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Granular rotor as a probe for a nonequilibrium bath
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This study numerically and analytically investigates the dynamics of a rotor under viscous or dry friction
as a nonequilibrium probe of a granular gas. In order to demonstrate the role of the rotor as a probe for a
nonequilibrium bath, the molecular dynamics (MD) simulation of the rotor is performed under viscous or dry
friction surrounded by a steady granular gas under gravity. A one-to-one map between the velocity distribution
function (VDF) of the granular gas and the angular distribution function for the rotor is theoretically derived. The
MD simulation demonstrates that the one-to-one map accurately infers the local VDF of the granular gas from
the angular VDF of the rotor, and vice versa.
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I. INTRODUCTION

Granular materials are ubiquitous in our daily life and
are extensively studied mainly in various engineering fields
such as soil mechanics, geology, powder technology, and
civil engineering. They are also studied in the area of sta-
tistical physics [1–4] because they exhibit various interesting
phenomena, such as jamming transition and inhomogeneous
cluster formation [1–4]. These phenomena originate from
the dissipative nature of granular particles during inelastic
collisions. Granular gas is one of the simplest setups to
theoretically understand the essence of granular materials.
Indeed, the kinetic theory is applicable to granular gases when
the density is not extremely high, where their dissipative nature
appears as the non-Gaussian velocity distribution function
(VDF) [5–13]. Therefore, high-order cumulants, such as
skewness and kurtosis, are expected to play important roles in
understanding the characteristic behavior of granular materials
in addition to the second-order cumulants (i.e., the granular
temperature) [7,14–29].

A typical method to measure VDFs includes the direct
tracking of the motion of grains. This method is widely
used for quasi-two-dimensional systems. However, there are
technical difficulties for three-dimensional systems because
most of the grains in the bulk of the system are invisible
from the exteriors of containers. Although such difficulties
have been overcome using magnetic resonance imaging [30]
or fluorescent interstitial fluid [31], the former method is not
easily accessible and the latter method induces additional
rheological effects via the interstitial fluid on the granular
flow.

Another experimental method involves the indirect mea-
surement of granular velocity fluctuation via probes. For
example, a rotor can be placed into a granular gas as a probe to
measure the angular velocity fluctuation of the rotor [32–40].
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The VDF of the granular gas can be inferred from that of
the rotor. It is important to note that this method works
well for systems in thermal equilibrium according to the
fluctuation-dissipation relation. Recently, the relevance of this
type of indirect method has been demonstrated for spatially
homogeneous and isotropic granular gases through the analysis
of the non-Gaussian Langevin equation in Refs. [41,42] on the
basis of the Boltzmann-Lorentz equation [43–49]. However,
the model used in this case is not sufficiently realistic because
inhomogeneity and anisotropy exist in real granular gases such
as vertically vibrated granular systems under gravity [10].
This implies that a more realistic formulation is necessary
for the experimental measurement of high-order cumulants by
observing the rotor dynamics.

In this study, the molecular dynamics (MD) simulation of a
realistic granular rotor is performed to demonstrate the role of
a rotor as a probe to measure the VDFs of vibrating granular
beds [34–40]. An event driven MD simulation of a rotating
rotor is performed around a fixed axis in a vertically vibrated
granular gas under gravity in accordance with a method used
in a previous study in Ref. [3]. The dynamics of the rotor in
vibrating granular beds is analyzed to derive the relationship
between the angular VDF of the rotor under viscous or dry
friction and the VDF of the granular gas [41,42]. In this study,
it is also demonstrated that the formulas can be applied in
the MD simulation. The formulas can be used to infer the
VDF of a gas with velocities that cannot be directly measured.
Furthermore, it is demonstrated that the formulas work to
detect the dependence of the VDF of the granular gas on
its position in the container. Hence the results indicate that
the granular rotor can be used as a local velocity probe for a
realistic granular gas.

The organization of this paper is as follows. The setup of
the simulation used in this study is described in Sec. II. In
Sec. III the basic equations to derive the inverse formula for a
cylindrically symmetric granular gas [41,42] are examined. In
Sec. IV the formulas for the VDF of the gas and the angular
VDF of a rotor are derived under viscous friction around a
rotating axis. Furthermore, the numerical validity of these
formulas are verified and the details of the numerical imple-
mentation are described. Section V discusses the dependence
of the viscous rotor on its position in the container. In Sec. VI
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FIG. 1. Schematics of the simulation. A rotating rotor (probe) is
simulated in a vibrated granular gas under gravity.

the angular VDF for a dry frictional rotor is examined using the
numerical VDF of the granular gas under gravity. In Sec. VII
the conclusions of the study are presented with some remarks.
In Appendix A the details for the MD simulation for the rotors
are explained. Appendix B discusses a benchmark test of the
simulation and formulation wherein the rotor is examined
under viscous friction in an elastic gas without gravity, in
which the angular VDF for the rotor is analytically obtained.
Appendixes C and D discuss the detailed derivation of the
analytic formulas for the rotors under viscous and dry friction,
respectively.

II. SETUP OF THE SIMULATION

The schematics of the setup used in the study are illustrated
in Fig. 1. The setup involves the preparation of N = 100
frictionless grains of diameter d = 0.02

√
A and mass m

under gravity g in a quasi-two-dimensional container (area
A = L2

box; height Hbox = 0.1Lbox). The VDF of inelastic
grains under gravity and vibration is different from the
Gaussian. The restitution coefficient eg = 0.71 is adopted
for inelastic rigid grains, and it corresponds to the effective
restitution coefficient for low density polyethylene [50,51].
The restitution coefficient between grains and the side wall ew

is selected such that it is identical to that for collisions between
the grains (ew = eg = 0.71). The parameters in the simulation
are summarized in Table I. Both the rotational motion of the
grains and the tangential contact force between the grains are
not considered in the event-driven MD simulation, because

TABLE I. Summary of the parameters for the simulation.

Symbols Values, definitions

Mass ratio ε m/M = 0.01
Rotor width w 0.1Lbox

Grain diameter d 0.02Lbox

Restitution coefficient e,eg,ew 0.71
Number of grains N 100
Box height Hbox 0.1Lbox

Rotor height h Hbox − d

Number density ρ N/h(Lbox − d)2

Vibration amplitude zmax/2 0.01Lbox

Vibration period 2twall
√

2zmax/g

Vibration velocity v0 zmax/twall

Observation radius robs 2w

FIG. 2. Schematics of (a) the top view and (b) the side view of
the simulation. The rotor rotates around a fixed axis (x0,y0), and the
origin O is the center of the container. Note that the size of the rotor
is exaggerated in these figures. (c) The rough wall reflects the grain
in a random direction. (d) The container is vibrated vertically in a
piecewise linear manner. The time evolution of the bottom of the
container is shown.

the effect of the tangential friction of spherical grains can be
absorbed into the effective normal restitution coefficient if the
duration (contact) time of the grains is negligible [52–55]. It
should be noted that the extension of the setup is straightfor-
ward for dense frictional grains in three-dimensional systems,
where the effects of the rotations and the tangential frictions
are not negligible. Appendix A is referred to for the details of
the event driven simulation.

The origin of the system in the laboratory frame (x,y,z) =
(0,0,0) is selected as the bottom center of the container at
t = 0. A thin rotor of mass M rotating around the fixed
axis (x,y) = (x0,y0) is introduced under the frictional torque
Nfri(ω) with a width w = 0.1Lbox and a height h = Hbox − d

[Figs. 2(a) and 2(b)]. The restitution coefficient e between
the rotor and grains is introduced and e = ew = eg = 0.71
is adopted. The moment of inertia of the rotor can be
expressed as I ≡ Mw2/12. The density of the granular gas
is ρ = N/h(Lbox − d)2, where the volume fraction is given
by πd3ρ/6 � 0.00545. The rotor is assumed to be sufficiently
massive, i.e., the mass ratio ε of the mass of the grain m to that
of the rotor M can be obtained by ε ≡ m/M = 0.01 � 1. The
local VDF of the granular gas is measured near the rotating
axis in the region of r =

√
(x − x0)2 + (y − y0)2 < robs ≡ 2w

and z0 < z < z0 + Hbox.
Rough walls are introduced both on the top and the bottom

of the container to distribute the energy in the horizontal
direction [see Fig. 2(b)]. When a grain collides against the
rough wall, the postcollisional direction n′

⊥ is randomized
with the kinetic energy conserved during the collision. The
scattered angles (θs,φs) are selected from uniform random
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variables in 0 � φs � π/2,0 � θs � 2π [see Fig. 2(c)]. It is
noted that the probability density per unit solid angle for small
φs exceeds that for large φs , while the probability density
per unit solid angle for the horizontal direction θs is uniform.
The rough walls introduced in this study correspond to the
walls where sandpapers are glued [56]. Energy is injected
into the granular gas by vertically vibrating the container in a
piecewise linear manner with a constant speed [57]. Figure 2(d)
illustrates the time evolution of the bottom of the wall z = z0.
The direction of the container motion is changed by the interval
twall = √

zmax/2g. The amplitude is zmax/2 = 0.01Lbox and the
speed of the box is given by v0 ≡ zmax/twall. Note that the rough
wall is different from the thermal wall, where the magnitude
of velocity is randomly selected from the Maxwell distribution
function [58,59]. See Appendix B for the simulation of grains
associated with a thermal wall.

We here show that the VDF of the gas is almost cylindrically
symmetric. The VDFs are observed in two regions, namely
in the areas (i) and (ii). Here, the center of the area (i)
is (x,y) = (0,0), and the center of the area (ii) is (x,y) =
(−Lbox/4,−Lbox/4) [see Fig. 3(a)]. The VDFs φα for α =
x,y,z directions are shown in Fig. 3(b), where the data are
obtained in the area (i). It is noted that the VDFs for the
horizontal direction also deviate from the Gaussian (dotted
line) exp(−c2

α/2)/
√

2π with cα = vα/v0. The VDF for vz is
irrelevant for the analysis because the rotor rotates around
the vertical (z) axis and cannot detect the velocity in the
z direction. Thus the inverse formula is formulated solely
for horizontal VDFs on the basis of the Boltzmann-Lorentz
equation. In Fig. 3(c), the numerical data of the VDFs of

grains for v ≡
√

v2
x + v2

y are shown for both areas (i) and (ii).

It should be noted that the VDF in area (i) (open squares)
differs from that in the area (ii) (filled circles) because of the
boundary effect. In this study, only area (i) is considered in
Secs. IV and VI, while both areas (i) and (ii) are discussed in
Sec. V.

The obtained VDFs are compared with the theoreti-
cal VDFs for granular gases activated by a white noise
thermostat [7], which is phenomenologically used for the
analysis of vibrating granular gases [19]. Note that the
observed VDFs cannot be fitted by that in Ref. [7], which is

expressed as φNE(v) = (1 + a2S2(v2/v2
th))φG(v/vth)/v2

th with
φG(c) ≡ exp(−c2/2)/2π , a2 = 16(1 − eg)(1 − 2e2

g)/{185 −
153eg + 30(1 − eg)e2

g}, and S2(c) = c2/2 − 2c + 1. Here, vth

is a fitting parameter used in the setup. The fitting results are
shown in Fig. 3(c) and vth/v0 = 4.67794 and vth/v0 = 4.5033
for areas (i) (chain line) and (ii) (dashed line), respectively.

III. BASIC EQUATION

The basic equation for cylindrically symmetric granular
gases is described. We only consider the two-dimensional VDF
φ = φ(vx,vy) for the grains to calculate the angular VDF for
the rotor. The time evolution of the probability distribution
function (PDF) of the angular velocity of the rotor P = P (ω,t)
can be described by the Boltzmann-Lorentz equation [43–49]
as follows:

∂P

∂t
+

{
∂

∂ω
NfriP

}
=

∫ ∞

−∞
dy{Wε(ω − y; y)P (ω − y,t)

−Wε(ω; y)P (ω,t)}, (1)

εWε(ω; y) ≡ ρh

∫ 2w

0
dσ

∫ ∞

−∞
dvxdvyφ(vx,vy)

�(Vn(σ ) − vn)|Vn(σ ) − vn|δ
(y

ε
− ω̄

)
. (2)

Here, the following expression is introduced V (σ ) ≡ ωez ×
r(σ ),ω̄ ≡ g(σ )(1 + e)(Vn − vn)/{RI (1 + εg2(σ ))},g(σ ) ≡
rt (σ )/RI ,t(σ ) ≡ ez × n(σ ), and RI ≡ √

I/M , where n and
t denote normal and tangential unit vectors on the surface of
the rotor, respectively. Correspondingly, the variables with
the subscripts n and t denote the normal and the tangential
components of the vectors, respectively. The unit vector in z

direction is expressed as ez. It should be noted that this set of
equations is widely used in systems such as granular gases
activated by a white noise thermostat [7,60–64]. Additionally,
σ is also introduced as a coordinate variable along the surface
of the rotor, running over 0 < σ < 2w [43]. According to
Refs. [41,42], Eq. (1) is reduced to a Langevin equation for
the angular velocity � ≡ ω/ε driven by the state-independent
non-Gaussian noise in the massive rotor limit ε → 0 when

FIG. 3. (a) Area (i) is the cylindrical area with a radius robs around x = 0,y = 0, and the area (ii) is the area around x = −Lbox/4,y =
−Lbox/4. (b) VDFs for α = x,y,z directions are shown. The data are observed in the area (i). VDFs in the horizontal direction are different

from Gaussian (dotted line). The VDF in z direction is asymmetric due to gravity. (c) The VDFs for v =
√

v2
x + v2

y in the areas (i) and (ii)

are shown as open squares and filled circles, respectively. It is noted that the VDF for area (i) differs from that in the area (ii) because of the
boundary effects. The observed VDFs cannot be fitted by the theoretical VDFs in Ref. [7] represented by the solid line and the dashed line for
the areas (i) and (ii), respectively.
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the axial friction is sufficiently strong. The following
section examines the steady distribution function denoted
by Pss(�) ≡ limt→∞ P(�,t) with P(�,t) ≡ εP (ε�,t)
for the two types of axial frictions, namely the viscous
friction Nfri = −γω and the dry friction Nfri = −sgn(ω),
in which the signature function sgn(x) ≡ x/|x| with
sgn(0) = 0 and the friction coefficients γ and  [65–69] are
introduced.

IV. GRANULAR ROTOR UNDER VISCOUS FRICTION

In this section, the role of the rotor under viscous friction
Nfri = −γω is examined in terms of a probe of the granular
gas. In Sec. IV A, the forward and inverse formulas connecting
the granular VDF with the rotor PDF are analytically derived.
In Sec. IV B, the validity of the forward formula is verified
by estimating Pss(�) using the numerical data for φ(v). Next,
in Sec. IV C, the inverse problem is solved, i.e., the granular
VDF φ(v) is derived from a given Pss(�), which enables the
inference of the properties of granular gases from the motion
of the probe, i.e., the rotor. Section IV D describes the detailed
procedures and numerical techniques applied to derive the
formulas.

A. Analytic formulas for PDF of the rotor

With the aid of Ref. [70], the steady angular VDF in
the Fourier transform P̃ss(s) ≡ ∫ ∞

−∞ d� eis�Pss(�) can be
expressed as follows:

P̃ss(s) = exp

[∫ s

0

I

γ s ′ �(s ′)ds ′
]
, (3)

where the cumulant generating function �(s) ≡∑∞
l=1 Kl(is)l/l! = ∫ ∞

−∞ W(Y)(eiYs − 1) with Kl ≡∫ ∞
−∞ dY Y lW(Y) and the scaled transition rate W(Y)

can be represented by an integral transform of φ(v) for the
cylindrically symmetric case as follows:

�(s) = −2ρhwv0

s̃2w̃2

∫ ∞

0
dṽ φ̃(ṽ){−(w̃s̃ṽ)πH0(w̃s̃ṽ)

+ 2(w̃s̃ṽ)2
}
. (4)

Here, dimensionless variables w̃ = (1 + e)w/2RI ,s̃ =
sv0/RI ,ṽ = v/v0, and φ̃(ṽ) = v2

0φ(v0ṽ) are introduced. The
Struve function Hν(x) with ν = 0 defined by Eq. (C6) [71] is
used. Appendix C provides the detailed derivation. It should
be noted that Eq. (4) is valid for both the rotor under linear
(viscous) friction and for the rotor under nonlinear (dry)
friction. The following expression is obtained by substituting
Eq. (4) into Eq. (3):

γ̃

πk

{
k3 d

dk
lnP̃ss

(
k

w̃

)
+ Bk2

}
=

∫ ∞

0
dṽ ṽφ̃(ṽ)H0(kṽ), (5)

where B = (2/γ̃ )
∫ ∞

0 dṽ ṽ2φ̃(ṽ), a dimensionless variable k ≡
w̃s̃, and a scaled friction coefficient γ̃ ≡ γ /(2ρhwIv0) are
introduced. The integral on the right-hand side of Eq. (5)
is known as the Struve transformation, and its inverse
transformation is the Y transform. These are types of the
Bessel transformations [72]. The inverse estimation formula
is obtained by introducing the Neumann function Nν(x) with

ν = 0 [71]:

φ̃(ṽ) =
∫ ∞

0
Gvis(k)N0(kṽ)k dk, (6)

Gvis(k) ≡ γ̃

πk

{
k3 d

dk
lnP̃ss

(
k

w̃

)
+ Bk2

}
. (7)

The VDF of the granular gas is determined from Eqs. (6)
and (7) by observing the rotor dynamics. This implies that
the rotor is considered as a thermometer for the granular gas
with the aid of the inverse formula Eqs. (6) and (7). Note
that the constant B in Eq. (7) is numerically determined by
the condition limk→∞ Gvis(k) = 0 known as the Riemann-
Lebesgue lemma.

B. Forward problem for viscous rotor

Prior to considering the inverse problem, the forward
problem, i.e., the determination of the PDF of the rotor from
the VDF of the granular gas is discussed. The validity of
the formulas (3) and (4) are verified using the numerical
VDF φ(v) of the granular gas under gravity. In the following
numerical simulation, γ /Mv0zmax = 5.0, which corresponds
to γ̃ = 5.7624. In Fig. 4(a), Pss(�) is plotted by the solid
line on the basis of Eqs. (3) and (4) as well as the numerical
histogram for φ(v) and the results of the MD simulation
(circles). In general, the theory agrees with the MD simulation
except for the point near � = 0, where the numerical error
can be reduced if smaller bin width is used for φ(v). The
bin width of the numerical histogram is adopted for φ(v) as
2.5 × 10−2v0. Section IV D 1 provides the detailed procedure
to obtain the solid line in Fig. 4(a).

C. Inverse problem for granular gas

This subsection discusses that the VDF of the granular gas
can be inferred only through the numerically obtained steady
distribution of the angular velocity of a rotor under the viscous
friction by using the formula Eqs. (6) and (7).

The result for the inverse formula in Eqs. (6) and (7) is
shown in Fig. 4(b), where the parameter B is estimated as
B = 0.365556 and we use the bin width 4.33011 × 10−4v0/RI

for Pss. The formula (6) represented by open squares correctly
predicts the numerical VDF φ(v) near the rotor (filled circles),
while the theoretical VDF vφNE for the white noise thermostat
fails to fit the data. The bin width for Pss is considered as
4.33011 × 10−4v0/RI . Although numerical oscillations exist
for large v/v0, the estimation for the granular gas on the basis
of Eq. (6) corresponds well to the directly measured VDF of
granular particles in the MD simulation. This implies that the
inverse formula (6) supplemented by Eq. (7) enables the use
of the rotor as a nonequilibrium thermometer. Section IV D 2
provides the details of the numerical implementation.

D. Numerical implementation for the formulas Eqs. (3)–(7)

This subsection describes the technical details of the
numerical implementation for the formulas Eqs. (3)–(7). The
description is useful for both experimentalists and theoreti-
cians interested in the details of the method. However, this
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FIG. 4. Demonstration of the applicability of the formulas (3)–(7) under viscous friction on (a) the forward and (b) the inverse estimation
problems. The Fourier transform of Eq. (3) is shown as the solid line (a), which corresponds to the directly measured MD data. (b) The
formulas (6) represented by open squares are compared with the numerical data for the VDF φ(v) near the rotor (filled circles). The VDF of the
granular gas can be successfully estimated by only observing the angular VDF of the rotor. Note that a numerical error exists for large v/v0.

subsection can be skipped if readers are not interested in the
technical details.

1. Forward problem

The detailed numerical technique is described to obtain
Pss(�) using Eqs. (3) and (4). Figure 5 can be referred to for
the outline of the procedure. The numerical technique contains
the following five steps (a)–(e).

(a) The VDF of the granular gas φ̃(ṽ) around the rotor is
measured.

(b) The data of ṽφ̃(ṽ) are extrapolated for the tail (ṽ → ∞).
The data are fitted in the range ṽ− < ṽ < ṽ+ by a function
b1 exp(−b2ṽ) with fitting parameters b1 and b2, and the data are
then extrapolated to the range ṽ− < ṽ < ṽend = 20ṽ−. Here,
ṽ−,ṽ+, and ṽend denote the end points for the fitting ranges. It
is verified that the following results are invariant even if the
Gaussian is used as a fitting function instead.

(c) The Struve transform is applied for φ̃(ṽ) according to
Eqs. (3) and (4) to obtain P̃ss(s).

(d) The Fourier transform for P̃ss(s) is used to obtain
Pss(�). Note that Pss(�) had a sharp peak around � = 0,
which is serious for the numerical Fourier transformation in
terms of convergence. This problem is solved by using the
double exponential formula, which is a numerical technique
for singular functions [73].

(e) Pss(�) is obtained. The fitting parameters adopted here
are listed in Table II.

FIG. 5. Outline of the forward problem for the viscous rotor.

2. Inverse problem

It is necessary to discuss the detailed numerical technique
to obtain φ(v) from Pss(�) on the basis of Eqs. (6) and (7).
Figure 6 shows the outline of the procedure. The procedure
includes the following eight steps (a)–(h) to obtain φ̃ from
numerical Pss(�).

(a) The angular VDF of the rotor Pss(�) is measured.
(b) This is followed by the extrapolation of Pss(�) for the

tail (� → ∞). Furthermore, Pss(�) is fitted in the range �− <

� < �+ by a fitting function b′
1 exp(−b′

2�) and Pss(�) is
extrapolated for the range �− < � < �end with the cutoff
�end. Here, �− and �+ denote the end points for fitting and
b′

1 and b′
2 denote the fitting parameters. It is also verified that

the following results are invariant even if a Gaussian fitting
function is used.

(c) The Fourier transform for extrapolated Pss(�) is per-
formed to obtain P̃ss(s). The double exponential formula [73]
is similarly applied to the forward problem.

(d) The parameter B is estimated and the data of
k3d log P̃ /dk for k → ∞ are fitted by using the quadratic
function c′ − Bk2 in the region k−

c < k < k+
c . Here, k−

c and
k+
c denote the end points for fitting, and the fitting parameter

c′ is introduced.
(e) Furthermore, Gvis(k) is calculated using Eq. (7).
(f) Numerical Gvis(k) is fitted by a fitting function c/k +

d/k3 with fitting parameters c and d in the k → ∞ limit.
Moreover, Gvis(k) is fitted in the region k−

e < k < k+
e , and

Gvis(k) is extrapolated for k′
cut < k < k′

end, where the cutoffs

TABLE II. Summary of numerical values
in the forward problem for the viscous rotor.

Symbols Values

ṽ− 15.0
ṽ+ 25.0
ṽend 300.0
b1 1182.192
b2 1.128878
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FIG. 6. Outline of the inverse problem for the viscous rotor.

satisfy k−
e < k′

cut < k+
e . The end points of the fitting ranges,

k−
e ,k+

e , k′
cut, and kend, are introduced to obtain the asymptotic

behavior of Gvis(k) for k → ∞.
(g) The Y transform (6) is applied for the numerically

obtained Gvis(k).
(h) φ(v) is inversely estimated. The fitting ranges and

parameters introduced here are summarized in Table III.

V. POSITION DEPENDENCE OF THE ROTOR

This section discusses the utility of the rotor as a local
nonequilibrium probe. In Sec. IV C it is already demonstrated
that the VDF of the surrounding gas in the area (i) can
be inferred from the angular VDF of the viscous rotor Pss.
However, as shown in Fig. 3(c), VDFs in areas (i) and (ii) have
slight differences. It is important to discuss whether or not the
local VDF in the area (ii) can be inferred from the motion of
the rotor using Eqs. (6) and (7).

In Fig. 7, it is shown that the VDF in area (ii) can be also
inferred from the angular VDF of the rotor. The estimated VDF
and the directly measured VDF are represented by squares

TABLE III. Summary of numerical values
in the inverse problem for the viscous rotor
[area (i)].

Symbols Values

�− 20.0v0/RI

�+ 25.0v0/RI

�end 5.0�−
k−

c 1.0
k+

c 1.6
k−

e 0.5
k+

e 0.7
d 0.004827312
k′

cut 0.6
k′

end 1.1936266 × 104

b′
1 0.0876136RI/v0

b′
2 0.253986RI/v0

c′ 0.0162884
c 0.01885404

FIG. 7. Demonstration of the inverse formula for the local VDF
in the area (ii). Although the accuracy is lower than that in Fig. 4,
the estimated data (squares) correctly predict the direct measurement
data (circles).

and circles, respectively. Here, the parameter B is estimated as
B = 0.40278. Numerical oscillations for large v/v0 also exists.
Although the accuracy of estimation is slightly lower than that
in Fig. 4(b), the estimated data are consistent with the directly
observed VDF. The reason for the small discrepancy can be
attributed to the violation of the cylindrical symmetry because
of the boundary effect. The same procedure as Sec. IV D 2 is
adopted, and the corresponding fitting ranges and parameters
in this section are listed in Table IV.

VI. GRANULAR ROTOR UNDER DRY FRICTION

A rotor under dry friction Nfri = −sgn(ω) is considered.
Note that the real experimental rotors are influenced by dry
friction [36–38]. In Sec. VI A we show the outline of the
derivation of an analytic formula for the angular VDF of the
rotor, and verify its validity in Sec. VI B (see Appendix D
for the detailed derivation). Note that only the forward
problem is examined by the perturbative method developed
in Refs. [42,44].

TABLE IV. Summary of numerical values
in the inverse problem for the viscous rotor
[area (ii)].

Symbols Values

�− 20.0v0/RI

�+ 25.0v0/RI

�end 20.0�−
k−

c 1.0
k+

c 1.6
k−

e 0.5
k+

e 0.7
d 0.004827312
k′

cut 0.6
k′

end 1.1936266 × 104

b′
1 0.0927576RI/v0

b′
2 0.262268RI/v0

c′ 0.02641632
c 0.0339546
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A. Analytic formulas for the PDF of the rotor

The steady angular VDF Pss(�) is obtained perturbatively
in terms of 1/̃′ with ̃′ ≡ (1 + e)/(εIρhv2

04π ) 
 1 from
Eq. (1) after taking the limit ε → 0. The first-order solution
in terms of 1/̃′ is known as the independent kick solution,
which is originally introduced in Ref. [44] and is systematically
derived in Refs. [41,42]. The independent kick solution is
expressed as

P̃ss(s) = 1 + I

̃

∫ ∞

−∞
dY W(Y)

∫ Y

0

d�

sgn(�)

[
eis� − 1

]

+O(1/̃2), (8)

with the friction coefficient independent of ε: ̃ ≡ /ε.
Introducing the Bessel function Jν(x) [71], P̃ss of the rotor
under the dry friction can be rewritten as

P̃ss

(
k

w̃

)
= 1 + w̃2

k2

1

̃′

[
1

2π
+ C1k

2 − Gdry(k)

]

+O(1/̃
′2), (9)

Gdry(k) ≡
∫ ∞

0
dṽ ṽφ̃(ṽ)J0(kṽ), (10)

where the following coefficient is introduced:

Cl ≡ (−1)l

22l(l!)2

∫ ∞

0
dṽ ṽ2l+1φ̃(ṽ), (11)

for a positive integer l = 1,2, . . .. Note that P̃ss(s) can be
separated into the δ-type singular part denoted by Pinf ≡
lims→∞ P̃ss(s) = 1 + C1w̃

2/̃′ and the smooth part denoted
by P̃ c

ss(s) ≡ P̃ss(s) − Pinf . See Appendix D for the detailed
derivation.

B. Forward problem for dry frictional rotor

This section examines the consistency between the theoret-
ical results in Eqs. (9) and (10) and the numerical results in the
MD simulation under dry friction. For the MD simulation, we
adopt /Mv2

0 = 5.0, which corresponds to ̃′ = 784.13275.
The bin width for Pss is set as 4.33011 × 10−4v0/RI . As shown

in Fig. 8(b), the numerical PDF Pss(�) in the MD simulation
is correctly predicted from the numerical VDF of the granular
gas φ(v) according to Eq. (9) [Fig. 8(a)]. It is also verified
that the VDF of the granular gas does not depend on the
details of the ω dependence of the frictional torque Nfri. It
is noted that the VDF of the granular gas obtained in the
MD simulation cannot be fitted by that activated by the white
noise thermostat [7]. In Fig. 8(b), the squares and the solid
line represent histograms for MD and the Fourier transform of
Eq. (9), respectively. For a given VDF of the granular gas, the
theoretical result agrees with the result of the MD simulation
without introducing any fitting parameters. Note that there are
small discrepancies between the theoretical result and the data
for the large �RI/v0, because the independent kick model is
accurate only for small �RI/v0. The detailed implementation
of Eqs. (9) and (10) are provided in Sec. VI C.

We here discuss the difficulty for the inverse estimation
problem under dry friction in the present theoretical analysis.
Although Eq. (9) can be formally solved in terms of φ̃,
the formal inverse formula is practically useless because the
independent kick model under dry friction is only valid for
small �RI/v0 and thus the inverse Fourier transformation
of Eq. (9) does not work well. Indeed, the exponential tail
is reported for the dry frictional rotor for large �RI/v0 in
Ref. [42], which cannot be captured by the independent kick
solution.

C. Numerical implementation for the formula Eqs. (9) and (10)

In this section, a detailed technique to use the analytic PDF
formulas (9) and (10) is described. In a manner similar to
Sec. IV D, this description is useful for both experimentalists
and theoreticians interested in the details of the calculation.
However, if readers are not interested in our technical details,
they can skip this subsection. Figure 9 provides the outline of
the procedure. The following six steps are involved (a)–(f) to
obtain Pss(�) numerically.

(a) The granular velocity around the rotor is observed, and
a histogram is obtained for the numerical VDF φ̃(ṽ).

(b) A sufficiently large ṽ− and ṽ+(ṽ− < ṽ+) are introduced
to extrapolate the data for ṽφ̃(ṽ) in the ṽ → ∞ limit.

FIG. 8. (a) Equation (9) is adopted for the VDF of the gas shown as the solid line. VDF in Ref. [7] is also shown. (b) Pss(�) of the dry
frictional rotor is calculated according to Eq. (9). The squares and the solid line are histograms for MD and the Fourier transform of Eq. (9),
respectively. The observed histogram in the MD simulation can be correctly predicted by the Fourier transform of Eq. (9).
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FIG. 9. Outline of the forward problem for the dry rotor.

Numerical ṽφ̃(ṽ) is fitted in the range ṽ− < ṽ < ṽ+ with
the exponential function b1 exp(−b2ṽ), and the data are
extrapolated for ṽ− < ṽ < ṽend = 20ṽ− by the fitting function.
The cutoff for φ̃(ṽ) is introduced as ṽend(>ṽ+). It is also verified
that the following results are invariant if the Gaussian is used
as the fitting function.

(c) Furthermore, Gdry(k) is obtained in terms of the Bessel
transform Eq. (10), and C1 and C2 are calculated according to
Eq. (11).

(d) We interpolate the data of Gdry(k) for 0 < k < k−
cut by

the fitting function 1/2π + C1k
2 + C2k

4, which corresponds
to the Taylor expansion of Eq. (10) to avoid the numerical
divergence of the second term in Eq. (9) in the k → 0
limit. To extrapolate Gdry(k) for large k, we fit the data of
Gdry(k) by d1 exp(−d2k

2) in the range k−
d < k < k+

d with
fitting parameters d1 and d2. We extrapolate the data using
d1 exp(−d2k

2) in the region k−
d < k < k+

cut. k−
d ,k+

d ,k−
cut(<k−

d ),
and k+

cut(>k+
d ) are end points for the fitting ranges.

(e) We obtain Pinf = 1 + C1w̃
2/̃′ using Eq. (11).

(f) The Fourier transform is applied to the data for
P̃ c

ss(s) to obtain the smooth part of Pss(�) as P c
ss(�) ≡∫ ∞

−∞ e−is�P̃ c
ss(s)ds/2π .

(g) We obtain Pss(�) = Pinfδ(�) + P c
ss(�). We note

Pss(� = 0) = P c
ss(0) + Pinf/�. Here, � is the data mesh

for �. The fitting parameters introduced here are summarized
in Table V.

TABLE V. Summary of numerical values
in the forward problem for the rotor under dry
friction.

Symbols Values

ṽ− 15.0
ṽ+ 25.0
ṽend 300.0
k−

cut 0.1
k−

d 0.3
k+

d 0.4
k+

cut 0.35
b1 1182.192
b2 1.128878
d1 0.204485
d2 13.185175

VII. SUMMARY AND DISCUSSION

We have examined the role of a granular rotor as a local
nonequilibrium probe through the MD simulation of the rotor
in vibrating granular beds under gravity. We have observed
spatially inhomogeneous VDFs. We have formulated the
inverse formula in cylindrical coordinates to explain the result
of the MD simulation for a realistic viscous rotor. Starting from
the Botlzmann-Lorentz equation, we have derived analytic
formulas for the viscous frictional rotor. On the basis of the
derived formulas, we have numerically calculated the angular
VDF of the rotor from the data of VDF of the granular gas near
the rotor, and vice versa. Furthermore, we have demonstrated
that our inverse formula can be used even if the location of
the rotor is different from the center of the container. Thus the
granular rotor is useful as a local probe for nonequilibrium
baths.

With respect to a rotor under dry friction, only the forward
problem is considered, and the result corresponds to the MD
result. The present study could not solve the inverse problem
for the rotor under dry friction. In order to derive a valid
inverse formula for the rotor under dry friction, it is expected
that an appropriate interpolation between the independent kick
solution and the exponential tail of the VDF of the rotor is
necessary.

There are several possible extensions of this study. In the
study, it is assumed that the restitution coefficient of grains
is constant [50,51]. However, the restitution coefficient for a
sphere depends on the impact velocity vimp as e(vimp) = 1 −
B1v

1/5
imp + · · · (B1 > 0) [4,74,75]. As discussed in Ref. [76],

the velocity dependence of the restitution coefficient can
be introduced to the Boltzmann-Lorentz equation, and this
can be also analyzed by the theory proposed by the present
study. It is necessary to analyze the effects of the tangential
interaction and the mutual rotation between grains. It would
be possible and interesting to apply our framework to the
rotor in dense granular media [77] or denser granular liquids
near the jamming transition beyond the Enskog equation [29]
by modifying the transition probability Wε [78]. It is also
particularly necessary for future studies to estimate the errors
for the inverse estimation formulas.
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APPENDIX A: EVENT DRIVEN SIMULATION FOR ROTOR

This appendix explains the method to calculate the rotor
dynamics in the event driven simulation. During the simula-
tion, the system evolves with the time step of the minimum
collision time tnext. The collision time tij between grains i
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and j (i,j = 1,2, . . . ,N) can be precisely calculated, and the
minimum of tij can be obtained as tgrain = min{tij ; i �=
j} [3]. The collision time twall

i between the grain i and the
wall and the minimum can be exactly obtained as twall =
min{twall

i ; i}. However, collision times between the rotor and
grains cannot be calculated accurately. In the simulation, the
collision time of grain i with the rotor t rotor

i is approximately
obtained by the virtual time evolution in a small time increment
1.0 × 10−4√zmax/2g. The collision time between a grain and
the rotor is approximately calculated as the time when this dis-
tance becomes smaller than the radius of the grain after the vir-
tual updating of the positions. If a grain collides with the wall
before colliding with the rotor, it is considered that the grain
does not collide with the rotor in this time step. Then, the
minimum collision time between grains and the rotor can
be obtained as t rotor = min{t rotor

i ; i}. The time step of the
simulation is obtained as tnext = min{tgrain,twall,t rotor}
by comparing three candidates of the collision time.

APPENDIX B: BENCHMARK TEST FOR SIMULATION

In this appendix, it is shown that Pss observed in the
MD simulation can be analytically predicted when the gas is
elastic (eg = ew = e = 1) without gravity g = 0 and vibration.
Therefore, this simple setup is examined under the condition
zmax = 0 as a benchmark test to examine the validity of the
proposed method. A container heated by the thermal wall at the
bottom is analyzed. The top and the side walls of the container
are chosen to be smooth elastic walls. The post collisional
velocity of a grain v = (vx,vy,vz) against the thermal wall is
selected as random, following the distribution φwall(v,Twall) =
(m/Twall)2vz exp [−mv2/2Twall]/2π [58,59]. The typical ve-
locity in this setup v′

0 = √
Twall/m is selected instead of v0 as

shown in Sec. II. It is numerically verified that the VDF of the
elastic gas can be considered as the Gaussian φ̃(ṽ) = φG(ṽ)
with ṽ = v/v′

0. Furthermore, Pss can be analytically obtained
from the proposed theory. The obtained solution is compared
with the MD simulation data in Fig. 10 for the viscous rotor.

FIG. 10. Results of the MD simulation under viscous friction
(squares) and that obtained by the analytical solution proposed in this
study are compared. The solid line represents the Fourier transform
of Eq. (B1). The accurate solution derived in this study perfectly
corresponds with the MD simulation data.

By using Eqs. (3) and (4), the analytic solution for Pss(�)
is obtained as

P̃ss

(
k

w̃

)
= exp

[
− 1

3γ̃
√

2π

k2

2
2F2

(
1,1
2, 5

2

∣∣∣∣−k2

2

)]
, (B1)

where γ̃ B =1/
√

2π , πk
∫ ∞

0 dx xφG(x)H0(kx)=kDF (k/
√

2)/√
π , and

∫ k√
2

0

ds ′

s ′

(
DF (s ′)

s ′ − 1

)
= −k2

6
2F2

(
1,1
2, 5

2

∣∣∣∣−k2

2

)
. (B2)

Here, DF (x) denotes the Dawson function [71], DF (x) ≡
e−x2 ∫ x

0 et2
dt , and qFp denotes the generalized hypergeometric

function [71,79]:

qFp

(
a1,a2, . . . ,aq

b1,b2, . . . ,bp

∣∣∣∣z
)

≡
∞∑
l=0

(a1)l(a2)l · · · (aq)l
(b1)l(b2)l · · · (bp)l

zl

l!
, (B3)

where the Pochhammer symbol is introduced as (a)l ≡ �(a +
l)/�(a) with l � 0. Here, �(a) represents the Gamma function
�(a) = ∫ ∞

0 sa−1e−sds. In order to plot Fig. 10, γ /Mzmaxv0 =
0.50, which corresponds to γ̃ = 0.57624 is adopted. The
histogram for the angular velocity is shown in Fig. 10 and
the analytical solution (solid line) is consistent with the MD
simulation result (squares) thereby ensuring the accuracy of
the MD code and the validity of the proposed framework.

APPENDIX C: DETAILED DERIVATION OF THE
FORMULAS FOR A ROTOR UNDER VISCOUS FRICTION

In this appendix, the detailed derivation of the analytic
results for the viscous frictional rotor in Sec. IV is shown.
Specifically, given that Y ≡ y/ε is introduced, the transition
rate given byW(Y) ≡ W̄ (ω = 0;Y) is independent of ε and �.
It is noted that Wε(ω; y) satisfies the relation W̄ (ω;Y)dY =
Wε(ω; y)dy up to the leading order. We obtain the reduced
time evolution equation for P = P(�,t) in ε → 0 limit from
Eq. (1) when the axial friction is sufficiently strong according
to the generalized system size expansion [41,42]. For general
frictional torque Nfri = Nfri(ω), the following expression is
obtained:

∂P
∂t

= −1

I

{
∂

∂�
Ñfri(�)P

}

+
∫ ∞

−∞
dY W(Y){P(� − Y,t) − P(�,t)}, (C1)

W(Y) = ρh

∫ 2w

0
dσ

∫ ∞

−∞
dvxdvyφ(vx,vy)�(−vn)

× |−vn|δ
(
Y − ω̄′), (C2)

ω̄′ ≡ −1 + e

RI

g(σ )vn, (C3)

where the rescaled friction Ñfri(�) = Nfri(ε�)/ε is introduced.
Additionally, Ñfri(�) = O(1) is assumed in ε → 0 limit.

The scaled friction is expressed as Ñfri = −γ̃ � in Eq. (C1)
for the case of viscous friction with γ̃ = γ /(2ρhwIv0). The
cumulant generating function �(s) is calculated. For an even
integer l, the cumulant Kl = ∫

dY Y lW(Y) is calculated as
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follows:

Kl = ρh

∫ 2w

0
dσ

∫ ∞

−∞
dvxdvyφ(vx,vy)�(−vn)| − vn|(ω̄′)l

= ρh
(1 + e)l

Rl
I

2
∫ w/2

−w/2
dσ ′

(
σ ′

RI

)l ∫ ∞

0
dv v

∫ 2π

0
dθ φ(v)�(−v cos θ )(−v cos θ )l+1

= ρh
(1 + e)l

Rl
I

4
∫ w/2

0
dσ ′

(
σ ′

RI

)l ∫ ∞

0
dv vl+2φ(v)

�
(

l+2
2

)
�

(
l+3

2

)√
π

= ρh

√
π (1 + e)l

R2l
I

�
(

l+2
2

)
�

(
l+3

2

) 4

l + 1

(w

2

)l+1
∫ ∞

0
dv vl+2φ(v). (C4)

The coordinate variable σ to σ ′ satisfying −w/2 < σ ′ < w/2 is changed, and the front-back symmetry is used for the rotor.
Then, �(s) is written as follows:

�(s) =
∫ ∞

0
dv φ(v)2

√
πρh

∞∑
l=1

wl+1vl+2

R2l
I 2l

(is)l(1 + e)l

(l + 1)!

�
(

l+2
2

)
�

(
l+3

2

)

= −
∫ ∞

0
dv φ(v)2

√
πρhw

R4
I

w2s2

(
2

1 + e

)2
⎧⎨
⎩

∞∑
j=2

(−1)j

(2j − 1)!

�(j )

�
(
j + 1

2

)
(

1 + e

2

wsv

R2
I

)2j

⎫⎬
⎭

= −
∫ ∞

0
dṽ φ̃(ṽ)

2ρhwv0

s̃2w̃2
{−(w̃s̃ṽ)πH0(w̃s̃ṽ) + 2(w̃s̃ṽ)2}, (C5)

where the Struve function is introduced as follows:

H0(y) =
∞∑
l=0

(−1)ly2l+1

{(2l + 1)!!}2
. (C6)

Because �(s) and P̃ss satisfy the relation

�(s) = s
γ

I

d

ds
lnP̃ss, (C7)

we obtain

s̃3 d

ds̃
lnP̃ss = 2ρhwIv0

γ w̃2

∫ ∞

0
dṽ˜φ(ṽ){(w̃s̃ṽ)πH0(w̃s̃ṽ) − 2(w̃s̃ṽ)2}. (C8)

The variable k = w̃s̃ is introduced to obtain the following expression:

γ̃

{
k3 d

dk
lnP̃ss

(
k

w̃

)
+ Bk2

}
= πk

∫ ∞

0
dṽ ṽφ̃(ṽ)H0(kṽ),

(C9)

where B = (2/γ̃ )
∫ ∞

0 dṽ ṽ2φ̃(ṽ) is introduced. Thus the formula (5) is obtained.

APPENDIX D: DETAILED DERIVATION OF THE FORMULAS FOR A ROTOR UNDER DRY FRICTION

This appendix shows the detailed derivation of the analytic results for a rotor under dry friction in Sec. VI. The derivation
is initialized by using Eqs. (C1)–(C3) with the scaled dry friction Ñfri(�) = −̃ sgn(�). The Fourier transform is applied to
the equation ∂P/∂t = 0 to obtain the independent kick solution at the order O(1/̃′) as in Eq. (8). Equation (8) is rewritten as
follows:

̃

I
(P̃ss − 1) =

∫ ∞

−∞
dYW (Y)

∫ Y

0

d�

sgn(�)

∞∑
l=1

(is�)l

l!

=
∞∑
l=1

(is)l

l!

∫ ∞

−∞
dY W(Y)

sgn(Y)Y l+1

l + 1

=
∞∑

j=1

(−1)j s2j+2

(2j + 1)!

∫ ∞

−∞
dY|Y|Y2jW(Y)

1

s2
. (D1)
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Given Eqs. (D2)–(D5) for an even integer l:∫ ∞

−∞
dY|Y|l+1W(Y) = 4ρh(1 + e)l+1

R2l+2
I (l + 2)

(w

2

)l+2
∫ ∞

0
dv vl+3φ(v)

∫ π/2

−π/2
dθ cosl+2 θ

= 4ρh(1 + e)l+1√π

R2l+2
I (l + 2)

(w

2

)l+2 l + 4

l + 3

(
l
2 + 3

2

)
!(

l
2 + 2

)
!

∫ ∞

0
dv vl+3φ(v), (D2)

∫ π/2

−π/2
dθ cosl+2 θ = √

π
�

(
l+3

2

)
�

(
l+4

2

)

= l + 4

l + 3

(
l
2 + 3

2

)
!(

l
2 + 2

)
!
, (D3)

(2j + 4)
(
j + 3

2

)
!

(2j + 3)!(j + 2)!
= √

π

(
1

2j+1(j + 1)!

)2

, (D4)

J0(x) = 1 −
∞∑

j=0

(−1)j x2(j+1)

22(j+1){(j + 1)!}2
,

(D5)

we obtain the following expression:

̃

I

{
P̃ss

(
k

w̃

)
− 1

}(
k

w̃

)2

= 4πρhv2
0

1 + e

∫ ∞

0
dṽ ṽφ̃(ṽ)

{
1 − k2ṽ2

4
− J0(kṽ)

}
. (D6)

Hence Eqs. (9) and (10) are obtained from Eq. (D6).
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