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Clustering and velocity distributions in granular gases cooling by solid friction
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We present large-scale molecular dynamics simulations to study the free evolution of granular gases. Initially,
the density of particles is homogeneous and the velocity follows a Maxwell-Boltzmann (MB) distribution. The
system cools down due to solid friction between the granular particles. The density remains homogeneous, and
the velocity distribution remains MB at early times, while the kinetic energy of the system decays with time.
However, fluctuations in the density and velocity fields grow, and the system evolves via formation of clusters in
the density field and the local ordering of velocity field, consistent with the onset of plug flow. This is accompanied
by a transition of the velocity distribution function from MB to non-MB behavior. We used equal-time correlation
functions and structure factors of the density and velocity fields to study the morphology of clustering. From the
correlation functions, we obtain the cluster size, L, as a function of time, t . We show that it exhibits power law
growth with L(t) ∼ t1/3.
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I. INTRODUCTION

Granular materials consist of assemblies of particles with
sizes ranging from 10 μm to 1 cm [1]. This class of materials
is probably the most important form of matter in the universe
and the second most ubiquitous on Earth after water. The
knowledge of its flow as a dense mass is relevant to phenomena
such as mud, rock, and snow avalanches, transport of most
technologically processed materials, transport of agricultural
grains, etc. [2,3]. Low-density granular material appears in
sand storms, smoke, and in interstellar sparse solid material.
Although the flow of granular matter has similarities with the
flow of ordinary fluids, there is a profound difference between
the two and that is in the way energy is dissipated. In normal
fluids mechanical energy is not really dissipated, it is just
transferred from long into short scale disturbances of the flow
that can be interpreted as heat. In granular matter, on the other
hand, the interaction among the grains dissipates mechanical
energy by storing it in intragrain degrees of freedom. The
dynamical properties of granular systems have been studied
experimentally by many authors. In this context, experimental-
ists have considered various standard geometries for agitating
granular systems, e.g., horizontal and vertical vibration on
a platform [4] pouring on an inclined plane and through
a chute [5–7], rotation in a drum [8–10], etc. All of these
experimental situations give rise to diverse examples of pattern
formation, which have been of much research interest [11,12].

The problem of granular gases, which is theoretically more
accessible than the dense system, received considerable atten-
tion in the literature [13]. The leading theoretical approach
was to concentrate on inelastic binary collisions, where the
scattering of a pair of grains is characterized by a constant
coefficient of restitution less than unity [14,15]. One of the
most interesting problems studied within that approach is
cooling and pattern formation. The system cools down due to
the binary collisions, which are inelastic due to the incomplete
restitution. In the early stages, it is in the homogeneous cooling
state (HCS), with the uniform density field. However, later
in time, the density field becomes unstable to fluctuations
and the system enters an inhomogeneous cooling state (ICS),

where particle-rich clusters are formed and grow. The decay
of temperature, which is the manifestation of the kinetic
energy, has been well studied in the HCS [13] as well as
ICS [14]. Non-Maxwell-Boltzmann velocity distribution, e.g.,
power laws, stretched exponential, etc., have been reported
in various studies [16]. The complex pattern dynamics of
density and velocity fields have been studied by Puri et al., by
invoking analogies from studies of phase ordering dynamics.
The growth kinetics of the clusters in density and velocity
fields have also been studied [17].

In the case of dense flows, many particles rub against each
other simultaneously and stay in prolonged contact. Thus, the
concept of collision is not very useful. It seems, however, that
the forces between touching grains are well understood: they
can be decomposed in a force normal to the plane of contact and
a solid friction force within that plane. Therefore, it may be ex-
pected that a continuum description can be achieved by coarse
graining of the microscopic system [18,19]. In fact, a few con-
tinuous descriptions of the flow of dense granular matter, not
inconsistent with the idea that solid friction is the mechanism
of energy dissipation, had been published in the past [20,21].

The high-density picture where solid friction is essential
motivates our present study. In the case of granular gases cool-
ing by inelastic binary collisions, it is well-known that the evo-
lution of density, velocity, and granular temperature fields can
be described by macroscopic hydrodynamic equations [32,33].
However, there are no corresponding hydrodynamic equations
in the literature that can describe dense granular flow. An
important and challenging issue in the physics of granular
materials is to obtain a continuum description of dense granular
flows. In this context, a major bottleneck has been a lack of
proper understanding of the formation and evolution of plugs
or clusters in dense granular flows. In this paper, we study the
effect of the dissipation mechanism based on solid friction in
granular gases. Although we believe that solid friction is the
most significant dissipation mechanism in dense systems, we
apply it here to gaseous granular matter, as the only mechanism
of mechanical energy dissipation, to isolate this mechanism
and study its effect on the cooling properties of such dilute
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systems. This will serve also as a test bed for future work on
denser systems. Also, even in the present work, high-density
regions appear due to clustering, to be discussed later, and
in those regions solid friction should be indeed the dominant
energy dissipation mechanism. We present results for velocity
distributions, ordering dynamics of the density and velocity
fields, and the growth dynamics of clusters.

This paper is organized as follows. In Sec. II, we describe
our model and numerical results obtained therefrom. We focus
on the evolution morphologies for the density and velocity
fields in frictional granular gases, and their growth laws.
In Sec. III, we conclude this paper with a summary and
discussion.

II. FRICTIONAL COOLING OF GRANULAR GASES

We employ standard molecular dynamics (MD) techniques
for our simulations, where all the particles are identical with
mass m. Any two particles with position vectors �ri and �rj

interact via a two-body potential with a hard core and a thin
shell repulsive potential. To be specific, we choose the potential
to be of the following form

V (r) =

⎧⎪⎨
⎪⎩

∞ : r < R1,

V0
(r−R2)2

(r−R1)2 : R1 � r < R2,

0 : r � R2,

(1)

where r =| �ri − �rj | is the separation between the two particles,
V0 is the amplitude of the potential, and R2 − R1 < R1. Here,
Eq. (1) is to be taken only as a model of repulsive potential that
rises steeply from zero at the outer boundary of the shell to
infinity at the hard core. The normal force applied by particle
i to particle j is given by

�Fn
ij (r) = −��V (r), (2)

where the gradient is taken with respect to rj . The correspond-
ing solid friction force is given by

�Ff

ij (r) = μ
∣∣ �Fn

ij

∣∣ �v1 − �v2

|�v1 − �v2| , (3)

where �vi and �vj are the linear velocities of particles i and j , re-
spectively. Equation (3) reduces to the well-known Coulomb’s
friction force when the thickness of the thin repulsive shell
tends to zero, i.e., R2 → R1. In that limit, our model reduces to
a hard sphere model where the velocity difference cannot have
a normal component at the contact point. Thus, the frictional
force becomes tangential to the normal force. For simplicity,
we did not consider rotational motion of the grains. We use
the following units for various relevant quantities: lengths are
expressed in units of R1, temperature in V0/kB , and time
in

√
mR2

1/V0. For the sake of convenience and numerical
stability, we set R1 = 1, R2 = 1.1, V0 = 10, kB = 1, and
m = 1. The velocity Verlet algorithm [22] is implemented
to update positions and velocities of the MD simulations. The
integration time step is �t = 0.0005. The granular gas consists
of N = 250 000 particles confined in a 2D box with periodic
boundary conditions. Two area number densities σ = 0.20
and σ = 0.30 corresponding to area fraction φ ≈ 0.157 and
φ ≈ 0.236, respectively, were considered. This means that the
box sizes are 11182 and 9122, respectively.

The system is initialized by randomly placing particles in
the simulation box, such that there is no overlap between the
cores of any two particles. All these particles have the same
speed but the velocity vector points in random directions so
that

∑N
i=1 �vi = 0. The system is allowed to evolve until t = 50

with μ = 0, i.e., the elastic limit. The system is thus relaxed to a
Maxwell-Boltzmann (MB) velocity distribution, which serves
as the initial condition for our MD simulation of inelastic
spheres with μ �= 0.

Starting from the homogeneous initial condition in thermal
equilibrium at t = 0, the system starts dissipating its energy
because of the frictional collisions among the particles for
μ �= 0. Figure 1 shows the evolution snapshots of the density
field for two-dimensional granular gas with μ = 0.10. Details
are given in the figure caption.

At the early stage of evolution, the system remains roughly
homogeneous. However, at the later stage, the formation of
clusters is observed. This cluster formation can be explained
as follows. Consider some fluctuations in the homogeneous
phase of the density. Particles in the high-density regions lose
more energy than those in the low-density regions. Particles
entering randomly from the adjacent low-density surrounding
regions have finite probability to be trapped within the high-
density region. That probability increases with the number of
particles in the region, thus increasing the density fluctuations.
This effect is amplified by the fact that as time goes on, the
system becomes sluggish due to the dissipation of energy and

FIG. 1. Evolution snapshots of the density field for an inelastic
granular gas in d = 2 at different times: (a) t = 50; (b) t = 150; (c)
t = 300; (d) t = 500. These pictures are obtained for a system with
particle number N = 250 000, number density σ = 0.30 (packing
fraction φ ≈ 0.236), and friction coefficient μ = 0.10. The size of
the system is 9122. For clarity, we have shown only a 6002 corner.
The density field is obtained by directly drawing a black point at
the center of particle. Void spaces represent, thus, regions free of
particles.
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FIG. 2. Evolution snapshots of the coarse-grained velocity field
at different times: (a) t = 50; (b) t = 150; (c) t = 300; (d) t = 500.
For the sake of clarity, we have shown only a 482 corner of the 1282

box.

consequently the probability for a particle to be trapped in the
high-density region increases.

Figure 2 shows the coarse-grained evolution snapshots of
the velocity field for a two-dimensional granular gas with μ =
0.10. The system is divided into squares of area 7.1252 and the
average velocity is calculated for each square. The direction of
the average velocity is plotted as an arrow starting at the center
of each square. The size of the average velocity is described by
a shade of gray scale. The darker the shade of gray, the lower
the velocity. Void spaces represent, as in the density snapshots,
regions free of particles.

At the early stage of evolution, the velocity field remains
random. Correlations develop in the velocity field at a later
time because solid friction between touching (shell overlap)
particles causes velocity matching. Thus, local ordering in the
velocity field is observed, and the evolution of the velocity field
is characterized by the emergence and diffusive coarsening of
vortices. Of course, the overall momentum is conserved, and
this must be reflected in the ordered state also.

Following the qualitative study described above, we go into
a more quantitative study starting with the free cooling of
the inelastic granular gases with nonzero values of μ. The
granular temperature is defined as T = 〈�v2〉/d, where 〈�v2〉
is the mean-squared velocity of a grain and d is the spatial
dimension. We present in Fig. 3 the cooling of the system by
giving the temperature of the system as a function of time,

T (t) = T (0)T̃ (t), (4)

where T (0) is the initial granular temperature. We find that
for given σ and μ, T̃ (t) ∝ t−α , where the exponent α = 3/2 at
short times crosses over to α = 1 at longer times. We define the
crossover time as the time when the local exponent α equals
1.25. The crossover time, t0, is larger for smaller σ and μ. In

10-3 10-2 10-1 100 101
t/t0

10-3

10-2

10-1

100

T(t)

σ = 0.20; μ = 0.10
σ = 0.20; μ = 0.15
σ = 0.30; μ = 0.10
σ = 0.30; μ = 0.15

t-3/2

t-1

~

FIG. 3. The scaling form of the temperature decay as a function
of scaled time t/t0. The crossover time is defined in the text and is
larger for smaller σ and μ. At early times, temperature decays as
T̃ (t) ∼ (t/t0)−3/2. As time increases the decay slows down, leading
eventually to a decay of the form T̃ (t) ∼ (t/t0)−1. Dashed line and
solid line, respectively, represent algebraic decays with exponent
3/2 and 1.

Fig. 3, we present T̃ (t) as a function of t/t0 for four (σ , μ) com-
binations. The early-stage cooling [T̃ (t) ∝ t−3/2] corresponds
to the homogeneous cooling state (HCS) and is the counterpart
of Haff’s law for inelastic hard spheres. For the latter system,
Haff’s cooling law is as follows: T̃ (t) ∝ t−1 [13,16,17].

The late-stage cooling [T̃ (t) ∝ t−1] arises for the in-
homogeneous cooling state (ICS), where the density field
has undergone the clustering instability. A similar late-stage
cooling has been observed by Nie et al. [29] for the inelastic
hard-sphere system. To avoid inelastic collapse, Nie et al.
modeled the collisions as elastic when the relative collision
velocity is less than a critical value. In the late stages of
evolution in our present model, plug formation has been
observed. Since there is no relative velocity among the particles
in a given plug, particles do not lose energy as in the case of
elastic collisions. A similar late-stage cooling has also been
observed by Baldassarri et al. [30] in the context of ordering
in a lattice granular fluid.

After establishing the time dependence of the temperature,
we studied the time evolution of the velocity distribution
function. The natural framework to study velocity distributions
for the elastic granular gas is the MB equation. In the elastic
case with μ = 0, an arbitrary initial velocity distribution
rapidly evolves (after a certain time) to the MB distribution:

PMB(vi) =
√

m

2πkBT
exp

(
− mv2

i

2kBT

)
, (5)

where vi = (vx,vy) are the components of the velocity �v. For
inelastic granular gases with μ �= 0, because of cooling the
velocity distribution functions are time-dependent. It may be
expected, at first sight, that the velocity distribution will depend
on time only through the time-dependent temperature T (t).
The clustering phenomena discussed above suggests, however,
that each particle may be viewed now as belonging effectively
to one of a set of large super-particles, each with essentially a
different mass. Thus, at short times, when clustering is not
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FIG. 4. Normalized velocity distribution function f (vi) plotted
on a semi-log scale for (a) t = 50, (b) t = 150, (c) t = 300,
and (d) t = 500. Data is shown for μ = 0.10 and σ = 0.30 at
different times. The open circles represent the data obtained from
the numerical simulations and averaged over ten independent runs.
The solid line represents the PMB at that time (with the corresponding
time-dependent temperature). The statistical data deviates from PMB

at later times, particularly in the tail region.

yet pronounced, a MB distribution with a time-dependent
temperature may be expected, but once clustering sets in, the
nature of the distribution is expected to change. Figure 4 shows
the time evolution of the velocity distribution function for σ =
0.30 and μ = 0.10. At early times, the velocities follow the MB
distribution. However, at later times, deviations from the MB
distribution are seen in the tail region, e.g., compare the data
sets for t = 50 and t = 500. This is consistent with our earlier
simulations of the freely cooling inelastic hard-sphere gas [17].

The clustering of the density field σ (�r,t) and velocity field
�v(�r,t) has been studied by invoking an analogy from phase-
ordering systems with scalar and vector order parameters,
respectively [17,31]. We studied the evolution morphologies
of the σ (�r,t) field and the �v(�r,t) field by calculating equal-time
correlation functions and structure factors [23,32,33]. For σ =
0.30, the coarse-grained fields at a lattice point are obtained by
calculating the average density and the velocity within boxes
of size 7.1252. We introduce the order parameter ψ(�r,t) that
attains the values +1(−1) where the local number density is
more than (less than) the average number density (σav ∼ 0.30,
in this case), similar to a two-state Ising model [23]. This
hardening of the order-parameter field is done to clearly extract
the Porod tail in the structure factor [24,25]. The evolution
of the σ (�r,t) field is characterized by the order-parameter
correlation function Cψψ (r,t), defined as

Cψψ (r,t) = 〈ψ( �R,t)ψ( �R + �r,t)〉
− 〈ψ( �R,t)〉〈ψ( �R + �r,t)〉, (6)

where the angular brackets represent the averaging over
different initial conditions. Consider first the typical length
scale, Lψ (t) characterizing the clustering. It is defined as the
distance over which Cψψ (r,t) decays from 1 (at r = 0) to 0.25.

101 102
t

10
Lψ(t)

σ=0.20
σ=0.30

25

t1/3

FIG. 5. Time-dependence of the correlation length Lψ (t) corre-
sponding to the clustering of the density field order-parameter, ψ(�r,t)
field. Clearly, in the late stage, Lψ (t) follows a t1/3 growth law. The
solid line with exponent 1

3 is shown, corresponds to diffusive growth
of clustering.

The variation of Lψ (t) with t is shown in Fig. 5 and shows a
power-law behavior according to Lψ (t) ∼ t1/3. This behavior
corresponds to the diffusive growth of particle rich clusters.
(Note that this is exactly the behavior predicted for the growth
of plug regions in granular flow [19].)

If the clustering is characterized by single length scale
Lψ (t), Cψψ (r,t) obeys dynamical scaling,

Cψψ (r,t) = gψ

[
r

Lψ (t)

]
, (7)

where gψ (x) is the scaling function and x is the scaling
variable. We also compute the structure factor Sψψ (k,t), which
is the Fourier transform of Cψψ (r,t) at wave vector �k. The
dynamical scaling form for Sψψ (k,t) is given by

Sψψ (k,t) = Ld
ψ (t)S̃ψ [kLψ (t)], (8)

where S̃ψ (p) is the scaling function, d is the spatial dimension,
and p is the scaling variable. All statistical quantities presented
here are obtained as averages over ten independent runs. In
Fig. 6, we plot equal time correlation functions [Cψψ (r,t) in
Fig. 6(a)] and structure factors [Sψψ (k,t) in Fig. 6(b)] for
the ψ(�r,t) field. In Fig. 6(a), the numerical data at different
times collapse, confirming dynamical scaling. An important
characteristic of the morphology is the Porod tail: S̃ψ (k,t) ∼
k−(d+1) for large k [27]. This is a consequence of scattering
from sharp interfaces, which is shown in Fig. 6(b). However, a
deviation from Porod’s law may be observed due to the finite
thickness or roughness of interfaces [25]. If w is the thickness
of the interface, Porod’s law will be observed at large Lψ (t),
i.e., in the limit w/Lψ (t) → 0.

The evolution snapshots of velocity field shown in Fig. 2
indicate that ordering and pattern formation exist also in
the velocity field. To clarify the nature of pattern forma-
tion [23,32], we have hardened the velocity field in Fig. 2;
i.e., the length of all vectors has been set to unity. In fact,
this means that we consider instead of the velocity field the
direction field �u = �v/|�v|, similar to the order-parameter for
domain growth in the XY model in two dimensions [28]. The
velocity field is assigned the value zero at points with no
particles in the associated coarse-graining box. Void spaces in
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FIG. 6. Scaling plot of correlation functions and structure factors
for the ψ(�r,t) field. We obtain spherically averaged Cψψ (r,t) and
S̃ψ (k,t) as an average over ten independent runs on lattices of size
1282, after mapping the actual system of size 9122. (a) Plot of Cψψ (r,t)
vs. r/Lψ at different times, denoted by the indicated symbols. The
data collapse at different time corresponds to dynamical scaling. (b)
Plot of S̃ψ (k,t) vs. kLψ on a log-log scale at different times. The solid
line labeled with k−3 shows the Porod’s law: S̃ψ (k,t) ∼ k−3 in the
long wave vector limit.

Fig. 2 correspond to such points. Similar to the σ (�r,t) field,
the evolution of the �v(�r,t) field is characterized by the velocity
correlation function Cuu(r,t), defined as

Cuu(r,t) = 〈�u( �R,t) · �u( �R + �r,t)〉
− 〈�u( �R,t)〉 · 〈�u( �R + �r,t)〉. (9)

Similar to the case of the order parameter, we define a
correlation length Lu(t) from Cuu(r,t), which is shown in
Fig. 7. Clearly, Lu(t) follows diffusive growth: Lu(t) ∼ t1/3.
Details are given in the figure caption.

Again the correlation function can be expected to obey
dynamical scaling,

Cuu(r,t) = gu

[
r

Lu(t)

]
, (10)

where gu(y) is the scaling function, and y is the scaling
variable. The corresponding dynamical scaling form for the
structure factor Suu(k,t) is given by

Suu(k,t) = Ld
u(t)S̃u[kLu(t)], (11)

101 102
t

10
Lu(t)

σ=0.20
σ=0.30

t1/3

50

FIG. 7. The correlation length scale Lu(t) of the �u(�r,t) field as a
function of time. Plot of Lu(t) vs. t on a log-log scale. The solid line
with an exponent of 1

3 is shown, corresponds to diffusive growth for
ordering.
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FIG. 8. Scaling plot of spherically averaged correlation functions
Cuu(r,t) and structure factors S̃u(k,t) for �u(�r,t) field. (a) Plot of
Cuu(r,t) vs. r/Lu at different time, denoted by the indicated symbols.
The data collapse at different time confirms to dynamic self-similarity.
(b) Plot of S̃u(k,t) vs. kLu on a log-log scale at different times. The
solid line labeled with k−4 represents the generalized Porod’s law:
Suu(k,t) ∼ k−(d+n) for d = 2 and n = 2. The rest of the details are the
same as described in the caption of Fig. 6.

where S̃u(q) is the scaling function, d is the spatial dimen-
sionality, and q is the scaling variable. In Fig. 8, we plot equal
time correlation functions [Cuu(r,t) in Fig. 8(a)] and structure
factors [S̃u(k,t) in Fig. 8(b)] for the �u(�r,t) field. Similar to the
ψ(�r,t) field, the evolution of the �u(�r,t) field, follows dynamic
scaling. In limit k → ∞ [23–26], the structure factor follows
generalized Porod’s law as Suu(k,t) ∼ k−(d+n) with d = 2 and
n = 2, which is the number of components of �u. This is the
consequence of the scattering from vortex-like defects [28].

III. SUMMARY AND DISCUSSION

Let us conclude this paper with summary and discussion of
our results. We studied the cooling of low-density granular
gases using large-scale molecular dynamics, where solid
friction between two interacting particles is used as the only
dissipation mechanism of energy. The system cools down
algebraically with a changing exponent. At the early stage,
the exponent describing the cooling down is α = 3/2 and
then the cooling slows down and is characterized at the
late stage by α = 1. We observe clustering in the density
field and local ordering in the velocity field because of the
cooling, and the velocity distribution, which is originally
a Maxwell-Boltzmann distribution, deviates from it at later
times. The morphology of clustering in the density field is
studied by obtaining equal-time correlation functions and
structure factors, showing dynamical scaling. The average
cluster size of the density field shows diffusive growth:
Lψ (t) ∼ t1/3. Similar to the density field, we also observe
dynamical scaling of equal-time correlation functions and
structure factors of the velocity field. The characteristic length
scale of velocity field shows power-law growth: Lu(t) ∼ t1/3,
proposed in the past in the context of dense granular flow [19].
We hope that the information provided in this paper will be
useful for the further study of rheology of dense granular flows.
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