted by an 800-mm Al flyer plate
(tr = 254)

In the previous section we observed that the impact on a 2+2
laminate by an 80-mm Al plate did not form a stationary shock
wave due to the relatively short duration of the incoming pulse

FIG. 5. Comparison of a solitarylike wave (solid line) and leading
part of a shock wave (open circles) in the same 2+2 Al-W laminate.
The solitarylike wave was created by the impact of an 8-mm Al flyer
plate [4] while the shock wave was created by the impact of an 80-mm
Al flyer plate.
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FIG. 6. Stress pulse evolution in a 2+2 laminate impacted by an 800-mm Al flyer plate at 2800 m/s at different distances from the impacted
end: (a) 0, 4, 8, and 12 mm and (b) 68, 140, 152, and 220 mm.

in comparison with the characteristic time scale of the lami-
nate. To increase the duration of the incoming pulse and ex-
plore its influence on the wave structure, an impact by an 800-
mm Al plate with a velocity of 2800 m/s on a laminate with an
identical mesostructure (2+2, as in the previous case) was in-
vestigated. These impact conditions correspond to a time ratio
of tr = 254. The impact conditions were selected to remove
the influence of the rarefaction wave in an attempt to reach a
quasiequilibrium state behind the stationary shock front.

The evolution of the stress pulses is presented in Fig. 6.
As in the case of the 2+2 laminate impacted by the 80-mm
Al flyer plate, at a depth of 12 mm, the leading front with
similar amplitude was already close to its stationary value.
Relatively fast decaying oscillations of the stress due to the
plastic deformation exist right behind the leading front (the
four first pulses), reflecting the dispersive behavior of the
materials with periodic mesostructures and weak dissipation,
e.g., granular chains [1,26].

Despite a different duration of the incoming pulse between
this case and the previous one (impact by an 80-mm Al plate),
the establishment of the leading front width of the shock wave
and a steady amplitude of the leading peak happened at similar

distances (compare Figs. 4 and 7). This demonstrates that at the
investigated ranges of time ratios tr = 25−254, a quasisteady
shock front with an oscillatory tail can be expected, although
reaching this quasisteady state takes a distance of about 120
mm (30 cells) or 25 mm (about 6 cells) for the leading
amplitude and leading front width correspondingly. It should
be emphasized that at much shorter time ratios (tr = 0.25)
qualitatively different disturbances (solitarylike pulses) were
observed [4].

In contrast to the previous case with an impact by an 80-
mm Al plate, the quasiequilibrium state was indeed reached
behind the leading part of the shock front with mostly elastic,
very slowly attenuating oscillations about an established mean
value. The elastic nature of these oscillations is demonstrated
in Fig. 8, which shows the evolution of the shock front width
with the traveling distance [Fig. 8(a)] and the stress history
with its corresponding effective plastic strain at a depth of 100
mm from the impacted end [Fig. 8(b)]. The shock front width
is determined by the distance from the leading edge of shock
wave to the point where plastic strain is saturated.

This quasiequilibrium state behind the shock (there are
still elastic oscillations and different temperatures in the

FIG. 7. A 2+2 laminate impacted by an 800-mm Al flyer plate at 2800 m/s. (a) Maximum stress in the leading peak vs propagation
distance. (b) Leading front width versus propagation distance.
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FIG. 8. A 2+2 Al laminate impacted by an 800-mm Al flyer plate at 2800 m/s. (a) Shock front width vs traveled distance. (b) Superposition
of stress profile and effective plastic strain; the inflection point on the plastic strain curve (right Y axis) indicates the point where oscillations
become purely elastic.

components) and the established mean value of the stress
can be approximated using the equation for the normal stress
(σ = ρ0Du) based on the stationary conditions of the shock
front and the assumption of a quasiequilibrium state behind the
shock front. Indeed, using the initial density of the laminate
(ρ0 = 11 043 kg/m3), the particle velocity (u = 827 m/s), and
the shock speed (D = 4279 m/s), a normal stress behind the
shock is calculated to be 43.2 GPa, compared to 43.42 GPa
from the numerical simulations.

The quasiequilibrium state was reached by a sequence of at-
tenuating oscillations. These oscillations have a characteristic
decay time that is determined by the dissipation mechanism.
In our case, this is mostly plastic deformation. The structure of
the stress pulse is qualitatively similar to the one expected for
dispersive and weakly dissipative media described by the KdV
equation with viscous dissipation. The characteristic scale in
this approach is determined by the viscosity and dispersive
coefficients [27,28].

The oscillating behavior continues into the quasiequilib-
rium state characterized only by elastic deformation. When
the 2+2 laminate has reached a quasiequilibrium state, the
compressed cell thickness is 3.3 mm: 1.5 mm Al plus
1.8 mm W. Sound speeds in the compressed components
are 7942 m/s for Al and 4700 m/s for W [5] compared to
their original 5328 and 4030 m/s, respectively. By using the
corresponding sound speed of each layer under compression,
we calculate the new long-wave sound speed in the compressed
laminate to be 4910 m/s. The characteristic time of the sound
propagation through the compressed cell is 6.7 × 10−7s, about
two times smaller than period of the elastic oscillations in
the quasiequilibrium state. These oscillations are probably
the remnants of the oscillations inside the shock front where
the plastic deformation provides the mechanism of their
attenuation. The period of the elastic oscillations is scaled with
the thickness of the laminate cell; for example, in the 2+2
laminate, the period is 15 × 10−7s and in the 1+1 laminate

FIG. 9. Stress pulse evolution in a 1+1 laminate impacted by an 80-mm Al flyer plate at 2800 m/s at different distances from the impacted
end: (a) 0, 4, 8, and 12 mm and (b) 68, 140, 152, and 220 mm. Compare these profiles with the waves structure in the 2+2 laminate excited by
the same Al plate.
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FIG. 10. Establishment of the stationary amplitude in the leading front in the 1+1 laminate impacted by an 80-mm Al flyer plate at
2800 m/s: (a) maximum stress in the leading peak vs propagation distance and (b) leading front width versus propagation distance.

presented later (Fig. 9), the period is 7.4 × 10−7, about two
times smaller at similar amplitudes of the leading wave and
similar mean value of the stress in the quasiequilibrium state
behind shock.

C. A 1+1 laminate impacted by an 80-mm Al flyer plate
(tr = 51)

In Sec. III A it was demonstrated that the impact by an
80-mm Al plate on the 2+2 laminate did not generate a
stationary shocklike stress pulse. The dispersive properties
of the laminates depend on the cell size and it is expected
that this parameter can influence the rate of the establishment
of the stationary shock wave. To explore the effects that cell
refinement might have on the length scales required for the
establishment of a stationary front, a refined 1+1 laminate,
impacted by an 80-mm Al flyer plate (as in Sec. III A) was
investigated.

Figures 9(a) and 9(b) show the results of the stress wave
evolution inside this laminate. A few features should be
emphasized. As in the previous cases, the stress waves have
oscillatory profiles. However, in this case, the quasistationary
stress wave (with elastic oscillations in the quasiequilibrium
state) was formed, unlike the transient waves in the 2+2
laminate excited by the impact of the same 80-mm Al plate.

A difference in the frequency of oscillations behind the
leading front of the wave can be observed by comparing the
wave profiles presented in Figs. 3(a) and 3(b) and Figs. 9(a)
and 9(b). It indicates that cell size is directly related to the
period of these oscillations.

Another important feature of the stress waves in this refined
1+1 laminate is the faster establishment of the stationary
leading front in comparison with the coarser 2+2 laminate
[compare Figs. 3(a) and 9(a)]. In the former case, the
stationary leading front and quasiequilibrium state behind,
with oscillations fluctuating around a mean value of 43.6 GPa,
were formed at relatively short distances from the impacted
end (12 mm). At the same distance from the impacted end,
in the 2+2 laminate, the stress wave did not have a stationary
leading front and the establishment of the quasiequilibrium
state behind it was already influenced by the rarefaction wave.

The following details of the establishment of the stationary
state of the leading front should be mentioned. By inspection

of Figs. 9(a) and 9(b), one can qualitatively observe that a
maximum steady stress level of approximately 69 GPa has
been reached. Figure 10(a) presents a detailed picture of
this process, demonstrating that this steady stress level is
reached relatively close to the impacted end (at about 60 mm),
compared to the corresponding distance of 120 mm in the case
of the 2+2 laminate impacted by the 80- or 800-mm Al plates,
where the same level of maximum stress in the leading front
was observed.

The leading front width is scaled with the cell size and it is
equal to 0.445 μs (the 1+1 laminate [Fig. 10(b)]) compared to
0.89 μs in the 2+2 laminate. It is important to analyze whether
or not this 1+1 laminate has reached a quasiequilibrium state
behind the shock front for these impact conditions (Fig. 11).
The formation of the quasiequilibrium state behind the shock
front was not observed in the case of the 2+2 laminate,
impacted by the 80-mm Al flyer plate (Fig. 3). Refinement
of the cell size helped us reach a steady shock wave with a
steady amplitude in the leading front; widths of the leading
and shock wave fronts were established before the arrival of
the rarefaction wave (Figs. 10 and 11).

FIG. 11. Establishment of the stationary shock front width with
traveled distance in a 1+1 Al laminate impacted by an 80-mm Al
flyer plate at 2800 m/s.
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FIG. 12. Stress pulse evolution in a 1+1 laminate impacted by an 800-mm Al flyer plate with a velocity of 2800 m/s at different distances
from the impacted end: (a) 0, 4, 8, and 12 mm and (b) 68, 140, 152, and 220 mm.

D. A 1+1 laminate impacted by an 800-mm Al flyer plate
(tr = 508)

We now explore if a longer duration incoming pulse than in
the previous section results in the same parameters (amplitude
of the leading shock front, leading front width, and shock front
width) of the shock wave in the 1+1 laminate. To generate a
longer incoming pulse in the 1+1 laminate, the numerical
calculations were conducted with an 800-mm Al flyer plate
having a velocity of 2800 m/s. Figures 12(a) and 12(b) present
the results of these numerical simulations.

Figures 12(a) and 12(b) show that the final quasiequilibrium
state (where elastic oscillations are present) was reached before
the arrival of the release wave. It is interesting that these
oscillations very quickly decay after the arrival of the release
wave. The oscillations are around the same mean value of the
normal stress (43.6 GPa) as in the previous cases (the 1+1
laminate impacted by the Al plate with an 80-mm thick plate
[Fig. 9(a)] and 2+2 laminate impacted by an 800-mm Al plate
[Fig. 6(b)]), where the quasiequilibrium state was reached
behind the shock wave. The comparison of the final states
behind the shock waves propagating in different laminates

clearly demonstrates that the final quasiequilibrium state is
not sensitive to the laminate’s mesostructure.

It is interesting to find the distance where a steady shock
front was established in this fine laminate. Figures 13(a)
and 13(b) show the dependence on propagation distance of
the stress at the leading peak and the leading front width of the
shock. It is clear that they reached steady state values at differ-
ent distances, which are the same as in the case of the 1+1 lam-
inate impacted by the 80-mm Al plate [Figs. 10(a) and 10(b)].

A comparison of Figs. 10 and 13 demonstrates that a longer
impactor (bigger time ratio tr ) did not affect the distance from
the impacted end necessary for the establishment of the leading
front width and the maximum stress level at the leading peak.
This observation suggests that there is a critical time ratio
at which a stress wave in a laminate will be able to reach
a steady-state regime. The normalized propagation distance
to establish the steady peak stress was similar in the 2+2 and
1+1 laminates [about 30 cells in both cases; compare Figs. 7(a)
and 13(a)]. The leading front width also scaled with the size of
the cell, resulting in times equal to 0.45 μs in the 1+1 laminate
vs 0.9 μs in the 2+2 laminate.

FIG. 13. (a) Maximum stress in the leading peak and (b) leading front width versus propagation distance in a 1+1 laminate impacted by
an 800-mm Al flyer plate at 2800 m/s.
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FIG. 14. Shock front width vs traveled distance in the 1+1 Al
laminate impacted by an 800-mm Al flyer plate at 2800 m/s.

Figure 14 illustrates the establishment of a steady shock
front width in the 1+1 Al laminate impacted by an 800-mm Al
flyer plate. The shock front width also scaled with the laminate
cell size, decreasing from 11.4 μs in the 2+2 laminate to 6
μs in the 1+1 laminate [compare Fig. 14 to Fig. 8(a)]. The
oscillations in the quasiequilibrium state behind the steady
shock front in the 1+1 laminate have a period half as large as
the ones found in the 2+2 laminate (compare Figs. 6 and 12).

E. A 0.5+0.5 laminate impacted by an 80-mm Al flyer plate
(tr = 102)

It was shown that the impact by the 80-mm Al flyer plate
on a 1+1 laminate [Figs. 9(a) and 9(b)] resulted in a steady
shock at a distance of about 30 cell sizes (Figs. 10 and 11),
while at the same impact conditions, a steady shock wave was
not formed in a 2+2 laminate at the same normalized distance
from the impacted end [Figs. 3(a) and 3(b)]. We now explore

if a steady shock is formed in a finer (0.5+0.5) laminate and
how the main space-time scales change with the cell size.
Figures 15(a) and 15(b) present the stress evolution in this
0.5+0.5 laminate impacted by an 80-mm Al flyer plate.

From the evolution of the stress wave profile, it is clear that
a steady shockwave is established. It is important to compare
the distance to establish the steady shock with results for the
1+1 laminates impacted by the same flyer plate. Figure 16(a)
shows that the stress at the leading front reached a stationary
value at around 30 cells, which is consistent with the previously
analyzed 1+1 laminate [Fig. 10(a)]. The leading front width
has also scaled with the refinement of the cell size as can be
observed in Fig. 16(b).

The establishment of the shock front width is shown
in Fig. 17. Contrary to other laminates, we observe bigger
fluctuations before reaching a steady value close to 4 μs.

It is interesting that the normalized distance for the
establishment of steady shock front width in the 0.5+0.5
laminate is similar to the case of the 1+1 laminate, but
variations of this parameter inside the transient range are
much larger in the former laminate (compare Figs. 11 and 17).
Thus we can conclude that impact by the 80-mm flyer plate
resulted in the establishment of a steady shock wave at the
same amplitudes and similar normalized space scales in the
1+1 and 0.5+0.5 laminates. Similar impact conditions did not
result in a steady shock wave in the 2+2 laminate.

F. A 0.5+0.5 laminate impacted by an 800-mm Al flyer plate
(tr = 1016)

It is natural to expect that an increase in the duration of the
incoming pulse in the 0.5+0.5 laminate, generated by impact
of the 800-mm flyer plate, will also result in the establishment
of a steady shock wave. Nevertheless, we want to check if
the amplitude of this wave will be similar to the case of the
impact by the 80-mm flyer plate at the same velocity and if
characteristic length scales for the shock wave will be the same.
In other words, we would like to explore if a steady shock wave
in the 0.5+0.5 laminate does not depend on the relatively long

FIG. 15. Stress pulse evolution in a 0.5+0.5 laminate impacted by an 80-mm Al flyer plate at 2800 m/s at different distances from the
impacted end: (a) 0, 4, 8, and 12 mm and (b) 68, 140, 152, and 220 mm.
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FIG. 16. A 0.5+0.5 laminate impacted by an 80-mm Al flyer plate at 2800 m/s: (a) maximum stress in the leading peak vs propagation
distance and (b) leading front width versus propagation distance.

duration of incoming pulse. Figures 18(a) and 18(b) present the
profiles of the stress waves in the 0.5+0.5 laminate impacted
by an 800-mm Al flyer plate.

It is clear from Fig. 18 that these impact conditions resulted
in a steady shock wave. Figure 19 demonstrates that the
establishment of the maximum stress and the leading front
width of the shock wave happen at the same normalized
distances from the impacted end as in the 0.5+0.5 laminate
impacted by an 80 mm Al flyer plate. This demonstrates
that the establishment of a steady shock front is mainly the
result of the laminate mesostructure and the properties of the
components and the duration of the relatively long incoming
stress pulse has almost no effect.

Comparing Figs. 6(a) and 6(b), Figs. 12(a) and 12(b), and
Figs. 18(a) and 18(b), we observe that the period of the elastic
oscillations behind the shock front is equal to 0.37 μs for
the 0.5+0.5 laminate, 0.75 μs for the 1+1 laminate, and
1.56 μs for the 2+2 laminate. It is clear that the period of
these oscillations is directly related to the laminate cell size.

Finally, Fig. 20 shows that the steady shock front width was
reached at the same normalized distance (about 30 cells) from
the impacted end as the case for the same laminate impacted

FIG. 17. Shock front width vs traveled distance in a 0.5+0.5 Al
laminate impacted by an 80-mm Al flyer plate at 2800 m/s.

by the 80-mm Al flyer plate (Fig. 17). It is evident that the
cell refinement in the laminate has a direct influence on the
establishment of steady shock waves and their characteristic
space scales.

The results of the presented numerical simulations demon-
strated that quasistationary shock waves are formed when the
duration of incoming compression pulse is long enough. These
shock waves had a stationary oscillatory profiles connecting
the initial and final quasiequilibrium states (it has elastic
slow attenuating strain oscillations). We have found that the
characteristic cell size of the laminate affects the leading front
width and shock front width (both linearly proportional to
the cell size of the laminate), while the quasistationary state
behind the shock front appears to be independent of the cell
size.

It is clear from Figs. 3, 6, 9, and 12 that two mechanisms
are responsible for the formation of the stationary leading
front: reflection of the leading wave at interfaces, which
widens the front (geometrical dispersion), and nonlinearity,
which steepens it. The shock front width is influenced by the
dissipation (in the case investigated mostly by the viscoplastic
behavior of components) and it is an order of magnitude larger
than the leading front width determined by the balance of the
geometrical dispersion and nonlinear behavior of components.

The observed properties of the qusistationary shock waves
are qualitatively similar to the shock waves in the weakly
dissipative dispersive system described by the KdV equa-
tion [27,28]. In the following section we will attempt to identify
a scaling of the main shock parameters using the dissipative
KdV approach.

G. Scaling of shock wave parameters using the dissipative
KdV equation

Nondissipative elastic periodic laminates support weakly
nonlinear small-amplitude solitarylike waves (stegotons) [3].
It was also shown that short-duration high-amplitude stress
pulses in the Al-W laminate have properties similar to KdV
solitons despite the dissipation due to the plastic deformation.
They attenuate while keeping their solitarylike identity deter-
mined by the nondissipative KdV equation [4,11].
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FIG. 18. Evolution of stress wave profiles in a 0.5+0.5 laminate impacted by an 800-mm Al flyer plate at 2800 m/s at different distances
from the impacted end: (a) 0, 4, 8, and 12 mm and (b) 68, 140, 152, and 220 mm.

The stationary solution of the nondissipative KdV equa-
tion (1) presented below provides a reasonable approximation
for the properties of these solitarylike waves:

ξt + C0ξx + Sξxxx + νξξx = 0, (1)

S = d2C0

24
, (2)

ν = αeqC0

Keq
, (3)

C2
0 = d2

d2
a

C2
a

+ d2
b

C2
b

+ (
Za

Zb
+ Zb

Za

)(
dadb

CaCb

) . (4)

The cell size d and the long-wave sound speed C0 in the
laminate determine the dispersive coefficient S, and the coef-
ficients αeq and Keq are responsible for the nonlinear behavior
of the laminate under compression. The parameters αeq and
Keq for the high-amplitude stress pulses were found using
the Hugoniot curve of the components (Di = C0i + siui),
allowing an approximation of the stress-strain relation of the
laminate at high stresses (the subscript i identifies the Al or W

component). This approach results in the following expression
for the parameters αeq and Keq (details how to find them can
be found in [4]),

Keq = KAlKW

(1 − τ )KAl + τKW
, (5)

αeq = τK3
WαAl + (1 − τ )K3

AlαW

[(1 − τ )KAl + τKW]3 , (6)

where τ is the volume fraction of Al. The coefficients Ki and
αi (i stands for Al or W) for each component are

Ki = C2
0i

V0i

, (7)

αi = 2siC
2
0i

V0i

, (8)

where V0i represents the specific volume of Al or W. As
mentioned before, K and α capture the linear and nonlinear
stress-strain behavior under compression; these coefficients
have been determined using the material’s shock Hugoniot (a
detailed explanation can be found in [4]).

FIG. 19. (a) Maximum stress in the leading peak vs propagation distance and (b) leading front width versus propagation distance in a
0.5+0.5 laminate impacted by an 800-mm Al flyer plate at 2800 m/s.
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FIG. 20. Shock front width vs traveled distance in a 0.5+0.5
laminate impacted by an 800-mm Al flyer plate at 2800 m/s.

Equation (1) has the following solitary solution propagating
with speed v:

ξ = ξmsech2

[(
2αeqξm

d2Keq

)1/2

(x − vt)

]
. (9)

Attenuating short-duration high-amplitude stress pulses at
given strain amplitude ξm can be approximated by this
equation [4,11].

The results of the numerical calculations presented above
demonstrate that the incoming, long-duration, high-amplitude
stress pulses generate stationary oscillatory shock waves (e.g.,
Figs. 6, 12, and 18). It is natural to explore if the parameters
of these shock waves can be described by adding dissipation
properties to the KdV equation (1).

The KdV equation with a viscous dissipative term (where
μ is the viscosity coefficient) is

ξt + C0ξx + Sξxxx + νξξx − μξxx = 0. (10)

Equation (10) not only predicts the attenuating quasista-
tionary solitarylike waves, but also supports a different type of
disturbance: a stationary shocklike wave [27,28].

The shocklike strain wave supported by Eq. (10) has some
specific properties that we will compare with the results of
numerical calculations presented above. First, the speed of
propagation of this shocklike wave depends on its amplitude

Vsh = C0 + αeqC0

2Keq
ξf , (11)

where ξf is the strain in the final state behind the shock wave.
It is important to note that the speed of the shocklike

stress wave is independent of the nature of dissipation; for
example, in the Al-W laminate, it is mostly due to the plastic
deformation and not due to the viscosity. Depending on the
dissipation level, the shock structure in nonlinear materials
with a periodic mesostructure can be oscillatory (weakly
dissipative) or monotonic (strongly dissipative) [27,28], but in
both cases, the speed of the wave can be found using Eq. (11).

Second, the profile of the shocklike solution for the weakly
dissipative equation (10) has three characteristic space scales.
The shocklike strain wave profile can be described by the
equation in the reference system moving with the speed of the
shock wave Vsh [27,28],

ξ = ξf + const exp
( μ

2S
x
)

cos

(√
νξf

2S
x

)
, (12)

where the leading shock front is at x = 0, ξf is the final strain
behind shock, and the shock wave propagates to the right
(x < 0).

This equation clearly demonstrates the existence of three
spatial scales. One is related to the leading front width
(π

√
S/2νξf ). This scale is of similar order of magnitude to the

scale of the solitarylike wave supported by the nondissipative
KdV equation (1). It was demonstrated that this scale is
related to the shape of the high-amplitude localized waves in
Al-W laminates having properties similar to the KdV solitary
waves [4]. The second, larger scale (2π

√
2S/νξf ) is related

to the period of decaying oscillations behind the leading front,
where the plastic work is still present. The third characteristic
scale 2S/μ is related to the spatial rate of decay of the
oscillation amplitude, determined by the viscosity and the
dispersion coefficient. It is important to note that first two
scales depend linearly on the characteristic space scale of
the mesostructure d. However, the third characteristic scale,
related to the oscillations amplitude decay, is proportional
to d2.

The change from an oscillatory to a monotonic shocklike
profile, supported by the weakly nonlinear KdV equation (10),
is determined by the critical value of viscosity μcr [27] given
by

μcr = √
2Sνξf . (13)

The critical value of viscosity can be also identified for
a strongly nonlinear periodic system of particles interacting
by the Hertz law [1]. It is expected that a monotonic profile
will be observed in the case of the strongly dissipative wave
propagating in periodic structures with other mechanisms of
dissipation, e.g., laminates with layers of foam [2] or metal
plates separated by rubber O rings [29].

Another important property of the stationary oscillating
shock wave solution of the weakly nonlinear dissipative KdV
equation (10) is that the maximum amplitude of strain in the
leading pulse is equal to 1.5 of the final strain in the case when
dissipation is very weak (and the leading pulse is very close
to the solitarylike wave) [27]. It is interesting to compare the
presented properties of the shocklike solution of Eq. (10) with
the results of numerical calculations demonstrating oscillatory
shock profiles (Figs. 6, 12, and 18).

The speed of the steady shock waves with different
amplitude, strains in their leading maximum, the final mean
strain in the quasiequilibrium state, and their ratio obtained in
numerical calculations are presented in Table I. These data
correspond to the 2+2 laminate impacted by an Al flyer
plate of 800 mm thickness at different velocities. Table I
also presents theoretical values of speed for the shocklike
stress wave (corresponding to the final mean strains from a
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TABLE I. Speed of shock waves with different amplitude, strains in their leading maximum, a final mean strain in quasiequilibrium states,
their ratio obtained in numerical calculations, theoretical values of speed for shocklike stress wave, and the difference between theoretical and
numerical values of shock wave speeds. The data correspond to a 2+2 laminate impacted by an Al flyer plate of 800 mm thickness at different
velocities.

2+2 Al-W laminate
Impactor Shock Maximum strain Mean final strain in a Ratio of maximum Theoretical Difference between theoretical
velocity (m/s) speed (m/s) on leading front quasiequilibrium state to final mean strain speed (m/s) and numerical values of shock speed

2800 4729 0.2762 0.2003 1.4 4605.4 2.7%
2400 4542 0.2354 0.174 1.4 4445 2.2%
2000 4363 0.1962 0.1473 1.3 4281.6 1.9%
1600 4180 0.1541 0.1199 1.3 4114.2 1.6%

numerical calculations) and the difference between theoretical
[using Eq. (11)] and numerical values of shock wave speeds.

We can see that the theoretical values for the speed of the
shocklike stress waves obtained using Eq. (11) are close to their
values in numerical calculations (the maximum difference
is 2.7%). The ratio of the strain amplitude in the leading
maximum and the mean strain at the final state for different
amplitudes of shock waves is in the interval 1.3–1.4, being only
slightly lower than the predicted value for weakly dissipative
and weakly nonlinear KdV equations. This demonstrates that
plastic deformation in Al-W laminates results in a weakly
dissipative behavior of stress pulses.

It is interesting to compare the shape of the localized
stress pulses (excited by impact of an 8-mm Al flyer plate
at 2800 m/s), leading fronts of the shocklike waves (excited
by impact of 80 mm Al flyer plate and 800 mm Al flyer plate
at 2800 m/s) in numerical calculations, and the solitary wave
solution of Eq. (1) with similar amplitude. This comparison
is presented in Fig. 21, which clearly shows that the solitary
solution of Eq. (1) provides a correct estimation of the spatial
characteristics of the localized stress pulse and the leading part
of the shocks at their similar stress amplitudes.

FIG. 21. Comparison of the KdV solitary solution to the shape
of the localized stress pulse (excited by impact of an 8-mm Al flyer
plate) and the leading part of the shock wave with similar amplitude
excited by impact of an 80-mm Al flyer plate and an 800-mm Al flyer
plate. All cases correspond to a 2+2 Al-W laminate and an impactor
velocity of 2800 m/s.

The period of decaying oscillations on the back of the
leading front of the shock wave in the KdV approach is related
to the amplitude and dispersive properties of the laminate
scaling linearly with the cell size [Eq. (12)]. These periods
(2π

√
2S/νξf ) for similar values of ξf are equal to 0.0084,

0.0042, and 0.0021 m for 2+2, 1+1, and 0.5+0.5 laminates,
respectively, scaling with the sizes of the unit cells.

From numerical simulations we obtain the following values
for these periods of decaying oscillations: 0.0079, 0.0039,
and 0.0019 m, corresponding to the 2+2, 1+1, and 0.5+0.5
laminates. It is clear that the periods of the oscillations in the
numerical calculations (Figs. 6, 12, and 18) are close to the
data from the theoretical approach based on the KdV equation.
They are close to being proportional to the cell size. This
again demonstrates that the high-amplitude oscillatory shock
waves in the Al-W laminates are weakly dissipative and scaled
with the cell size, as in the theoretical approach, despite the
qualitatively different mechanisms of dissipation.

The rate of the amplitude decay of the oscillations in the
leading part of the shock wave in the weakly dissipative
KdV approach is related to the viscosity and the dispersive
coefficient (12) and it has a characteristic space scale 2S/μ

that is proportional to the square of the cell size. The results
of the amplitude decay of the oscillations for the different
laminates are shown in Fig. 22. Figure 22 compares the decay
of the first four oscillations in different laminates (2+2, 1+1,
and 0.5+0.5) under the same impact by the 800-mm Al flyer
plate with a velocity of 2800 m/s. It is clear that the space
scale corresponding to their decay from the leading maximum
to a point where only the elastic oscillations exist scales almost
linearly with the cell size [Fig. 22(a)].

This scaling is different from expected from the dissipative
KdV approach with a constant viscosity. It indicates that
the mechanism of plastic deformation in laminates cannot
be described by an effective viscosity coefficient that does
not depend on the spatial scale d. This is expected because
attenuation in the laminate is also due to wave reverberations
and at given distance the number of these reverberations
depends on the cell size d. Based on the numerical results,
we can conclude that if the dissipative mechanism is to be
described by the effective viscosity this parameter should be
proportional to d.

The elastic oscillations in the region behind the shock front
width demonstrate a very low rate of decay [Figs. 6, 12,
and 18). Their periods are equal to 0.0074, 0.0035, and 0.0017
m for the 2+2, 1+1, and 0.5+0.5 laminates scaled by their cell
sizes. It is clear that these very slowly decaying oscillations are
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FIG. 22. (a) Decay rate of the first four oscillations on the leading shock on 2+2, 1+1, and 0.5+05 laminates. (b) Oscillating shock on a
2+2 laminate that shows the decay of the oscillations until a quasiequilibrium state has been reached.

not described by the proposed KdV approach with a constant
viscosity. It might be described with an effective viscosity
vanishing or dramatically reduced at a certain level of stress
below the yield stress.

The nonlinearity taken into account in the proposed KdV
approach for the Al-W laminates is based only on the nonlinear
relation between stresses and strains for each component
determined by the interatomic forces. The nonlinear
parameters of the components and the subsequent nonlinear
parameter of the laminate under compression were found from
their shock Hugoniots as most representative for the material
behavior under the investigated stress amplitudes. The
detailed explanation of the procedure used can be found in [4].
Numerical calculations include all mechanisms of nonlinearity
(the nonlinear relation between stresses and strains and
convective and geometric nonlinearities), but our simplified
KdV approach still is able to provide a reasonable description
of the numerical results and scaling of the leading front
thickness responsible for the maximum strain rates in shocked
laminates.

IV. CONCLUSION

Long-duration impulse loading (compared to the charac-
teristic time scale of the laminate) of the Al-W laminate
resulted in the formation of oscillatory steady shock waves

in Al-W laminates with different mesostructure. The width
of the leading front and the maximum strain rates due to
shock loading are determined by the dispersive and nonlinear
parameters of the laminate and not by dissipation, as is the case
in uniform solids. The characteristic spatial scale of the leading
shock front can be satisfactory described by the Korteweg–de
Vries approximation as well as its speed and the ratio of
the maximum to final strain. The dissipation determines a
shock front width where multiple loading-unloading cycles
bring the laminate into a final quasiequilibrium state. The
period of the fast decaying oscillations is well described by
the KdV approach and scales linearly with the cell size of
the laminate. The rate of decay of these oscillations in the
numerical calculations does not scale with the square of the
cell size, as expected from the dissipative KdV approach
with a constant viscosity due to the different mechanism of
dissipation in high-amplitude compression pulses.

ACKNOWLEDGMENTS

P.F.N. thanks Consejo Nacional de Ciencia y Tecnologı́a
(407461) and The University of California Institute for Mexico
and the United States for the funding provided to make this
work possible.

[1] E. B. Herbold and V. F. Nesterenko, Propagation of Rarefaction
Pulses in Discrete Materials with Strain-Softening Behavior,
Phys. Rev. Lett. 110, 144101 (2013).

[2] V. F. Nesterenko, Dynamics of Heterogeneous Materials
(Springer Science & Business Media, New York, 2001).

[3] D. H. Yong and R. J. LeVeque, Solitary waves in layered
nonlinear media, SIAM J Appl. Math. 63, 1539 (2003).

[4] P. Franco Navarro, D. J. Benson, and V. F. Nesterenko, Nature
of short, high-amplitude compressive stress pulses in a periodic
dissipative laminate, Phys. Rev. E 92, 062917 (2015).

[5] R. Kinslow, High-Velocity Impact Phenomena (Elsevier, New
York, 2012).

[6] S. P. Marsh, LASL Shock Hugoniot Data (University of
California Press, Berkeley, 1980), Vol. 5.

[7] R. McQueen, S. Marsh, and J. Fritz, Hugoniot equa-
tion of state of twelve rocks, J. Geophys. Res. 72, 4999
(1967).

[8] C. Wei, B. Maddox, A. Stover, T. Weihs, V. Nesterenko,
and M. Meyers, Reaction in Ni-Al laminates by laser-
shock compression and spalling, Acta Mater. 59, 5276
(2011).

[9] C. Wei, V. Nesterenko, T. Weihs, B. Remington, H.-S. Park,
and M. Meyers, Response of Ni/Al laminates to laser-driven
compression, Acta Mater. 60, 3929 (2012)

033002-14

http://dx.doi.org/10.1103/PhysRevLett.110.144101
http://dx.doi.org/10.1103/PhysRevLett.110.144101
http://dx.doi.org/10.1103/PhysRevLett.110.144101
http://dx.doi.org/10.1103/PhysRevLett.110.144101
http://dx.doi.org/10.1137/S0036139902408151
http://dx.doi.org/10.1137/S0036139902408151
http://dx.doi.org/10.1137/S0036139902408151
http://dx.doi.org/10.1137/S0036139902408151
http://dx.doi.org/10.1103/PhysRevE.92.062917
http://dx.doi.org/10.1103/PhysRevE.92.062917
http://dx.doi.org/10.1103/PhysRevE.92.062917
http://dx.doi.org/10.1103/PhysRevE.92.062917
http://dx.doi.org/10.1029/JZ072i020p04999
http://dx.doi.org/10.1029/JZ072i020p04999
http://dx.doi.org/10.1029/JZ072i020p04999
http://dx.doi.org/10.1029/JZ072i020p04999
http://dx.doi.org/10.1016/j.actamat.2011.05.004
http://dx.doi.org/10.1016/j.actamat.2011.05.004
http://dx.doi.org/10.1016/j.actamat.2011.05.004
http://dx.doi.org/10.1016/j.actamat.2011.05.004
http://dx.doi.org/10.1016/j.actamat.2012.03.028
http://dx.doi.org/10.1016/j.actamat.2012.03.028
http://dx.doi.org/10.1016/j.actamat.2012.03.028
http://dx.doi.org/10.1016/j.actamat.2012.03.028


MULTIPLE SCALES OF SHOCK WAVES IN DISSIPATIVE . . . PHYSICAL REVIEW E 94, 033002 (2016)

[10] O. E. Petel and F. X. Jetté, Comparison of methods for
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